/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02110-1301, USA. */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. * * Adapted for FluidSynth use by Josh Green * September 8, 2009 from glib 2.18.4 */ /* * MT safe */ #include "fluid_sys.h" #include "fluid_hash.h" #include "fluid_list.h" #define HASH_TABLE_MIN_SIZE 11 #define HASH_TABLE_MAX_SIZE 13845163 typedef struct { fluid_hashtable_t *hashtable; fluid_hashnode_t *prev_node; fluid_hashnode_t *node; int position; int pre_advanced; // Boolean int version; } RealIter; /* Excerpt from glib gprimes.c */ static const unsigned int primes[] = { 11, 19, 37, 73, 109, 163, 251, 367, 557, 823, 1237, 1861, 2777, 4177, 6247, 9371, 14057, 21089, 31627, 47431, 71143, 106721, 160073, 240101, 360163, 540217, 810343, 1215497, 1823231, 2734867, 4102283, 6153409, 9230113, 13845163, }; static const unsigned int nprimes = FLUID_N_ELEMENTS(primes); static unsigned int spaced_primes_closest(unsigned int num) { unsigned int i; for(i = 0; i < nprimes; i++) { if(primes[i] > num) { return primes[i]; } } return primes[nprimes - 1]; } /* End excerpt from glib gprimes.c */ /* * @hashtable: our #fluid_hashtable_t * @key: the key to lookup against * @hash_return: optional key hash return location * Return value: a pointer to the described #fluid_hashnode_t pointer * * Performs a lookup in the hash table. Virtually all hash operations * will use this function internally. * * This function first computes the hash value of the key using the * user's hash function. * * If an entry in the table matching @key is found then this function * returns a pointer to the pointer to that entry in the table. In * the case that the entry is at the head of a chain, this pointer * will be an item in the nodes[] array. In the case that the entry * is not at the head of a chain, this pointer will be the ->next * pointer on the node that precedes it. * * In the case that no matching entry exists in the table, a pointer * to a %NULL pointer will be returned. To insert a item, this %NULL * pointer should be updated to point to the new #fluid_hashnode_t. * * If @hash_return is a pass-by-reference parameter. If it is * non-%NULL then the computed hash value is returned. This is to * save insertions from having to compute the hash record again for * the new record. */ static FLUID_INLINE fluid_hashnode_t ** fluid_hashtable_lookup_node(fluid_hashtable_t *hashtable, const void *key, unsigned int *hash_return) { fluid_hashnode_t **node_ptr, *node; unsigned int hash_value; hash_value = (* hashtable->hash_func)(key); node_ptr = &hashtable->nodes[hash_value % hashtable->size]; if(hash_return) { *hash_return = hash_value; } /* Hash table lookup needs to be fast. * We therefore remove the extra conditional of testing * whether to call the key_equal_func or not from * the inner loop. * * Additional optimisation: first check if our full hash * values are equal so we can avoid calling the full-blown * key equality function in most cases. */ if(hashtable->key_equal_func) { while((node = *node_ptr)) { if(node->key_hash == hash_value && hashtable->key_equal_func(node->key, key)) { break; } node_ptr = &(*node_ptr)->next; } } else { while((node = *node_ptr)) { if(node->key == key) { break; } node_ptr = &(*node_ptr)->next; } } return node_ptr; } /* * @hashtable: our #fluid_hashtable_t * @node_ptr_ptr: a pointer to the return value from * fluid_hashtable_lookup_node() * @notify: %TRUE if the destroy notify handlers are to be called * * Removes a node from the hash table and updates the node count. The * node is freed. No table resize is performed. * * If @notify is %TRUE then the destroy notify functions are called * for the key and value of the hash node. * * @node_ptr_ptr is a pass-by-reference in/out parameter. When the * function is called, it should point to the pointer to the node to * remove. This level of indirection is required so that the pointer * may be updated appropriately once the node has been removed. * * Before the function returns, the pointer at @node_ptr_ptr will be * updated to point to the position in the table that contains the * pointer to the "next" node in the chain. This makes this function * convenient to use from functions that iterate over the entire * table. If there is no further item in the chain then the * #fluid_hashnode_t pointer will be %NULL (ie: **node_ptr_ptr == %NULL). * * Since the pointer in the table to the removed node is replaced with * either a pointer to the next node or a %NULL pointer as * appropriate, the pointer at the end of @node_ptr_ptr will never be * modified at all. Stay tuned. :) */ static void fluid_hashtable_remove_node(fluid_hashtable_t *hashtable, fluid_hashnode_t ***node_ptr_ptr, int notify) { fluid_hashnode_t **node_ptr, *node; node_ptr = *node_ptr_ptr; node = *node_ptr; *node_ptr = node->next; if(notify && hashtable->key_destroy_func) { hashtable->key_destroy_func(node->key); } if(notify && hashtable->value_destroy_func) { hashtable->value_destroy_func(node->value); } FLUID_FREE(node); hashtable->nnodes--; } /* * fluid_hashtable_remove_all_nodes: * @hashtable: our #fluid_hashtable_t * @notify: %TRUE if the destroy notify handlers are to be called * * Removes all nodes from the table. Since this may be a precursor to * freeing the table entirely, no resize is performed. * * If @notify is %TRUE then the destroy notify functions are called * for the key and value of the hash node. */ static void fluid_hashtable_remove_all_nodes(fluid_hashtable_t *hashtable, int notify) { fluid_hashnode_t **node_ptr; int i; for(i = 0; i < hashtable->size; i++) { for(node_ptr = &hashtable->nodes[i]; *node_ptr != NULL;) { fluid_hashtable_remove_node(hashtable, &node_ptr, notify); } } hashtable->nnodes = 0; } /* * fluid_hashtable_resize: * @hashtable: our #fluid_hashtable_t * * Resizes the hash table to the optimal size based on the number of * nodes currently held. If you call this function then a resize will * occur, even if one does not need to occur. Use * fluid_hashtable_maybe_resize() instead. */ static void fluid_hashtable_resize(fluid_hashtable_t *hashtable) { fluid_hashnode_t **new_nodes; fluid_hashnode_t *node; fluid_hashnode_t *next; unsigned int hash_val; int new_size; int i; new_size = spaced_primes_closest(hashtable->nnodes); new_size = (new_size < HASH_TABLE_MIN_SIZE) ? HASH_TABLE_MIN_SIZE : ((new_size > HASH_TABLE_MAX_SIZE) ? HASH_TABLE_MAX_SIZE : new_size); new_nodes = FLUID_ARRAY(fluid_hashnode_t *, new_size); if(!new_nodes) { FLUID_LOG(FLUID_ERR, "Out of memory"); return; } FLUID_MEMSET(new_nodes, 0, new_size * sizeof(fluid_hashnode_t *)); for(i = 0; i < hashtable->size; i++) { for(node = hashtable->nodes[i]; node; node = next) { next = node->next; hash_val = node->key_hash % new_size; node->next = new_nodes[hash_val]; new_nodes[hash_val] = node; } } FLUID_FREE(hashtable->nodes); hashtable->nodes = new_nodes; hashtable->size = new_size; } /* * fluid_hashtable_maybe_resize: * @hashtable: our #fluid_hashtable_t * * Resizes the hash table, if needed. * * Essentially, calls fluid_hashtable_resize() if the table has strayed * too far from its ideal size for its number of nodes. */ static FLUID_INLINE void fluid_hashtable_maybe_resize(fluid_hashtable_t *hashtable) { int nnodes = hashtable->nnodes; int size = hashtable->size; if((size >= 3 * nnodes && size > HASH_TABLE_MIN_SIZE) || (3 * size <= nnodes && size < HASH_TABLE_MAX_SIZE)) { fluid_hashtable_resize(hashtable); } } /** * new_fluid_hashtable: * @hash_func: a function to create a hash value from a key. * Hash values are used to determine where keys are stored within the * #fluid_hashtable_t data structure. The fluid_direct_hash(), fluid_int_hash() and * fluid_str_hash() functions are provided for some common types of keys. * If hash_func is %NULL, fluid_direct_hash() is used. * @key_equal_func: a function to check two keys for equality. This is * used when looking up keys in the #fluid_hashtable_t. The fluid_direct_equal(), * fluid_int_equal() and fluid_str_equal() functions are provided for the most * common types of keys. If @key_equal_func is %NULL, keys are compared * directly in a similar fashion to fluid_direct_equal(), but without the * overhead of a function call. * * Creates a new #fluid_hashtable_t with a reference count of 1. * * Return value: a new #fluid_hashtable_t. **/ fluid_hashtable_t * new_fluid_hashtable(fluid_hash_func_t hash_func, fluid_equal_func_t key_equal_func) { return new_fluid_hashtable_full(hash_func, key_equal_func, NULL, NULL); } /** * new_fluid_hashtable_full: * @hash_func: a function to create a hash value from a key. * @key_equal_func: a function to check two keys for equality. * @key_destroy_func: a function to free the memory allocated for the key * used when removing the entry from the #fluid_hashtable_t or %NULL if you * don't want to supply such a function. * @value_destroy_func: a function to free the memory allocated for the * value used when removing the entry from the #fluid_hashtable_t or %NULL if * you don't want to supply such a function. * * Creates a new #fluid_hashtable_t like fluid_hashtable_new() with a reference count * of 1 and allows to specify functions to free the memory allocated for the * key and value that get called when removing the entry from the #fluid_hashtable_t. * * Return value: a new #fluid_hashtable_t. **/ fluid_hashtable_t * new_fluid_hashtable_full(fluid_hash_func_t hash_func, fluid_equal_func_t key_equal_func, fluid_destroy_notify_t key_destroy_func, fluid_destroy_notify_t value_destroy_func) { fluid_hashtable_t *hashtable; hashtable = FLUID_NEW(fluid_hashtable_t); if(!hashtable) { FLUID_LOG(FLUID_ERR, "Out of memory"); return NULL; } hashtable->size = HASH_TABLE_MIN_SIZE; hashtable->nnodes = 0; hashtable->hash_func = hash_func ? hash_func : fluid_direct_hash; hashtable->key_equal_func = key_equal_func; fluid_atomic_int_set(&hashtable->ref_count, 1); hashtable->key_destroy_func = key_destroy_func; hashtable->value_destroy_func = value_destroy_func; hashtable->nodes = FLUID_ARRAY(fluid_hashnode_t *, hashtable->size); if(hashtable->nodes == NULL) { delete_fluid_hashtable(hashtable); FLUID_LOG(FLUID_ERR, "Out of memory"); return NULL; } FLUID_MEMSET(hashtable->nodes, 0, hashtable->size * sizeof(*hashtable->nodes)); return hashtable; } /** * fluid_hashtable_iter_init: * @iter: an uninitialized #fluid_hashtable_iter_t. * @hashtable: a #fluid_hashtable_t. * * Initializes a key/value pair iterator and associates it with * @hashtable. Modifying the hash table after calling this function * invalidates the returned iterator. * |[ * fluid_hashtable_iter_t iter; * gpointer key, value; * * fluid_hashtable_iter_init (&iter, hashtable); * while (fluid_hashtable_iter_next (&iter, &key, &value)) * { * /* do something with key and value */ * } * ]| * * Since: 2.16 **/ void fluid_hashtable_iter_init(fluid_hashtable_iter_t *iter, fluid_hashtable_t *hashtable) { RealIter *ri = (RealIter *) iter; fluid_return_if_fail(iter != NULL); fluid_return_if_fail(hashtable != NULL); ri->hashtable = hashtable; ri->prev_node = NULL; ri->node = NULL; ri->position = -1; ri->pre_advanced = FALSE; } /** * fluid_hashtable_iter_next: * @iter: an initialized #fluid_hashtable_iter_t. * @key: a location to store the key, or %NULL. * @value: a location to store the value, or %NULL. * * Advances @iter and retrieves the key and/or value that are now * pointed to as a result of this advancement. If %FALSE is returned, * @key and @value are not set, and the iterator becomes invalid. * * Return value: %FALSE if the end of the #fluid_hashtable_t has been reached. * * Since: 2.16 **/ int fluid_hashtable_iter_next(fluid_hashtable_iter_t *iter, void **key, void **value) { RealIter *ri = (RealIter *) iter; fluid_return_val_if_fail(iter != NULL, FALSE); if(ri->pre_advanced) { ri->pre_advanced = FALSE; if(ri->node == NULL) { return FALSE; } } else { if(ri->node != NULL) { ri->prev_node = ri->node; ri->node = ri->node->next; } while(ri->node == NULL) { ri->position++; if(ri->position >= ri->hashtable->size) { return FALSE; } ri->prev_node = NULL; ri->node = ri->hashtable->nodes[ri->position]; } } if(key != NULL) { *key = ri->node->key; } if(value != NULL) { *value = ri->node->value; } return TRUE; } /** * fluid_hashtable_iter_get_hash_table: * @iter: an initialized #fluid_hashtable_iter_t. * * Returns the #fluid_hashtable_t associated with @iter. * * Return value: the #fluid_hashtable_t associated with @iter. * * Since: 2.16 **/ fluid_hashtable_t * fluid_hashtable_iter_get_hash_table(fluid_hashtable_iter_t *iter) { fluid_return_val_if_fail(iter != NULL, NULL); return ((RealIter *) iter)->hashtable; } static void iter_remove_or_steal(RealIter *ri, int notify) { fluid_hashnode_t *prev; fluid_hashnode_t *node; int position; fluid_return_if_fail(ri != NULL); fluid_return_if_fail(ri->node != NULL); prev = ri->prev_node; node = ri->node; position = ri->position; /* pre-advance the iterator since we will remove the node */ ri->node = ri->node->next; /* ri->prev_node is still the correct previous node */ while(ri->node == NULL) { ri->position++; if(ri->position >= ri->hashtable->size) { break; } ri->prev_node = NULL; ri->node = ri->hashtable->nodes[ri->position]; } ri->pre_advanced = TRUE; /* remove the node */ if(prev != NULL) { prev->next = node->next; } else { ri->hashtable->nodes[position] = node->next; } if(notify) { if(ri->hashtable->key_destroy_func) { ri->hashtable->key_destroy_func(node->key); } if(ri->hashtable->value_destroy_func) { ri->hashtable->value_destroy_func(node->value); } } FLUID_FREE(node); ri->hashtable->nnodes--; } /** * fluid_hashtable_iter_remove(): * @iter: an initialized #fluid_hashtable_iter_t. * * Removes the key/value pair currently pointed to by the iterator * from its associated #fluid_hashtable_t. Can only be called after * fluid_hashtable_iter_next() returned %TRUE, and cannot be called more * than once for the same key/value pair. * * If the #fluid_hashtable_t was created using fluid_hashtable_new_full(), the * key and value are freed using the supplied destroy functions, otherwise * you have to make sure that any dynamically allocated values are freed * yourself. * * Since: 2.16 **/ void fluid_hashtable_iter_remove(fluid_hashtable_iter_t *iter) { iter_remove_or_steal((RealIter *) iter, TRUE); } /** * fluid_hashtable_iter_steal(): * @iter: an initialized #fluid_hashtable_iter_t. * * Removes the key/value pair currently pointed to by the iterator * from its associated #fluid_hashtable_t, without calling the key and value * destroy functions. Can only be called after * fluid_hashtable_iter_next() returned %TRUE, and cannot be called more * than once for the same key/value pair. * * Since: 2.16 **/ void fluid_hashtable_iter_steal(fluid_hashtable_iter_t *iter) { iter_remove_or_steal((RealIter *) iter, FALSE); } /** * fluid_hashtable_ref: * @hashtable: a valid #fluid_hashtable_t. * * Atomically increments the reference count of @hashtable by one. * This function is MT-safe and may be called from any thread. * * Return value: the passed in #fluid_hashtable_t. * * Since: 2.10 **/ fluid_hashtable_t * fluid_hashtable_ref(fluid_hashtable_t *hashtable) { fluid_return_val_if_fail(hashtable != NULL, NULL); fluid_return_val_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0, hashtable); fluid_atomic_int_add(&hashtable->ref_count, 1); return hashtable; } /** * fluid_hashtable_unref: * @hashtable: a valid #fluid_hashtable_t. * * Atomically decrements the reference count of @hashtable by one. * If the reference count drops to 0, all keys and values will be * destroyed, and all memory allocated by the hash table is released. * This function is MT-safe and may be called from any thread. * * Since: 2.10 **/ void fluid_hashtable_unref(fluid_hashtable_t *hashtable) { fluid_return_if_fail(hashtable != NULL); fluid_return_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0); if(fluid_atomic_int_exchange_and_add(&hashtable->ref_count, -1) - 1 == 0) { fluid_hashtable_remove_all_nodes(hashtable, TRUE); FLUID_FREE(hashtable->nodes); FLUID_FREE(hashtable); } } /** * delete_fluid_hashtable: * @hashtable: a #fluid_hashtable_t. * * Destroys all keys and values in the #fluid_hashtable_t and decrements its * reference count by 1. If keys and/or values are dynamically allocated, * you should either free them first or create the #fluid_hashtable_t with destroy * notifiers using fluid_hashtable_new_full(). In the latter case the destroy * functions you supplied will be called on all keys and values during the * destruction phase. **/ void delete_fluid_hashtable(fluid_hashtable_t *hashtable) { fluid_return_if_fail(hashtable != NULL); fluid_return_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0); fluid_hashtable_remove_all(hashtable); fluid_hashtable_unref(hashtable); } /** * fluid_hashtable_lookup: * @hashtable: a #fluid_hashtable_t. * @key: the key to look up. * * Looks up a key in a #fluid_hashtable_t. Note that this function cannot * distinguish between a key that is not present and one which is present * and has the value %NULL. If you need this distinction, use * fluid_hashtable_lookup_extended(). * * Return value: the associated value, or %NULL if the key is not found. **/ void * fluid_hashtable_lookup(fluid_hashtable_t *hashtable, const void *key) { fluid_hashnode_t *node; fluid_return_val_if_fail(hashtable != NULL, NULL); node = *fluid_hashtable_lookup_node(hashtable, key, NULL); return node ? node->value : NULL; } /** * fluid_hashtable_lookup_extended: * @hashtable: a #fluid_hashtable_t. * @lookup_key: the key to look up. * @orig_key: returns the original key. * @value: returns the value associated with the key. * * Looks up a key in the #fluid_hashtable_t, returning the original key and the * associated value and a #gboolean which is %TRUE if the key was found. This * is useful if you need to free the memory allocated for the original key, * for example before calling fluid_hashtable_remove(). * * Return value: %TRUE if the key was found in the #fluid_hashtable_t. **/ int fluid_hashtable_lookup_extended(fluid_hashtable_t *hashtable, const void *lookup_key, void **orig_key, void **value) { fluid_hashnode_t *node; fluid_return_val_if_fail(hashtable != NULL, FALSE); node = *fluid_hashtable_lookup_node(hashtable, lookup_key, NULL); if(node == NULL) { return FALSE; } if(orig_key) { *orig_key = node->key; } if(value) { *value = node->value; } return TRUE; } /* * fluid_hashtable_insert_internal: * @hashtable: our #fluid_hashtable_t * @key: the key to insert * @value: the value to insert * @keep_new_key: if %TRUE and this key already exists in the table * then call the destroy notify function on the old key. If %FALSE * then call the destroy notify function on the new key. * * Implements the common logic for the fluid_hashtable_insert() and * fluid_hashtable_replace() functions. * * Do a lookup of @key. If it is found, replace it with the new * @value (and perhaps the new @key). If it is not found, create a * new node. */ static void fluid_hashtable_insert_internal(fluid_hashtable_t *hashtable, void *key, void *value, int keep_new_key) { fluid_hashnode_t **node_ptr, *node; unsigned int key_hash; fluid_return_if_fail(hashtable != NULL); fluid_return_if_fail(fluid_atomic_int_get(&hashtable->ref_count) > 0); node_ptr = fluid_hashtable_lookup_node(hashtable, key, &key_hash); if((node = *node_ptr)) { if(keep_new_key) { if(hashtable->key_destroy_func) { hashtable->key_destroy_func(node->key); } node->key = key; } else { if(hashtable->key_destroy_func) { hashtable->key_destroy_func(key); } } if(hashtable->value_destroy_func) { hashtable->value_destroy_func(node->value); } node->value = value; } else { node = FLUID_NEW(fluid_hashnode_t); if(!node) { FLUID_LOG(FLUID_ERR, "Out of memory"); return; } node->key = key; node->value = value; node->key_hash = key_hash; node->next = NULL; *node_ptr = node; hashtable->nnodes++; fluid_hashtable_maybe_resize(hashtable); } } /** * fluid_hashtable_insert: * @hashtable: a #fluid_hashtable_t. * @key: a key to insert. * @value: the value to associate with the key. * * Inserts a new key and value into a #fluid_hashtable_t. * * If the key already exists in the #fluid_hashtable_t its current value is replaced * with the new value. If you supplied a @value_destroy_func when creating the * #fluid_hashtable_t, the old value is freed using that function. If you supplied * a @key_destroy_func when creating the #fluid_hashtable_t, the passed key is freed * using that function. **/ void fluid_hashtable_insert(fluid_hashtable_t *hashtable, void *key, void *value) { fluid_hashtable_insert_internal(hashtable, key, value, FALSE); } /** * fluid_hashtable_replace: * @hashtable: a #fluid_hashtable_t. * @key: a key to insert. * @value: the value to associate with the key. * * Inserts a new key and value into a #fluid_hashtable_t similar to * fluid_hashtable_insert(). The difference is that if the key already exists * in the #fluid_hashtable_t, it gets replaced by the new key. If you supplied a * @value_destroy_func when creating the #fluid_hashtable_t, the old value is freed * using that function. If you supplied a @key_destroy_func when creating the * #fluid_hashtable_t, the old key is freed using that function. **/ void fluid_hashtable_replace(fluid_hashtable_t *hashtable, void *key, void *value) { fluid_hashtable_insert_internal(hashtable, key, value, TRUE); } /* * fluid_hashtable_remove_internal: * @hashtable: our #fluid_hashtable_t * @key: the key to remove * @notify: %TRUE if the destroy notify handlers are to be called * Return value: %TRUE if a node was found and removed, else %FALSE * * Implements the common logic for the fluid_hashtable_remove() and * fluid_hashtable_steal() functions. * * Do a lookup of @key and remove it if it is found, calling the * destroy notify handlers only if @notify is %TRUE. */ static int fluid_hashtable_remove_internal(fluid_hashtable_t *hashtable, const void *key, int notify) { fluid_hashnode_t **node_ptr; fluid_return_val_if_fail(hashtable != NULL, FALSE); node_ptr = fluid_hashtable_lookup_node(hashtable, key, NULL); if(*node_ptr == NULL) { return FALSE; } fluid_hashtable_remove_node(hashtable, &node_ptr, notify); fluid_hashtable_maybe_resize(hashtable); return TRUE; } /** * fluid_hashtable_remove: * @hashtable: a #fluid_hashtable_t. * @key: the key to remove. * * Removes a key and its associated value from a #fluid_hashtable_t. * * If the #fluid_hashtable_t was created using fluid_hashtable_new_full(), the * key and value are freed using the supplied destroy functions, otherwise * you have to make sure that any dynamically allocated values are freed * yourself. * * Return value: %TRUE if the key was found and removed from the #fluid_hashtable_t. **/ int fluid_hashtable_remove(fluid_hashtable_t *hashtable, const void *key) { return fluid_hashtable_remove_internal(hashtable, key, TRUE); } /** * fluid_hashtable_steal: * @hashtable: a #fluid_hashtable_t. * @key: the key to remove. * * Removes a key and its associated value from a #fluid_hashtable_t without * calling the key and value destroy functions. * * Return value: %TRUE if the key was found and removed from the #fluid_hashtable_t. **/ int fluid_hashtable_steal(fluid_hashtable_t *hashtable, const void *key) { return fluid_hashtable_remove_internal(hashtable, key, FALSE); } /** * fluid_hashtable_remove_all: * @hashtable: a #fluid_hashtable_t * * Removes all keys and their associated values from a #fluid_hashtable_t. * * If the #fluid_hashtable_t was created using fluid_hashtable_new_full(), the keys * and values are freed using the supplied destroy functions, otherwise you * have to make sure that any dynamically allocated values are freed * yourself. * * Since: 2.12 **/ void fluid_hashtable_remove_all(fluid_hashtable_t *hashtable) { fluid_return_if_fail(hashtable != NULL); fluid_hashtable_remove_all_nodes(hashtable, TRUE); fluid_hashtable_maybe_resize(hashtable); } #if 0 /** * fluid_hashtable_steal_all: * @hashtable: a #fluid_hashtable_t. * * Removes all keys and their associated values from a #fluid_hashtable_t * without calling the key and value destroy functions. * * Since: 2.12 **/ void fluid_hashtable_steal_all(fluid_hashtable_t *hashtable) { fluid_return_if_fail(hashtable != NULL); fluid_hashtable_remove_all_nodes(hashtable, FALSE); fluid_hashtable_maybe_resize(hashtable); } #endif /* * fluid_hashtable_foreach_remove_or_steal: * @hashtable: our #fluid_hashtable_t * @func: the user's callback function * @user_data: data for @func * @notify: %TRUE if the destroy notify handlers are to be called * * Implements the common logic for fluid_hashtable_foreach_remove() and * fluid_hashtable_foreach_steal(). * * Iterates over every node in the table, calling @func with the key * and value of the node (and @user_data). If @func returns %TRUE the * node is removed from the table. * * If @notify is true then the destroy notify handlers will be called * for each removed node. */ static unsigned int fluid_hashtable_foreach_remove_or_steal(fluid_hashtable_t *hashtable, fluid_hr_func_t func, void *user_data, int notify) { fluid_hashnode_t *node, **node_ptr; unsigned int deleted = 0; int i; for(i = 0; i < hashtable->size; i++) { for(node_ptr = &hashtable->nodes[i]; (node = *node_ptr) != NULL;) { if((* func)(node->key, node->value, user_data)) { fluid_hashtable_remove_node(hashtable, &node_ptr, notify); deleted++; } else { node_ptr = &node->next; } } } fluid_hashtable_maybe_resize(hashtable); return deleted; } #if 0 /** * fluid_hashtable_foreach_remove: * @hashtable: a #fluid_hashtable_t. * @func: the function to call for each key/value pair. * @user_data: user data to pass to the function. * * Calls the given function for each key/value pair in the #fluid_hashtable_t. * If the function returns %TRUE, then the key/value pair is removed from the * #fluid_hashtable_t. If you supplied key or value destroy functions when creating * the #fluid_hashtable_t, they are used to free the memory allocated for the removed * keys and values. * * See #fluid_hashtable_iter_t for an alternative way to loop over the * key/value pairs in the hash table. * * Return value: the number of key/value pairs removed. **/ static unsigned int fluid_hashtable_foreach_remove(fluid_hashtable_t *hashtable, fluid_hr_func_t func, void *user_data) { fluid_return_val_if_fail(hashtable != NULL, 0); fluid_return_val_if_fail(func != NULL, 0); return fluid_hashtable_foreach_remove_or_steal(hashtable, func, user_data, TRUE); } #endif /** * fluid_hashtable_foreach_steal: * @hashtable: a #fluid_hashtable_t. * @func: the function to call for each key/value pair. * @user_data: user data to pass to the function. * * Calls the given function for each key/value pair in the #fluid_hashtable_t. * If the function returns %TRUE, then the key/value pair is removed from the * #fluid_hashtable_t, but no key or value destroy functions are called. * * See #fluid_hashtable_iter_t for an alternative way to loop over the * key/value pairs in the hash table. * * Return value: the number of key/value pairs removed. **/ unsigned int fluid_hashtable_foreach_steal(fluid_hashtable_t *hashtable, fluid_hr_func_t func, void *user_data) { fluid_return_val_if_fail(hashtable != NULL, 0); fluid_return_val_if_fail(func != NULL, 0); return fluid_hashtable_foreach_remove_or_steal(hashtable, func, user_data, FALSE); } /** * fluid_hashtable_foreach: * @hashtable: a #fluid_hashtable_t. * @func: the function to call for each key/value pair. * @user_data: user data to pass to the function. * * Calls the given function for each of the key/value pairs in the * #fluid_hashtable_t. The function is passed the key and value of each * pair, and the given @user_data parameter. The hash table may not * be modified while iterating over it (you can't add/remove * items). To remove all items matching a predicate, use * fluid_hashtable_foreach_remove(). * * See fluid_hashtable_find() for performance caveats for linear * order searches in contrast to fluid_hashtable_lookup(). **/ void fluid_hashtable_foreach(fluid_hashtable_t *hashtable, fluid_hr_func_t func, void *user_data) { fluid_hashnode_t *node; int i; fluid_return_if_fail(hashtable != NULL); fluid_return_if_fail(func != NULL); for(i = 0; i < hashtable->size; i++) { for(node = hashtable->nodes[i]; node; node = node->next) { (* func)(node->key, node->value, user_data); } } } /** * fluid_hashtable_find: * @hashtable: a #fluid_hashtable_t. * @predicate: function to test the key/value pairs for a certain property. * @user_data: user data to pass to the function. * * Calls the given function for key/value pairs in the #fluid_hashtable_t until * @predicate returns %TRUE. The function is passed the key and value of * each pair, and the given @user_data parameter. The hash table may not * be modified while iterating over it (you can't add/remove items). * * Note, that hash tables are really only optimized for forward lookups, * i.e. fluid_hashtable_lookup(). * So code that frequently issues fluid_hashtable_find() or * fluid_hashtable_foreach() (e.g. in the order of once per every entry in a * hash table) should probably be reworked to use additional or different * data structures for reverse lookups (keep in mind that an O(n) find/foreach * operation issued for all n values in a hash table ends up needing O(n*n) * operations). * * Return value: The value of the first key/value pair is returned, for which * func evaluates to %TRUE. If no pair with the requested property is found, * %NULL is returned. * * Since: 2.4 **/ void * fluid_hashtable_find(fluid_hashtable_t *hashtable, fluid_hr_func_t predicate, void *user_data) { fluid_hashnode_t *node; int i; fluid_return_val_if_fail(hashtable != NULL, NULL); fluid_return_val_if_fail(predicate != NULL, NULL); for(i = 0; i < hashtable->size; i++) { for(node = hashtable->nodes[i]; node; node = node->next) { if(predicate(node->key, node->value, user_data)) { return node->value; } } } return NULL; } /** * fluid_hashtable_size: * @hashtable: a #fluid_hashtable_t. * * Returns the number of elements contained in the #fluid_hashtable_t. * * Return value: the number of key/value pairs in the #fluid_hashtable_t. **/ unsigned int fluid_hashtable_size(fluid_hashtable_t *hashtable) { fluid_return_val_if_fail(hashtable != NULL, 0); return hashtable->nnodes; } /** * fluid_hashtable_get_keys: * @hashtable: a #fluid_hashtable_t * * Retrieves every key inside @hashtable. The returned data is valid * until @hashtable is modified. * * Return value: a #GList containing all the keys inside the hash * table. The content of the list is owned by the hash table and * should not be modified or freed. Use delete_fluid_list() when done * using the list. * * Since: 2.14 */ fluid_list_t * fluid_hashtable_get_keys(fluid_hashtable_t *hashtable) { fluid_hashnode_t *node; int i; fluid_list_t *retval; fluid_return_val_if_fail(hashtable != NULL, NULL); retval = NULL; for(i = 0; i < hashtable->size; i++) { for(node = hashtable->nodes[i]; node; node = node->next) { retval = fluid_list_prepend(retval, node->key); } } return retval; } /** * fluid_hashtable_get_values: * @hashtable: a #fluid_hashtable_t * * Retrieves every value inside @hashtable. The returned data is * valid until @hashtable is modified. * * Return value: a #GList containing all the values inside the hash * table. The content of the list is owned by the hash table and * should not be modified or freed. Use delete_fluid_list() when done * using the list. * * Since: 2.14 */ fluid_list_t * fluid_hashtable_get_values(fluid_hashtable_t *hashtable) { fluid_hashnode_t *node; int i; fluid_list_t *retval; fluid_return_val_if_fail(hashtable != NULL, NULL); retval = NULL; for(i = 0; i < hashtable->size; i++) { for(node = hashtable->nodes[i]; node; node = node->next) { retval = fluid_list_prepend(retval, node->value); } } return retval; } /* Extracted from glib/gstring.c */ /** * fluid_str_equal: * @v1: a key * @v2: a key to compare with @v1 * * Compares two strings for byte-by-byte equality and returns %TRUE * if they are equal. It can be passed to new_fluid_hashtable() as the * @key_equal_func parameter, when using strings as keys in a #Ghashtable. * * Returns: %TRUE if the two keys match */ int fluid_str_equal(const void *v1, const void *v2) { const char *string1 = v1; const char *string2 = v2; return FLUID_STRCMP(string1, string2) == 0; } /** * fluid_str_hash: * @v: a string key * * Converts a string to a hash value. * It can be passed to new_fluid_hashtable() as the @hash_func * parameter, when using strings as keys in a #fluid_hashtable_t. * * Returns: a hash value corresponding to the key */ unsigned int fluid_str_hash(const void *v) { /* 31 bit hash function */ const signed char *p = v; uint32_t h = *p; if(h) { for(p += 1; *p != '\0'; p++) { h = (h << 5) - h + *p; } } return h; } /* Extracted from glib/gutils.c */ /** * fluid_direct_equal: * @v1: a key. * @v2: a key to compare with @v1. * * Compares two #gpointer arguments and returns %TRUE if they are equal. * It can be passed to new_fluid_hashtable() as the @key_equal_func * parameter, when using pointers as keys in a #fluid_hashtable_t. * * Returns: %TRUE if the two keys match. */ int fluid_direct_equal(const void *v1, const void *v2) { return v1 == v2; } /** * fluid_direct_hash: * @v: a void * key * * Converts a gpointer to a hash value. * It can be passed to g_hashtable_new() as the @hash_func parameter, * when using pointers as keys in a #fluid_hashtable_t. * * Returns: a hash value corresponding to the key. */ unsigned int fluid_direct_hash(const void *v) { return FLUID_POINTER_TO_UINT(v); } /** * fluid_int_equal: * @v1: a pointer to a int key. * @v2: a pointer to a int key to compare with @v1. * * Compares the two #gint values being pointed to and returns * %TRUE if they are equal. * It can be passed to g_hashtable_new() as the @key_equal_func * parameter, when using pointers to integers as keys in a #fluid_hashtable_t. * * Returns: %TRUE if the two keys match. */ int fluid_int_equal(const void *v1, const void *v2) { return *((const int *) v1) == *((const int *) v2); } /** * fluid_int_hash: * @v: a pointer to a int key * * Converts a pointer to a #gint to a hash value. * It can be passed to g_hashtable_new() as the @hash_func parameter, * when using pointers to integers values as keys in a #fluid_hashtable_t. * * Returns: a hash value corresponding to the key. */ unsigned int fluid_int_hash(const void *v) { return *(const int *) v; }