13
0
livetrax/libs/fluidsynth/src/fluid_hash.c

1410 lines
39 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02110-1301, USA.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*
* Adapted for FluidSynth use by Josh Green <jgreen@users.sourceforge.net>
* September 8, 2009 from glib 2.18.4
*/
/*
* MT safe
*/
#include "fluid_sys.h"
#include "fluid_hash.h"
#include "fluid_list.h"
#define HASH_TABLE_MIN_SIZE 11
#define HASH_TABLE_MAX_SIZE 13845163
typedef struct
{
fluid_hashtable_t *hashtable;
fluid_hashnode_t *prev_node;
fluid_hashnode_t *node;
int position;
int pre_advanced; // Boolean
int version;
} RealIter;
/* Excerpt from glib gprimes.c */
static const unsigned int primes[] =
{
11,
19,
37,
73,
109,
163,
251,
367,
557,
823,
1237,
1861,
2777,
4177,
6247,
9371,
14057,
21089,
31627,
47431,
71143,
106721,
160073,
240101,
360163,
540217,
810343,
1215497,
1823231,
2734867,
4102283,
6153409,
9230113,
13845163,
};
static const unsigned int nprimes = FLUID_N_ELEMENTS(primes);
static unsigned int
spaced_primes_closest(unsigned int num)
{
unsigned int i;
for(i = 0; i < nprimes; i++)
{
if(primes[i] > num)
{
return primes[i];
}
}
return primes[nprimes - 1];
}
/* End excerpt from glib gprimes.c */
/*
* @hashtable: our #fluid_hashtable_t
* @key: the key to lookup against
* @hash_return: optional key hash return location
* Return value: a pointer to the described #fluid_hashnode_t pointer
*
* Performs a lookup in the hash table. Virtually all hash operations
* will use this function internally.
*
* This function first computes the hash value of the key using the
* user's hash function.
*
* If an entry in the table matching @key is found then this function
* returns a pointer to the pointer to that entry in the table. In
* the case that the entry is at the head of a chain, this pointer
* will be an item in the nodes[] array. In the case that the entry
* is not at the head of a chain, this pointer will be the ->next
* pointer on the node that precedes it.
*
* In the case that no matching entry exists in the table, a pointer
* to a %NULL pointer will be returned. To insert a item, this %NULL
* pointer should be updated to point to the new #fluid_hashnode_t.
*
* If @hash_return is a pass-by-reference parameter. If it is
* non-%NULL then the computed hash value is returned. This is to
* save insertions from having to compute the hash record again for
* the new record.
*/
static FLUID_INLINE fluid_hashnode_t **
fluid_hashtable_lookup_node(fluid_hashtable_t *hashtable, const void *key,
unsigned int *hash_return)
{
fluid_hashnode_t **node_ptr, *node;
unsigned int hash_value;
hash_value = (* hashtable->hash_func)(key);
node_ptr = &hashtable->nodes[hash_value % hashtable->size];
if(hash_return)
{
*hash_return = hash_value;
}
/* Hash table lookup needs to be fast.
* We therefore remove the extra conditional of testing
* whether to call the key_equal_func or not from
* the inner loop.
*
* Additional optimisation: first check if our full hash
* values are equal so we can avoid calling the full-blown
* key equality function in most cases.
*/
if(hashtable->key_equal_func)
{
while((node = *node_ptr))
{
if(node->key_hash == hash_value &&
hashtable->key_equal_func(node->key, key))
{
break;
}
node_ptr = &(*node_ptr)->next;
}
}
else
{
while((node = *node_ptr))
{
if(node->key == key)
{
break;
}
node_ptr = &(*node_ptr)->next;
}
}
return node_ptr;
}
/*
* @hashtable: our #fluid_hashtable_t
* @node_ptr_ptr: a pointer to the return value from
* fluid_hashtable_lookup_node()
* @notify: %TRUE if the destroy notify handlers are to be called
*
* Removes a node from the hash table and updates the node count. The
* node is freed. No table resize is performed.
*
* If @notify is %TRUE then the destroy notify functions are called
* for the key and value of the hash node.
*
* @node_ptr_ptr is a pass-by-reference in/out parameter. When the
* function is called, it should point to the pointer to the node to
* remove. This level of indirection is required so that the pointer
* may be updated appropriately once the node has been removed.
*
* Before the function returns, the pointer at @node_ptr_ptr will be
* updated to point to the position in the table that contains the
* pointer to the "next" node in the chain. This makes this function
* convenient to use from functions that iterate over the entire
* table. If there is no further item in the chain then the
* #fluid_hashnode_t pointer will be %NULL (ie: **node_ptr_ptr == %NULL).
*
* Since the pointer in the table to the removed node is replaced with
* either a pointer to the next node or a %NULL pointer as
* appropriate, the pointer at the end of @node_ptr_ptr will never be
* modified at all. Stay tuned. :)
*/
static void
fluid_hashtable_remove_node(fluid_hashtable_t *hashtable,
fluid_hashnode_t ***node_ptr_ptr, int notify)
{
fluid_hashnode_t **node_ptr, *node;
node_ptr = *node_ptr_ptr;
node = *node_ptr;
*node_ptr = node->next;
if(notify && hashtable->key_destroy_func)
{
hashtable->key_destroy_func(node->key);
}
if(notify && hashtable->value_destroy_func)
{
hashtable->value_destroy_func(node->value);
}
FLUID_FREE(node);
hashtable->nnodes--;
}
/*
* fluid_hashtable_remove_all_nodes:
* @hashtable: our #fluid_hashtable_t
* @notify: %TRUE if the destroy notify handlers are to be called
*
* Removes all nodes from the table. Since this may be a precursor to
* freeing the table entirely, no resize is performed.
*
* If @notify is %TRUE then the destroy notify functions are called
* for the key and value of the hash node.
*/
static void
fluid_hashtable_remove_all_nodes(fluid_hashtable_t *hashtable, int notify)
{
fluid_hashnode_t **node_ptr;
int i;
for(i = 0; i < hashtable->size; i++)
{
for(node_ptr = &hashtable->nodes[i]; *node_ptr != NULL;)
{
fluid_hashtable_remove_node(hashtable, &node_ptr, notify);
}
}
hashtable->nnodes = 0;
}
/*
* fluid_hashtable_resize:
* @hashtable: our #fluid_hashtable_t
*
* Resizes the hash table to the optimal size based on the number of
* nodes currently held. If you call this function then a resize will
* occur, even if one does not need to occur. Use
* fluid_hashtable_maybe_resize() instead.
*/
static void
fluid_hashtable_resize(fluid_hashtable_t *hashtable)
{
fluid_hashnode_t **new_nodes;
fluid_hashnode_t *node;
fluid_hashnode_t *next;
unsigned int hash_val;
int new_size;
int i;
new_size = spaced_primes_closest(hashtable->nnodes);
new_size = (new_size < HASH_TABLE_MIN_SIZE) ? HASH_TABLE_MIN_SIZE :
((new_size > HASH_TABLE_MAX_SIZE) ? HASH_TABLE_MAX_SIZE : new_size);
new_nodes = FLUID_ARRAY(fluid_hashnode_t *, new_size);
if(!new_nodes)
{
FLUID_LOG(FLUID_ERR, "Out of memory");
return;
}
FLUID_MEMSET(new_nodes, 0, new_size * sizeof(fluid_hashnode_t *));
for(i = 0; i < hashtable->size; i++)
{
for(node = hashtable->nodes[i]; node; node = next)
{
next = node->next;
hash_val = node->key_hash % new_size;
node->next = new_nodes[hash_val];
new_nodes[hash_val] = node;
}
}
FLUID_FREE(hashtable->nodes);
hashtable->nodes = new_nodes;
hashtable->size = new_size;
}
/*
* fluid_hashtable_maybe_resize:
* @hashtable: our #fluid_hashtable_t
*
* Resizes the hash table, if needed.
*
* Essentially, calls fluid_hashtable_resize() if the table has strayed
* too far from its ideal size for its number of nodes.
*/
static FLUID_INLINE void
fluid_hashtable_maybe_resize(fluid_hashtable_t *hashtable)
{
int nnodes = hashtable->nnodes;
int size = hashtable->size;
if((size >= 3 * nnodes && size > HASH_TABLE_MIN_SIZE) ||
(3 * size <= nnodes && size < HASH_TABLE_MAX_SIZE))
{
fluid_hashtable_resize(hashtable);
}
}
/**
* new_fluid_hashtable:
* @hash_func: a function to create a hash value from a key.
* Hash values are used to determine where keys are stored within the
* #fluid_hashtable_t data structure. The fluid_direct_hash(), fluid_int_hash() and
* fluid_str_hash() functions are provided for some common types of keys.
* If hash_func is %NULL, fluid_direct_hash() is used.
* @key_equal_func: a function to check two keys for equality. This is
* used when looking up keys in the #fluid_hashtable_t. The fluid_direct_equal(),
* fluid_int_equal() and fluid_str_equal() functions are provided for the most
* common types of keys. If @key_equal_func is %NULL, keys are compared
* directly in a similar fashion to fluid_direct_equal(), but without the
* overhead of a function call.
*
* Creates a new #fluid_hashtable_t with a reference count of 1.
*
* Return value: a new #fluid_hashtable_t.
**/
fluid_hashtable_t *
new_fluid_hashtable(fluid_hash_func_t hash_func, fluid_equal_func_t key_equal_func)
{
return new_fluid_hashtable_full(hash_func, key_equal_func, NULL, NULL);
}
/**
* new_fluid_hashtable_full:
* @hash_func: a function to create a hash value from a key.
* @key_equal_func: a function to check two keys for equality.
* @key_destroy_func: a function to free the memory allocated for the key
* used when removing the entry from the #fluid_hashtable_t or %NULL if you
* don't want to supply such a function.
* @value_destroy_func: a function to free the memory allocated for the
* value used when removing the entry from the #fluid_hashtable_t or %NULL if
* you don't want to supply such a function.
*
* Creates a new #fluid_hashtable_t like fluid_hashtable_new() with a reference count
* of 1 and allows to specify functions to free the memory allocated for the
* key and value that get called when removing the entry from the #fluid_hashtable_t.
*
* Return value: a new #fluid_hashtable_t.
**/
fluid_hashtable_t *
new_fluid_hashtable_full(fluid_hash_func_t hash_func,
fluid_equal_func_t key_equal_func,
fluid_destroy_notify_t key_destroy_func,
fluid_destroy_notify_t value_destroy_func)
{
fluid_hashtable_t *hashtable;
hashtable = FLUID_NEW(fluid_hashtable_t);
if(!hashtable)
{
FLUID_LOG(FLUID_ERR, "Out of memory");
return NULL;
}
hashtable->size = HASH_TABLE_MIN_SIZE;
hashtable->nnodes = 0;
hashtable->hash_func = hash_func ? hash_func : fluid_direct_hash;
hashtable->key_equal_func = key_equal_func;
fluid_atomic_int_set(&hashtable->ref_count, 1);
hashtable->key_destroy_func = key_destroy_func;
hashtable->value_destroy_func = value_destroy_func;
hashtable->nodes = FLUID_ARRAY(fluid_hashnode_t *, hashtable->size);
if(hashtable->nodes == NULL)
{
delete_fluid_hashtable(hashtable);
FLUID_LOG(FLUID_ERR, "Out of memory");
return NULL;
}
FLUID_MEMSET(hashtable->nodes, 0, hashtable->size * sizeof(*hashtable->nodes));
return hashtable;
}
/**
* fluid_hashtable_iter_init:
* @iter: an uninitialized #fluid_hashtable_iter_t.
* @hashtable: a #fluid_hashtable_t.
*
* Initializes a key/value pair iterator and associates it with
* @hashtable. Modifying the hash table after calling this function
* invalidates the returned iterator.
* |[
* fluid_hashtable_iter_t iter;
* gpointer key, value;
*
* fluid_hashtable_iter_init (&iter, hashtable);
* while (fluid_hashtable_iter_next (&iter, &key, &value))
* {
* /&ast; do something with key and value &ast;/
* }
* ]|
*
* Since: 2.16
**/
void
fluid_hashtable_iter_init(fluid_hashtable_iter_t *iter,
fluid_hashtable_t *hashtable)
{
RealIter *ri = (RealIter *) iter;
fluid_return_if_fail(iter != NULL);
fluid_return_if_fail(hashtable != NULL);
ri->hashtable = hashtable;
ri->prev_node = NULL;
ri->node = NULL;
ri->position = -1;
ri->pre_advanced = FALSE;
}
/**
* fluid_hashtable_iter_next:
* @iter: an initialized #fluid_hashtable_iter_t.
* @key: a location to store the key, or %NULL.
* @value: a location to store the value, or %NULL.
*
* Advances @iter and retrieves the key and/or value that are now
* pointed to as a result of this advancement. If %FALSE is returned,
* @key and @value are not set, and the iterator becomes invalid.
*
* Return value: %FALSE if the end of the #fluid_hashtable_t has been reached.
*
* Since: 2.16
**/
int
fluid_hashtable_iter_next(fluid_hashtable_iter_t *iter, void **key,
void **value)
{
RealIter *ri = (RealIter *) iter;
fluid_return_val_if_fail(iter != NULL, FALSE);
if(ri->pre_advanced)
{
ri->pre_advanced = FALSE;
if(ri->node == NULL)
{
return FALSE;
}
}
else
{
if(ri->node != NULL)
{
ri->prev_node = ri->node;
ri->node = ri->node->next;
}
while(ri->node == NULL)
{
ri->position++;
if(ri->position >= ri->hashtable->size)
{
return FALSE;
}
ri->prev_node = NULL;
ri->node = ri->hashtable->nodes[ri->position];
}
}
if(key != NULL)
{
*key = ri->node->key;
}
if(value != NULL)
{
*value = ri->node->value;
}
return TRUE;
}
/**
* fluid_hashtable_iter_get_hash_table:
* @iter: an initialized #fluid_hashtable_iter_t.
*
* Returns the #fluid_hashtable_t associated with @iter.
*
* Return value: the #fluid_hashtable_t associated with @iter.
*
* Since: 2.16
**/
fluid_hashtable_t *
fluid_hashtable_iter_get_hash_table(fluid_hashtable_iter_t *iter)
{
fluid_return_val_if_fail(iter != NULL, NULL);
return ((RealIter *) iter)->hashtable;
}
static void
iter_remove_or_steal(RealIter *ri, int notify)
{
fluid_hashnode_t *prev;
fluid_hashnode_t *node;
int position;
fluid_return_if_fail(ri != NULL);
fluid_return_if_fail(ri->node != NULL);
prev = ri->prev_node;
node = ri->node;
position = ri->position;
/* pre-advance the iterator since we will remove the node */
ri->node = ri->node->next;
/* ri->prev_node is still the correct previous node */
while(ri->node == NULL)
{
ri->position++;
if(ri->position >= ri->hashtable->size)
{
break;
}
ri->prev_node = NULL;
ri->node = ri->hashtable->nodes[ri->position];
}
ri->pre_advanced = TRUE;
/* remove the node */
if(prev != NULL)
{
prev->next = node->next;
}
else
{
ri->hashtable->nodes[position] = node->next;
}
if(notify)
{
if(ri->hashtable->key_destroy_func)
{
ri->hashtable->key_destroy_func(node->key);
}
if(ri->hashtable->value_destroy_func)
{
ri->hashtable->value_destroy_func(node->value);
}
}
FLUID_FREE(node);
ri->hashtable->nnodes--;
}
/**
* fluid_hashtable_iter_remove():
* @iter: an initialized #fluid_hashtable_iter_t.
*
* Removes the key/value pair currently pointed to by the iterator
* from its associated #fluid_hashtable_t. Can only be called after
* fluid_hashtable_iter_next() returned %TRUE, and cannot be called more
* than once for the same key/value pair.
*
* If the #fluid_hashtable_t was created using fluid_hashtable_new_full(), the
* key and value are freed using the supplied destroy functions, otherwise
* you have to make sure that any dynamically allocated values are freed
* yourself.
*
* Since: 2.16
**/
void
fluid_hashtable_iter_remove(fluid_hashtable_iter_t *iter)
{
iter_remove_or_steal((RealIter *) iter, TRUE);
}
/**
* fluid_hashtable_iter_steal():
* @iter: an initialized #fluid_hashtable_iter_t.
*
* Removes the key/value pair currently pointed to by the iterator
* from its associated #fluid_hashtable_t, without calling the key and value
* destroy functions. Can only be called after
* fluid_hashtable_iter_next() returned %TRUE, and cannot be called more
* than once for the same key/value pair.
*
* Since: 2.16
**/
void
fluid_hashtable_iter_steal(fluid_hashtable_iter_t *iter)
{
iter_remove_or_steal((RealIter *) iter, FALSE);
}
/**
* fluid_hashtable_ref:
* @hashtable: a valid #fluid_hashtable_t.
*
* Atomically increments the reference count of @hashtable by one.
* This function is MT-safe and may be called from any thread.
*
* Return value: the passed in #fluid_hashtable_t.
*
* Since: 2.10
**/
fluid_hashtable_t *
fluid_hashtable_ref(fluid_hashtable_t *hashtable)
{
fluid_return_val_if_fail(hashtable != NULL, NULL);
fluid_return_val_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0, hashtable);
fluid_atomic_int_add(&hashtable->ref_count, 1);
return hashtable;
}
/**
* fluid_hashtable_unref:
* @hashtable: a valid #fluid_hashtable_t.
*
* Atomically decrements the reference count of @hashtable by one.
* If the reference count drops to 0, all keys and values will be
* destroyed, and all memory allocated by the hash table is released.
* This function is MT-safe and may be called from any thread.
*
* Since: 2.10
**/
void
fluid_hashtable_unref(fluid_hashtable_t *hashtable)
{
fluid_return_if_fail(hashtable != NULL);
fluid_return_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0);
if(fluid_atomic_int_exchange_and_add(&hashtable->ref_count, -1) - 1 == 0)
{
fluid_hashtable_remove_all_nodes(hashtable, TRUE);
FLUID_FREE(hashtable->nodes);
FLUID_FREE(hashtable);
}
}
/**
* delete_fluid_hashtable:
* @hashtable: a #fluid_hashtable_t.
*
* Destroys all keys and values in the #fluid_hashtable_t and decrements its
* reference count by 1. If keys and/or values are dynamically allocated,
* you should either free them first or create the #fluid_hashtable_t with destroy
* notifiers using fluid_hashtable_new_full(). In the latter case the destroy
* functions you supplied will be called on all keys and values during the
* destruction phase.
**/
void
delete_fluid_hashtable(fluid_hashtable_t *hashtable)
{
fluid_return_if_fail(hashtable != NULL);
fluid_return_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0);
fluid_hashtable_remove_all(hashtable);
fluid_hashtable_unref(hashtable);
}
/**
* fluid_hashtable_lookup:
* @hashtable: a #fluid_hashtable_t.
* @key: the key to look up.
*
* Looks up a key in a #fluid_hashtable_t. Note that this function cannot
* distinguish between a key that is not present and one which is present
* and has the value %NULL. If you need this distinction, use
* fluid_hashtable_lookup_extended().
*
* Return value: the associated value, or %NULL if the key is not found.
**/
void *
fluid_hashtable_lookup(fluid_hashtable_t *hashtable, const void *key)
{
fluid_hashnode_t *node;
fluid_return_val_if_fail(hashtable != NULL, NULL);
node = *fluid_hashtable_lookup_node(hashtable, key, NULL);
return node ? node->value : NULL;
}
/**
* fluid_hashtable_lookup_extended:
* @hashtable: a #fluid_hashtable_t.
* @lookup_key: the key to look up.
* @orig_key: returns the original key.
* @value: returns the value associated with the key.
*
* Looks up a key in the #fluid_hashtable_t, returning the original key and the
* associated value and a #gboolean which is %TRUE if the key was found. This
* is useful if you need to free the memory allocated for the original key,
* for example before calling fluid_hashtable_remove().
*
* Return value: %TRUE if the key was found in the #fluid_hashtable_t.
**/
int
fluid_hashtable_lookup_extended(fluid_hashtable_t *hashtable,
const void *lookup_key,
void **orig_key, void **value)
{
fluid_hashnode_t *node;
fluid_return_val_if_fail(hashtable != NULL, FALSE);
node = *fluid_hashtable_lookup_node(hashtable, lookup_key, NULL);
if(node == NULL)
{
return FALSE;
}
if(orig_key)
{
*orig_key = node->key;
}
if(value)
{
*value = node->value;
}
return TRUE;
}
/*
* fluid_hashtable_insert_internal:
* @hashtable: our #fluid_hashtable_t
* @key: the key to insert
* @value: the value to insert
* @keep_new_key: if %TRUE and this key already exists in the table
* then call the destroy notify function on the old key. If %FALSE
* then call the destroy notify function on the new key.
*
* Implements the common logic for the fluid_hashtable_insert() and
* fluid_hashtable_replace() functions.
*
* Do a lookup of @key. If it is found, replace it with the new
* @value (and perhaps the new @key). If it is not found, create a
* new node.
*/
static void
fluid_hashtable_insert_internal(fluid_hashtable_t *hashtable, void *key,
void *value, int keep_new_key)
{
fluid_hashnode_t **node_ptr, *node;
unsigned int key_hash;
fluid_return_if_fail(hashtable != NULL);
fluid_return_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0);
node_ptr = fluid_hashtable_lookup_node(hashtable, key, &key_hash);
if((node = *node_ptr))
{
if(keep_new_key)
{
if(hashtable->key_destroy_func)
{
hashtable->key_destroy_func(node->key);
}
node->key = key;
}
else
{
if(hashtable->key_destroy_func)
{
hashtable->key_destroy_func(key);
}
}
if(hashtable->value_destroy_func)
{
hashtable->value_destroy_func(node->value);
}
node->value = value;
}
else
{
node = FLUID_NEW(fluid_hashnode_t);
if(!node)
{
FLUID_LOG(FLUID_ERR, "Out of memory");
return;
}
node->key = key;
node->value = value;
node->key_hash = key_hash;
node->next = NULL;
*node_ptr = node;
hashtable->nnodes++;
fluid_hashtable_maybe_resize(hashtable);
}
}
/**
* fluid_hashtable_insert:
* @hashtable: a #fluid_hashtable_t.
* @key: a key to insert.
* @value: the value to associate with the key.
*
* Inserts a new key and value into a #fluid_hashtable_t.
*
* If the key already exists in the #fluid_hashtable_t its current value is replaced
* with the new value. If you supplied a @value_destroy_func when creating the
* #fluid_hashtable_t, the old value is freed using that function. If you supplied
* a @key_destroy_func when creating the #fluid_hashtable_t, the passed key is freed
* using that function.
**/
void
fluid_hashtable_insert(fluid_hashtable_t *hashtable, void *key, void *value)
{
fluid_hashtable_insert_internal(hashtable, key, value, FALSE);
}
/**
* fluid_hashtable_replace:
* @hashtable: a #fluid_hashtable_t.
* @key: a key to insert.
* @value: the value to associate with the key.
*
* Inserts a new key and value into a #fluid_hashtable_t similar to
* fluid_hashtable_insert(). The difference is that if the key already exists
* in the #fluid_hashtable_t, it gets replaced by the new key. If you supplied a
* @value_destroy_func when creating the #fluid_hashtable_t, the old value is freed
* using that function. If you supplied a @key_destroy_func when creating the
* #fluid_hashtable_t, the old key is freed using that function.
**/
void
fluid_hashtable_replace(fluid_hashtable_t *hashtable, void *key, void *value)
{
fluid_hashtable_insert_internal(hashtable, key, value, TRUE);
}
/*
* fluid_hashtable_remove_internal:
* @hashtable: our #fluid_hashtable_t
* @key: the key to remove
* @notify: %TRUE if the destroy notify handlers are to be called
* Return value: %TRUE if a node was found and removed, else %FALSE
*
* Implements the common logic for the fluid_hashtable_remove() and
* fluid_hashtable_steal() functions.
*
* Do a lookup of @key and remove it if it is found, calling the
* destroy notify handlers only if @notify is %TRUE.
*/
static int
fluid_hashtable_remove_internal(fluid_hashtable_t *hashtable, const void *key,
int notify)
{
fluid_hashnode_t **node_ptr;
fluid_return_val_if_fail(hashtable != NULL, FALSE);
node_ptr = fluid_hashtable_lookup_node(hashtable, key, NULL);
if(*node_ptr == NULL)
{
return FALSE;
}
fluid_hashtable_remove_node(hashtable, &node_ptr, notify);
fluid_hashtable_maybe_resize(hashtable);
return TRUE;
}
/**
* fluid_hashtable_remove:
* @hashtable: a #fluid_hashtable_t.
* @key: the key to remove.
*
* Removes a key and its associated value from a #fluid_hashtable_t.
*
* If the #fluid_hashtable_t was created using fluid_hashtable_new_full(), the
* key and value are freed using the supplied destroy functions, otherwise
* you have to make sure that any dynamically allocated values are freed
* yourself.
*
* Return value: %TRUE if the key was found and removed from the #fluid_hashtable_t.
**/
int
fluid_hashtable_remove(fluid_hashtable_t *hashtable, const void *key)
{
return fluid_hashtable_remove_internal(hashtable, key, TRUE);
}
/**
* fluid_hashtable_steal:
* @hashtable: a #fluid_hashtable_t.
* @key: the key to remove.
*
* Removes a key and its associated value from a #fluid_hashtable_t without
* calling the key and value destroy functions.
*
* Return value: %TRUE if the key was found and removed from the #fluid_hashtable_t.
**/
int
fluid_hashtable_steal(fluid_hashtable_t *hashtable, const void *key)
{
return fluid_hashtable_remove_internal(hashtable, key, FALSE);
}
/**
* fluid_hashtable_remove_all:
* @hashtable: a #fluid_hashtable_t
*
* Removes all keys and their associated values from a #fluid_hashtable_t.
*
* If the #fluid_hashtable_t was created using fluid_hashtable_new_full(), the keys
* and values are freed using the supplied destroy functions, otherwise you
* have to make sure that any dynamically allocated values are freed
* yourself.
*
* Since: 2.12
**/
void
fluid_hashtable_remove_all(fluid_hashtable_t *hashtable)
{
fluid_return_if_fail(hashtable != NULL);
fluid_hashtable_remove_all_nodes(hashtable, TRUE);
fluid_hashtable_maybe_resize(hashtable);
}
#if 0
/**
* fluid_hashtable_steal_all:
* @hashtable: a #fluid_hashtable_t.
*
* Removes all keys and their associated values from a #fluid_hashtable_t
* without calling the key and value destroy functions.
*
* Since: 2.12
**/
void
fluid_hashtable_steal_all(fluid_hashtable_t *hashtable)
{
fluid_return_if_fail(hashtable != NULL);
fluid_hashtable_remove_all_nodes(hashtable, FALSE);
fluid_hashtable_maybe_resize(hashtable);
}
#endif
/*
* fluid_hashtable_foreach_remove_or_steal:
* @hashtable: our #fluid_hashtable_t
* @func: the user's callback function
* @user_data: data for @func
* @notify: %TRUE if the destroy notify handlers are to be called
*
* Implements the common logic for fluid_hashtable_foreach_remove() and
* fluid_hashtable_foreach_steal().
*
* Iterates over every node in the table, calling @func with the key
* and value of the node (and @user_data). If @func returns %TRUE the
* node is removed from the table.
*
* If @notify is true then the destroy notify handlers will be called
* for each removed node.
*/
static unsigned int
fluid_hashtable_foreach_remove_or_steal(fluid_hashtable_t *hashtable,
fluid_hr_func_t func, void *user_data,
int notify)
{
fluid_hashnode_t *node, **node_ptr;
unsigned int deleted = 0;
int i;
for(i = 0; i < hashtable->size; i++)
{
for(node_ptr = &hashtable->nodes[i]; (node = *node_ptr) != NULL;)
{
if((* func)(node->key, node->value, user_data))
{
fluid_hashtable_remove_node(hashtable, &node_ptr, notify);
deleted++;
}
else
{
node_ptr = &node->next;
}
}
}
fluid_hashtable_maybe_resize(hashtable);
return deleted;
}
#if 0
/**
* fluid_hashtable_foreach_remove:
* @hashtable: a #fluid_hashtable_t.
* @func: the function to call for each key/value pair.
* @user_data: user data to pass to the function.
*
* Calls the given function for each key/value pair in the #fluid_hashtable_t.
* If the function returns %TRUE, then the key/value pair is removed from the
* #fluid_hashtable_t. If you supplied key or value destroy functions when creating
* the #fluid_hashtable_t, they are used to free the memory allocated for the removed
* keys and values.
*
* See #fluid_hashtable_iter_t for an alternative way to loop over the
* key/value pairs in the hash table.
*
* Return value: the number of key/value pairs removed.
**/
static unsigned int
fluid_hashtable_foreach_remove(fluid_hashtable_t *hashtable,
fluid_hr_func_t func, void *user_data)
{
fluid_return_val_if_fail(hashtable != NULL, 0);
fluid_return_val_if_fail(func != NULL, 0);
return fluid_hashtable_foreach_remove_or_steal(hashtable, func, user_data, TRUE);
}
#endif
/**
* fluid_hashtable_foreach_steal:
* @hashtable: a #fluid_hashtable_t.
* @func: the function to call for each key/value pair.
* @user_data: user data to pass to the function.
*
* Calls the given function for each key/value pair in the #fluid_hashtable_t.
* If the function returns %TRUE, then the key/value pair is removed from the
* #fluid_hashtable_t, but no key or value destroy functions are called.
*
* See #fluid_hashtable_iter_t for an alternative way to loop over the
* key/value pairs in the hash table.
*
* Return value: the number of key/value pairs removed.
**/
unsigned int
fluid_hashtable_foreach_steal(fluid_hashtable_t *hashtable,
fluid_hr_func_t func, void *user_data)
{
fluid_return_val_if_fail(hashtable != NULL, 0);
fluid_return_val_if_fail(func != NULL, 0);
return fluid_hashtable_foreach_remove_or_steal(hashtable, func, user_data, FALSE);
}
/**
* fluid_hashtable_foreach:
* @hashtable: a #fluid_hashtable_t.
* @func: the function to call for each key/value pair.
* @user_data: user data to pass to the function.
*
* Calls the given function for each of the key/value pairs in the
* #fluid_hashtable_t. The function is passed the key and value of each
* pair, and the given @user_data parameter. The hash table may not
* be modified while iterating over it (you can't add/remove
* items). To remove all items matching a predicate, use
* fluid_hashtable_foreach_remove().
*
* See fluid_hashtable_find() for performance caveats for linear
* order searches in contrast to fluid_hashtable_lookup().
**/
void
fluid_hashtable_foreach(fluid_hashtable_t *hashtable, fluid_hr_func_t func,
void *user_data)
{
fluid_hashnode_t *node;
int i;
fluid_return_if_fail(hashtable != NULL);
fluid_return_if_fail(func != NULL);
for(i = 0; i < hashtable->size; i++)
{
for(node = hashtable->nodes[i]; node; node = node->next)
{
(* func)(node->key, node->value, user_data);
}
}
}
/**
* fluid_hashtable_find:
* @hashtable: a #fluid_hashtable_t.
* @predicate: function to test the key/value pairs for a certain property.
* @user_data: user data to pass to the function.
*
* Calls the given function for key/value pairs in the #fluid_hashtable_t until
* @predicate returns %TRUE. The function is passed the key and value of
* each pair, and the given @user_data parameter. The hash table may not
* be modified while iterating over it (you can't add/remove items).
*
* Note, that hash tables are really only optimized for forward lookups,
* i.e. fluid_hashtable_lookup().
* So code that frequently issues fluid_hashtable_find() or
* fluid_hashtable_foreach() (e.g. in the order of once per every entry in a
* hash table) should probably be reworked to use additional or different
* data structures for reverse lookups (keep in mind that an O(n) find/foreach
* operation issued for all n values in a hash table ends up needing O(n*n)
* operations).
*
* Return value: The value of the first key/value pair is returned, for which
* func evaluates to %TRUE. If no pair with the requested property is found,
* %NULL is returned.
*
* Since: 2.4
**/
void *
fluid_hashtable_find(fluid_hashtable_t *hashtable, fluid_hr_func_t predicate,
void *user_data)
{
fluid_hashnode_t *node;
int i;
fluid_return_val_if_fail(hashtable != NULL, NULL);
fluid_return_val_if_fail(predicate != NULL, NULL);
for(i = 0; i < hashtable->size; i++)
{
for(node = hashtable->nodes[i]; node; node = node->next)
{
if(predicate(node->key, node->value, user_data))
{
return node->value;
}
}
}
return NULL;
}
/**
* fluid_hashtable_size:
* @hashtable: a #fluid_hashtable_t.
*
* Returns the number of elements contained in the #fluid_hashtable_t.
*
* Return value: the number of key/value pairs in the #fluid_hashtable_t.
**/
unsigned int
fluid_hashtable_size(fluid_hashtable_t *hashtable)
{
fluid_return_val_if_fail(hashtable != NULL, 0);
return hashtable->nnodes;
}
/**
* fluid_hashtable_get_keys:
* @hashtable: a #fluid_hashtable_t
*
* Retrieves every key inside @hashtable. The returned data is valid
* until @hashtable is modified.
*
* Return value: a #GList containing all the keys inside the hash
* table. The content of the list is owned by the hash table and
* should not be modified or freed. Use delete_fluid_list() when done
* using the list.
*
* Since: 2.14
*/
fluid_list_t *
fluid_hashtable_get_keys(fluid_hashtable_t *hashtable)
{
fluid_hashnode_t *node;
int i;
fluid_list_t *retval;
fluid_return_val_if_fail(hashtable != NULL, NULL);
retval = NULL;
for(i = 0; i < hashtable->size; i++)
{
for(node = hashtable->nodes[i]; node; node = node->next)
{
retval = fluid_list_prepend(retval, node->key);
}
}
return retval;
}
/**
* fluid_hashtable_get_values:
* @hashtable: a #fluid_hashtable_t
*
* Retrieves every value inside @hashtable. The returned data is
* valid until @hashtable is modified.
*
* Return value: a #GList containing all the values inside the hash
* table. The content of the list is owned by the hash table and
* should not be modified or freed. Use delete_fluid_list() when done
* using the list.
*
* Since: 2.14
*/
fluid_list_t *
fluid_hashtable_get_values(fluid_hashtable_t *hashtable)
{
fluid_hashnode_t *node;
int i;
fluid_list_t *retval;
fluid_return_val_if_fail(hashtable != NULL, NULL);
retval = NULL;
for(i = 0; i < hashtable->size; i++)
{
for(node = hashtable->nodes[i]; node; node = node->next)
{
retval = fluid_list_prepend(retval, node->value);
}
}
return retval;
}
/* Extracted from glib/gstring.c */
/**
* fluid_str_equal:
* @v1: a key
* @v2: a key to compare with @v1
*
* Compares two strings for byte-by-byte equality and returns %TRUE
* if they are equal. It can be passed to new_fluid_hashtable() as the
* @key_equal_func parameter, when using strings as keys in a #Ghashtable.
*
* Returns: %TRUE if the two keys match
*/
int
fluid_str_equal(const void *v1, const void *v2)
{
const char *string1 = v1;
const char *string2 = v2;
return FLUID_STRCMP(string1, string2) == 0;
}
/**
* fluid_str_hash:
* @v: a string key
*
* Converts a string to a hash value.
* It can be passed to new_fluid_hashtable() as the @hash_func
* parameter, when using strings as keys in a #fluid_hashtable_t.
*
* Returns: a hash value corresponding to the key
*/
unsigned int
fluid_str_hash(const void *v)
{
/* 31 bit hash function */
const signed char *p = v;
uint32_t h = *p;
if(h)
{
for(p += 1; *p != '\0'; p++)
{
h = (h << 5) - h + *p;
}
}
return h;
}
/* Extracted from glib/gutils.c */
/**
* fluid_direct_equal:
* @v1: a key.
* @v2: a key to compare with @v1.
*
* Compares two #gpointer arguments and returns %TRUE if they are equal.
* It can be passed to new_fluid_hashtable() as the @key_equal_func
* parameter, when using pointers as keys in a #fluid_hashtable_t.
*
* Returns: %TRUE if the two keys match.
*/
int
fluid_direct_equal(const void *v1, const void *v2)
{
return v1 == v2;
}
/**
* fluid_direct_hash:
* @v: a void * key
*
* Converts a gpointer to a hash value.
* It can be passed to g_hashtable_new() as the @hash_func parameter,
* when using pointers as keys in a #fluid_hashtable_t.
*
* Returns: a hash value corresponding to the key.
*/
unsigned int
fluid_direct_hash(const void *v)
{
return FLUID_POINTER_TO_UINT(v);
}
/**
* fluid_int_equal:
* @v1: a pointer to a int key.
* @v2: a pointer to a int key to compare with @v1.
*
* Compares the two #gint values being pointed to and returns
* %TRUE if they are equal.
* It can be passed to g_hashtable_new() as the @key_equal_func
* parameter, when using pointers to integers as keys in a #fluid_hashtable_t.
*
* Returns: %TRUE if the two keys match.
*/
int
fluid_int_equal(const void *v1, const void *v2)
{
return *((const int *) v1) == *((const int *) v2);
}
/**
* fluid_int_hash:
* @v: a pointer to a int key
*
* Converts a pointer to a #gint to a hash value.
* It can be passed to g_hashtable_new() as the @hash_func parameter,
* when using pointers to integers values as keys in a #fluid_hashtable_t.
*
* Returns: a hash value corresponding to the key.
*/
unsigned int
fluid_int_hash(const void *v)
{
return *(const int *) v;
}