ardour/libs/plugins/a-eq.lv2/a-eq.c

666 lines
15 KiB
C

/*
* Copyright (C) 2016-2017 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2016 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE // needed for M_PI
#endif
#include <math.h>
#include <complex.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>
#ifdef COMPILER_MSVC
#include <float.h>
#define isfinite_local(val) (bool)_finite((double)val)
#else
#define isfinite_local isfinite
#endif
#ifdef HAVE_LV2_1_18_6
#include <lv2/lv2core/lv2.h>
#else
#include <lv2/lv2plug.in/ns/lv2core/lv2.h>
#endif
#ifdef LV2_EXTENDED
#include <cairo/cairo.h>
#include "ardour/lv2_extensions.h"
#endif
#define AEQ_URI "urn:ardour:a-eq"
#define BANDS 6
#ifndef MIN
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
#endif
typedef enum {
AEQ_FREQL = 0,
AEQ_GAINL,
AEQ_FREQ1,
AEQ_GAIN1,
AEQ_BW1,
AEQ_FREQ2,
AEQ_GAIN2,
AEQ_BW2,
AEQ_FREQ3,
AEQ_GAIN3,
AEQ_BW3,
AEQ_FREQ4,
AEQ_GAIN4,
AEQ_BW4,
AEQ_FREQH,
AEQ_GAINH,
AEQ_MASTER,
AEQ_FILTOGL,
AEQ_FILTOG1,
AEQ_FILTOG2,
AEQ_FILTOG3,
AEQ_FILTOG4,
AEQ_FILTOGH,
AEQ_ENABLE,
AEQ_INPUT,
AEQ_OUTPUT,
} PortIndex;
static inline double
to_dB(double g) {
return (20.0*log10(g));
}
static inline double
from_dB(double gdb) {
return (exp(gdb/20.0*log(10.0)));
}
static inline bool
is_eq(float a, float b, float small) {
return (fabsf(a - b) < small);
}
struct linear_svf {
double g, k;
double a[3];
double m[3];
double s[2];
};
static void linear_svf_reset(struct linear_svf *self)
{
self->s[0] = self->s[1] = 0.0;
}
static void linear_svf_protect(struct linear_svf *self)
{
if (!isfinite_local (self->s[0]) || !isfinite_local (self->s[1])) {
linear_svf_reset (self);
}
}
typedef struct {
float* f0[BANDS];
float* g[BANDS];
float* bw[BANDS];
float* filtog[BANDS];
float* master;
float* enable;
float srate;
float tau;
float* input;
float* output;
struct linear_svf v_filter[BANDS];
float v_g[BANDS];
float v_bw[BANDS];
float v_f0[BANDS];
float v_master;
bool need_expose;
#ifdef LV2_EXTENDED
LV2_Inline_Display_Image_Surface surf;
cairo_surface_t* display;
LV2_Inline_Display* queue_draw;
uint32_t w, h;
#endif
} Aeq;
static LV2_Handle
instantiate(const LV2_Descriptor* descriptor,
double rate,
const char* bundle_path,
const LV2_Feature* const* features)
{
Aeq* aeq = (Aeq*)calloc(1, sizeof(Aeq));
aeq->srate = rate;
aeq->tau = 1.f - expf (-2.f * M_PI * 64.f * 25.f / aeq->srate); // 25Hz time constant @ 64fpp
#ifdef LV2_EXTENDED
for (int i=0; features[i]; ++i) {
if (!strcmp(features[i]->URI, LV2_INLINEDISPLAY__queue_draw)) {
aeq->queue_draw = (LV2_Inline_Display*) features[i]->data;
}
}
#endif
for (int i = 0; i < BANDS; i++)
linear_svf_reset(&aeq->v_filter[i]);
aeq->need_expose = true;
#ifdef LV2_EXTENDED
aeq->display = NULL;
#endif
return (LV2_Handle)aeq;
}
static void
connect_port(LV2_Handle instance,
uint32_t port,
void* data)
{
Aeq* aeq = (Aeq*)instance;
switch ((PortIndex)port) {
case AEQ_ENABLE:
aeq->enable = (float*)data;
break;
case AEQ_FREQL:
aeq->f0[0] = (float*)data;
break;
case AEQ_GAINL:
aeq->g[0] = (float*)data;
break;
case AEQ_FREQ1:
aeq->f0[1] = (float*)data;
break;
case AEQ_GAIN1:
aeq->g[1] = (float*)data;
break;
case AEQ_BW1:
aeq->bw[1] = (float*)data;
break;
case AEQ_FREQ2:
aeq->f0[2] = (float*)data;
break;
case AEQ_GAIN2:
aeq->g[2] = (float*)data;
break;
case AEQ_BW2:
aeq->bw[2] = (float*)data;
break;
case AEQ_FREQ3:
aeq->f0[3] = (float*)data;
break;
case AEQ_GAIN3:
aeq->g[3] = (float*)data;
break;
case AEQ_BW3:
aeq->bw[3] = (float*)data;
break;
case AEQ_FREQ4:
aeq->f0[4] = (float*)data;
break;
case AEQ_GAIN4:
aeq->g[4] = (float*)data;
break;
case AEQ_BW4:
aeq->bw[4] = (float*)data;
break;
case AEQ_FREQH:
aeq->f0[5] = (float*)data;
break;
case AEQ_GAINH:
aeq->g[5] = (float*)data;
break;
case AEQ_MASTER:
aeq->master = (float*)data;
break;
case AEQ_FILTOGL:
aeq->filtog[0] = (float*)data;
break;
case AEQ_FILTOG1:
aeq->filtog[1] = (float*)data;
break;
case AEQ_FILTOG2:
aeq->filtog[2] = (float*)data;
break;
case AEQ_FILTOG3:
aeq->filtog[3] = (float*)data;
break;
case AEQ_FILTOG4:
aeq->filtog[4] = (float*)data;
break;
case AEQ_FILTOGH:
aeq->filtog[5] = (float*)data;
break;
case AEQ_INPUT:
aeq->input = (float*)data;
break;
case AEQ_OUTPUT:
aeq->output = (float*)data;
break;
}
}
static void
activate(LV2_Handle instance)
{
int i;
Aeq* aeq = (Aeq*)instance;
for (i = 0; i < BANDS; i++)
linear_svf_reset(&aeq->v_filter[i]);
}
// SVF filters
// http://www.cytomic.com/files/dsp/SvfLinearTrapOptimised2.pdf
static void linear_svf_set_peq(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float bandwidth)
{
double f0 = (double)cutoff;
double q = (double)pow(2.0, 0.5 * bandwidth) / (pow(2.0, bandwidth) - 1.0);
double sr = (double)sample_rate;
double A = pow(10.0, gdb/40.0);
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / (q * A);
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = 1.0;
self->m[1] = self->k * (A * A - 1.0);
self->m[2] = 0.0;
}
static void linear_svf_set_highshelf(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float resonance)
{
double f0 = (double)cutoff;
double q = (double)resonance;
double sr = (double)sample_rate;
double A = pow(10.0, gdb/40.0);
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / q;
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = A * A;
self->m[1] = self->k * (1.0 - A) * A;
self->m[2] = 1.0 - A * A;
}
static void linear_svf_set_lowshelf(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float resonance)
{
double f0 = (double)cutoff;
double q = (double)resonance;
double sr = (double)sample_rate;
double A = pow(10.0, gdb/40.0);
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / q;
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = 1.0;
self->m[1] = self->k * (A - 1.0);
self->m[2] = A * A - 1.0;
}
static float run_linear_svf(struct linear_svf *self, float in)
{
double v[3];
double din = (double)in;
double out;
v[2] = din - self->s[1];
v[0] = (self->a[0] * self->s[0]) + (self->a[1] * v[2]);
v[1] = self->s[1] + (self->a[1] * self->s[0]) + (self->a[2] * v[2]);
self->s[0] = (2.0 * v[0]) - self->s[0];
self->s[1] = (2.0 * v[1]) - self->s[1];
out = (self->m[0] * din)
+ (self->m[1] * v[0])
+ (self->m[2] * v[1]);
return (float)out;
}
static void set_params(LV2_Handle instance, int band) {
Aeq* aeq = (Aeq*)instance;
switch (band) {
case 0:
linear_svf_set_lowshelf(&aeq->v_filter[0], aeq->v_g[0], aeq->srate, aeq->v_f0[0], 0.7071068);
break;
case 1:
case 2:
case 3:
case 4:
linear_svf_set_peq(&aeq->v_filter[band], aeq->v_g[band], aeq->srate, aeq->v_f0[band], aeq->v_bw[band]);
break;
case 5:
linear_svf_set_highshelf(&aeq->v_filter[5], aeq->v_g[5], aeq->srate, aeq->v_f0[5], 0.7071068);
break;
}
}
static void
run(LV2_Handle instance, uint32_t n_samples)
{
Aeq* aeq = (Aeq*)instance;
const float* const input = aeq->input;
float* const output = aeq->output;
const float tau = aeq->tau;
uint32_t offset = 0;
const float target_gain = *aeq->enable <= 0 ? 0 : *aeq->master; // dB
while (n_samples > 0) {
uint32_t block = n_samples;
bool any_changed = false;
if (!is_eq(aeq->v_master, target_gain, 0.1)) {
aeq->v_master += tau * (target_gain - aeq->v_master);
any_changed = true;
} else {
aeq->v_master = target_gain;
}
for (int i = 0; i < BANDS; ++i) {
bool changed = false;
if (!is_eq(aeq->v_f0[i], *aeq->f0[i], 0.1)) {
aeq->v_f0[i] += tau * (*aeq->f0[i] - aeq->v_f0[i]);
changed = true;
}
if (*aeq->filtog[i] <= 0 || *aeq->enable <= 0) {
if (!is_eq(aeq->v_g[i], 0.f, 0.05)) {
aeq->v_g[i] += tau * (0.0 - aeq->v_g[i]);
changed = true;
}
} else {
if (!is_eq(aeq->v_g[i], *aeq->g[i], 0.05)) {
aeq->v_g[i] += tau * (*aeq->g[i] - aeq->v_g[i]);
changed = true;
}
}
if (i != 0 && i != 5) {
if (!is_eq(aeq->v_bw[i], *aeq->bw[i], 0.001)) {
aeq->v_bw[i] += tau * (*aeq->bw[i] - aeq->v_bw[i]);
changed = true;
}
}
if (changed) {
set_params(aeq, i);
any_changed = true;
}
}
if (any_changed) {
aeq->need_expose = true;
block = MIN (64, n_samples);
}
for (uint32_t i = 0; i < block; ++i) {
float in0, out;
in0 = input[i + offset];
out = in0;
for (uint32_t j = 0; j < BANDS; j++) {
out = run_linear_svf(&aeq->v_filter[j], out);
}
output[i + offset] = out * from_dB(aeq->v_master);
}
n_samples -= block;
offset += block;
}
for (uint32_t j = 0; j < BANDS; j++) {
linear_svf_protect(&aeq->v_filter[j]);
}
#ifdef LV2_EXTENDED
if (aeq->need_expose && aeq->queue_draw) {
aeq->need_expose = false;
aeq->queue_draw->queue_draw (aeq->queue_draw->handle);
}
#endif
}
#ifdef LV2_EXTENDED
static double
calc_peq(Aeq* self, int i, double omega) {
double complex H = 0.0;
double complex z = cexp(I * omega);
double complex zz = cexp(2. * I * omega);
double complex zm = z - 1.0;
double complex zp = z + 1.0;
double complex zzm = zz - 1.0;
double A = pow(10.0, self->v_g[i]/40.0);
double g = self->v_filter[i].g;
double k = self->v_filter[i].k * A;
double m1 = k * (A * A - 1.0) / A;
H = (g*k*zzm + A*(g*zp*(m1*zm) + (zm*zm + g*g*zp*zp))) / (g*k*zzm + A*(zm*zm + g*g*zp*zp));
return cabs(H);
}
static double
calc_lowshelf(Aeq* self, double omega) {
double complex H = 0.0;
double complex z = cexp(I * omega);
double complex zz = cexp(2. * I * omega);
double complex zm = z - 1.0;
double complex zp = z + 1.0;
double complex zzm = zz - 1.0;
double A = pow(10.0, self->v_g[0]/40.0);
double g = self->v_filter[0].g;
double k = self->v_filter[0].k;
double m0 = self->v_filter[0].m[0];
double m1 = self->v_filter[0].m[1];
double m2 = self->v_filter[0].m[2];
H = (A*m0*zm*zm + g*g*(m0+m2)*zp*zp + sqrt(A)*g*(k*m0+m1) * zzm) / (A*zm*zm + g*g*zp*zp + sqrt(A)*g*k*zzm);
return cabs(H);
}
static double
calc_highshelf(Aeq* self, double omega) {
double complex H = 0.0;
double complex z = cexp(I * omega);
double complex zz = cexp(2. * I * omega);
double complex zm = z - 1.0;
double complex zp = z + 1.0;
double complex zzm = zz - 1.0;
double A = pow(10.0, self->v_g[5]/40.0);
double g = self->v_filter[5].g;
double k = self->v_filter[5].k;
double m0 = self->v_filter[5].m[0];
double m1 = self->v_filter[5].m[1];
double m2 = self->v_filter[5].m[2];
H = ( sqrt(A) * g * zp * (m1 * zm + sqrt(A)*g*m2*zp) + m0 * ( zm*zm + A*g*g*zp*zp + sqrt(A)*g*k*zzm)) / (zm*zm + A*g*g*zp*zp + sqrt(A)*g*k*zzm);
return cabs(H);
}
static float
eq_curve (Aeq* self, float f) {
double response = 1.0;
double SR = (double)self->srate;
double omega = f * 2. * M_PI / SR;
// lowshelf
response *= calc_lowshelf(self, omega);
// peq 1 - 4:
response *= calc_peq(self, 1, omega);
response *= calc_peq(self, 2, omega);
response *= calc_peq(self, 3, omega);
response *= calc_peq(self, 4, omega);
// highshelf:
response *= calc_highshelf(self, omega);
return (float)response;
}
static LV2_Inline_Display_Image_Surface *
render_inline (LV2_Handle instance, uint32_t w, uint32_t max_h)
{
Aeq* self = (Aeq*)instance;
uint32_t h = MIN (1 | (uint32_t)ceilf (w * 9.f / 16.f), max_h);
if (!self->display || self->w != w || self->h != h) {
if (self->display) cairo_surface_destroy(self->display);
self->display = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, w, h);
self->w = w;
self->h = h;
}
cairo_t* cr = cairo_create (self->display);
// clear background
cairo_rectangle (cr, 0, 0, w, h);
cairo_set_source_rgba (cr, .2, .2, .2, 1.0);
cairo_fill (cr);
cairo_set_line_width(cr, 1.0);
// prepare grid drawing
cairo_save (cr);
const double dash2[] = {1, 3};
//cairo_set_line_cap(cr, CAIRO_LINE_CAP_ROUND);
cairo_set_dash(cr, dash2, 2, 2);
cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5);
// draw x-grid 6dB steps
for (int32_t d = -18; d <= 18; d+=6) {
float y = (float)h * (d / 40.0 + 0.5);
y = rint (y) - .5;
cairo_move_to (cr, 0, y);
cairo_line_to (cr, w, y);
cairo_stroke (cr);
}
// draw y-axis grid 100, 1k, 10K
for (int32_t f = 100; f <= 10000; f *= 10) {
float x = w * log10 (f / 20.0) / log10 (1000.0);
x = rint (x) - .5;
cairo_move_to (cr, x, 0);
cairo_line_to (cr, x, h);
cairo_stroke (cr);
}
cairo_restore (cr);
// draw curve
cairo_set_source_rgba (cr, .8, .8, .8, 1.0);
cairo_move_to (cr, 0, h);
for (uint32_t x = 0; x < w; ++x) {
// plot 20..20kHz +-20dB
const float x_hz = 20.f * powf (1000.f, (float)x / (float)w);
const float y_db = to_dB(eq_curve(self, x_hz)) + self->v_master;
const float y = (float)h * (-y_db / 40.0 + 0.5);
cairo_line_to (cr, x, y);
}
cairo_stroke_preserve (cr);
cairo_line_to (cr, w, h);
cairo_close_path (cr);
cairo_clip (cr);
// create RGBA surface
cairo_destroy (cr);
cairo_surface_flush (self->display);
self->surf.width = cairo_image_surface_get_width (self->display);
self->surf.height = cairo_image_surface_get_height (self->display);
self->surf.stride = cairo_image_surface_get_stride (self->display);
self->surf.data = cairo_image_surface_get_data (self->display);
return &self->surf;
}
#endif
static const void*
extension_data(const char* uri)
{
#ifdef LV2_EXTENDED
static const LV2_Inline_Display_Interface display = { render_inline };
if (!strcmp(uri, LV2_INLINEDISPLAY__interface)) {
return &display;
}
#endif
return NULL;
}
static void
cleanup(LV2_Handle instance)
{
#ifdef LV2_EXTENDED
Aeq* aeq = (Aeq*)instance;
if (aeq->display) {
cairo_surface_destroy (aeq->display);
}
#endif
free(instance);
}
static const LV2_Descriptor descriptor = {
AEQ_URI,
instantiate,
connect_port,
activate,
run,
NULL,
cleanup,
extension_data
};
LV2_SYMBOL_EXPORT
const LV2_Descriptor*
lv2_descriptor(uint32_t index)
{
switch (index) {
case 0:
return &descriptor;
default:
return NULL;
}
}