/* * Copyright (C) 2016-2017 Damien Zammit * Copyright (C) 2016 Robin Gareus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE // needed for M_PI #endif #include #include #include #include #include #include #ifdef COMPILER_MSVC #include #define isfinite_local(val) (bool)_finite((double)val) #else #define isfinite_local isfinite #endif #ifdef HAVE_LV2_1_18_6 #include #else #include #endif #ifdef LV2_EXTENDED #include #include "ardour/lv2_extensions.h" #endif #define AEQ_URI "urn:ardour:a-eq" #define BANDS 6 #ifndef MIN #define MIN(A,B) ((A) < (B)) ? (A) : (B) #endif typedef enum { AEQ_FREQL = 0, AEQ_GAINL, AEQ_FREQ1, AEQ_GAIN1, AEQ_BW1, AEQ_FREQ2, AEQ_GAIN2, AEQ_BW2, AEQ_FREQ3, AEQ_GAIN3, AEQ_BW3, AEQ_FREQ4, AEQ_GAIN4, AEQ_BW4, AEQ_FREQH, AEQ_GAINH, AEQ_MASTER, AEQ_FILTOGL, AEQ_FILTOG1, AEQ_FILTOG2, AEQ_FILTOG3, AEQ_FILTOG4, AEQ_FILTOGH, AEQ_ENABLE, AEQ_INPUT, AEQ_OUTPUT, } PortIndex; static inline double to_dB(double g) { return (20.0*log10(g)); } static inline double from_dB(double gdb) { return (exp(gdb/20.0*log(10.0))); } static inline bool is_eq(float a, float b, float small) { return (fabsf(a - b) < small); } struct linear_svf { double g, k; double a[3]; double m[3]; double s[2]; }; static void linear_svf_reset(struct linear_svf *self) { self->s[0] = self->s[1] = 0.0; } static void linear_svf_protect(struct linear_svf *self) { if (!isfinite_local (self->s[0]) || !isfinite_local (self->s[1])) { linear_svf_reset (self); } } typedef struct { float* f0[BANDS]; float* g[BANDS]; float* bw[BANDS]; float* filtog[BANDS]; float* master; float* enable; float srate; float tau; float* input; float* output; struct linear_svf v_filter[BANDS]; float v_g[BANDS]; float v_bw[BANDS]; float v_f0[BANDS]; float v_master; bool need_expose; #ifdef LV2_EXTENDED LV2_Inline_Display_Image_Surface surf; cairo_surface_t* display; LV2_Inline_Display* queue_draw; uint32_t w, h; #endif } Aeq; static LV2_Handle instantiate(const LV2_Descriptor* descriptor, double rate, const char* bundle_path, const LV2_Feature* const* features) { Aeq* aeq = (Aeq*)calloc(1, sizeof(Aeq)); aeq->srate = rate; aeq->tau = 1.f - expf (-2.f * M_PI * 64.f * 25.f / aeq->srate); // 25Hz time constant @ 64fpp #ifdef LV2_EXTENDED for (int i=0; features[i]; ++i) { if (!strcmp(features[i]->URI, LV2_INLINEDISPLAY__queue_draw)) { aeq->queue_draw = (LV2_Inline_Display*) features[i]->data; } } #endif for (int i = 0; i < BANDS; i++) linear_svf_reset(&aeq->v_filter[i]); aeq->need_expose = true; #ifdef LV2_EXTENDED aeq->display = NULL; #endif return (LV2_Handle)aeq; } static void connect_port(LV2_Handle instance, uint32_t port, void* data) { Aeq* aeq = (Aeq*)instance; switch ((PortIndex)port) { case AEQ_ENABLE: aeq->enable = (float*)data; break; case AEQ_FREQL: aeq->f0[0] = (float*)data; break; case AEQ_GAINL: aeq->g[0] = (float*)data; break; case AEQ_FREQ1: aeq->f0[1] = (float*)data; break; case AEQ_GAIN1: aeq->g[1] = (float*)data; break; case AEQ_BW1: aeq->bw[1] = (float*)data; break; case AEQ_FREQ2: aeq->f0[2] = (float*)data; break; case AEQ_GAIN2: aeq->g[2] = (float*)data; break; case AEQ_BW2: aeq->bw[2] = (float*)data; break; case AEQ_FREQ3: aeq->f0[3] = (float*)data; break; case AEQ_GAIN3: aeq->g[3] = (float*)data; break; case AEQ_BW3: aeq->bw[3] = (float*)data; break; case AEQ_FREQ4: aeq->f0[4] = (float*)data; break; case AEQ_GAIN4: aeq->g[4] = (float*)data; break; case AEQ_BW4: aeq->bw[4] = (float*)data; break; case AEQ_FREQH: aeq->f0[5] = (float*)data; break; case AEQ_GAINH: aeq->g[5] = (float*)data; break; case AEQ_MASTER: aeq->master = (float*)data; break; case AEQ_FILTOGL: aeq->filtog[0] = (float*)data; break; case AEQ_FILTOG1: aeq->filtog[1] = (float*)data; break; case AEQ_FILTOG2: aeq->filtog[2] = (float*)data; break; case AEQ_FILTOG3: aeq->filtog[3] = (float*)data; break; case AEQ_FILTOG4: aeq->filtog[4] = (float*)data; break; case AEQ_FILTOGH: aeq->filtog[5] = (float*)data; break; case AEQ_INPUT: aeq->input = (float*)data; break; case AEQ_OUTPUT: aeq->output = (float*)data; break; } } static void activate(LV2_Handle instance) { int i; Aeq* aeq = (Aeq*)instance; for (i = 0; i < BANDS; i++) linear_svf_reset(&aeq->v_filter[i]); } // SVF filters // http://www.cytomic.com/files/dsp/SvfLinearTrapOptimised2.pdf static void linear_svf_set_peq(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float bandwidth) { double f0 = (double)cutoff; double q = (double)pow(2.0, 0.5 * bandwidth) / (pow(2.0, bandwidth) - 1.0); double sr = (double)sample_rate; double A = pow(10.0, gdb/40.0); self->g = tan(M_PI * (f0 / sr)); self->k = 1.0 / (q * A); self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k)); self->a[1] = self->g * self->a[0]; self->a[2] = self->g * self->a[1]; self->m[0] = 1.0; self->m[1] = self->k * (A * A - 1.0); self->m[2] = 0.0; } static void linear_svf_set_highshelf(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float resonance) { double f0 = (double)cutoff; double q = (double)resonance; double sr = (double)sample_rate; double A = pow(10.0, gdb/40.0); self->g = tan(M_PI * (f0 / sr)); self->k = 1.0 / q; self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k)); self->a[1] = self->g * self->a[0]; self->a[2] = self->g * self->a[1]; self->m[0] = A * A; self->m[1] = self->k * (1.0 - A) * A; self->m[2] = 1.0 - A * A; } static void linear_svf_set_lowshelf(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float resonance) { double f0 = (double)cutoff; double q = (double)resonance; double sr = (double)sample_rate; double A = pow(10.0, gdb/40.0); self->g = tan(M_PI * (f0 / sr)); self->k = 1.0 / q; self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k)); self->a[1] = self->g * self->a[0]; self->a[2] = self->g * self->a[1]; self->m[0] = 1.0; self->m[1] = self->k * (A - 1.0); self->m[2] = A * A - 1.0; } static float run_linear_svf(struct linear_svf *self, float in) { double v[3]; double din = (double)in; double out; v[2] = din - self->s[1]; v[0] = (self->a[0] * self->s[0]) + (self->a[1] * v[2]); v[1] = self->s[1] + (self->a[1] * self->s[0]) + (self->a[2] * v[2]); self->s[0] = (2.0 * v[0]) - self->s[0]; self->s[1] = (2.0 * v[1]) - self->s[1]; out = (self->m[0] * din) + (self->m[1] * v[0]) + (self->m[2] * v[1]); return (float)out; } static void set_params(LV2_Handle instance, int band) { Aeq* aeq = (Aeq*)instance; switch (band) { case 0: linear_svf_set_lowshelf(&aeq->v_filter[0], aeq->v_g[0], aeq->srate, aeq->v_f0[0], 0.7071068); break; case 1: case 2: case 3: case 4: linear_svf_set_peq(&aeq->v_filter[band], aeq->v_g[band], aeq->srate, aeq->v_f0[band], aeq->v_bw[band]); break; case 5: linear_svf_set_highshelf(&aeq->v_filter[5], aeq->v_g[5], aeq->srate, aeq->v_f0[5], 0.7071068); break; } } static void run(LV2_Handle instance, uint32_t n_samples) { Aeq* aeq = (Aeq*)instance; const float* const input = aeq->input; float* const output = aeq->output; const float tau = aeq->tau; uint32_t offset = 0; const float target_gain = *aeq->enable <= 0 ? 0 : *aeq->master; // dB while (n_samples > 0) { uint32_t block = n_samples; bool any_changed = false; if (!is_eq(aeq->v_master, target_gain, 0.1)) { aeq->v_master += tau * (target_gain - aeq->v_master); any_changed = true; } else { aeq->v_master = target_gain; } for (int i = 0; i < BANDS; ++i) { bool changed = false; if (!is_eq(aeq->v_f0[i], *aeq->f0[i], 0.1)) { aeq->v_f0[i] += tau * (*aeq->f0[i] - aeq->v_f0[i]); changed = true; } if (*aeq->filtog[i] <= 0 || *aeq->enable <= 0) { if (!is_eq(aeq->v_g[i], 0.f, 0.05)) { aeq->v_g[i] += tau * (0.0 - aeq->v_g[i]); changed = true; } } else { if (!is_eq(aeq->v_g[i], *aeq->g[i], 0.05)) { aeq->v_g[i] += tau * (*aeq->g[i] - aeq->v_g[i]); changed = true; } } if (i != 0 && i != 5) { if (!is_eq(aeq->v_bw[i], *aeq->bw[i], 0.001)) { aeq->v_bw[i] += tau * (*aeq->bw[i] - aeq->v_bw[i]); changed = true; } } if (changed) { set_params(aeq, i); any_changed = true; } } if (any_changed) { aeq->need_expose = true; block = MIN (64, n_samples); } for (uint32_t i = 0; i < block; ++i) { float in0, out; in0 = input[i + offset]; out = in0; for (uint32_t j = 0; j < BANDS; j++) { out = run_linear_svf(&aeq->v_filter[j], out); } output[i + offset] = out * from_dB(aeq->v_master); } n_samples -= block; offset += block; } for (uint32_t j = 0; j < BANDS; j++) { linear_svf_protect(&aeq->v_filter[j]); } #ifdef LV2_EXTENDED if (aeq->need_expose && aeq->queue_draw) { aeq->need_expose = false; aeq->queue_draw->queue_draw (aeq->queue_draw->handle); } #endif } #ifdef LV2_EXTENDED static double calc_peq(Aeq* self, int i, double omega) { double complex H = 0.0; double complex z = cexp(I * omega); double complex zz = cexp(2. * I * omega); double complex zm = z - 1.0; double complex zp = z + 1.0; double complex zzm = zz - 1.0; double A = pow(10.0, self->v_g[i]/40.0); double g = self->v_filter[i].g; double k = self->v_filter[i].k * A; double m1 = k * (A * A - 1.0) / A; H = (g*k*zzm + A*(g*zp*(m1*zm) + (zm*zm + g*g*zp*zp))) / (g*k*zzm + A*(zm*zm + g*g*zp*zp)); return cabs(H); } static double calc_lowshelf(Aeq* self, double omega) { double complex H = 0.0; double complex z = cexp(I * omega); double complex zz = cexp(2. * I * omega); double complex zm = z - 1.0; double complex zp = z + 1.0; double complex zzm = zz - 1.0; double A = pow(10.0, self->v_g[0]/40.0); double g = self->v_filter[0].g; double k = self->v_filter[0].k; double m0 = self->v_filter[0].m[0]; double m1 = self->v_filter[0].m[1]; double m2 = self->v_filter[0].m[2]; H = (A*m0*zm*zm + g*g*(m0+m2)*zp*zp + sqrt(A)*g*(k*m0+m1) * zzm) / (A*zm*zm + g*g*zp*zp + sqrt(A)*g*k*zzm); return cabs(H); } static double calc_highshelf(Aeq* self, double omega) { double complex H = 0.0; double complex z = cexp(I * omega); double complex zz = cexp(2. * I * omega); double complex zm = z - 1.0; double complex zp = z + 1.0; double complex zzm = zz - 1.0; double A = pow(10.0, self->v_g[5]/40.0); double g = self->v_filter[5].g; double k = self->v_filter[5].k; double m0 = self->v_filter[5].m[0]; double m1 = self->v_filter[5].m[1]; double m2 = self->v_filter[5].m[2]; H = ( sqrt(A) * g * zp * (m1 * zm + sqrt(A)*g*m2*zp) + m0 * ( zm*zm + A*g*g*zp*zp + sqrt(A)*g*k*zzm)) / (zm*zm + A*g*g*zp*zp + sqrt(A)*g*k*zzm); return cabs(H); } static float eq_curve (Aeq* self, float f) { double response = 1.0; double SR = (double)self->srate; double omega = f * 2. * M_PI / SR; // lowshelf response *= calc_lowshelf(self, omega); // peq 1 - 4: response *= calc_peq(self, 1, omega); response *= calc_peq(self, 2, omega); response *= calc_peq(self, 3, omega); response *= calc_peq(self, 4, omega); // highshelf: response *= calc_highshelf(self, omega); return (float)response; } static LV2_Inline_Display_Image_Surface * render_inline (LV2_Handle instance, uint32_t w, uint32_t max_h) { Aeq* self = (Aeq*)instance; uint32_t h = MIN (1 | (uint32_t)ceilf (w * 9.f / 16.f), max_h); if (!self->display || self->w != w || self->h != h) { if (self->display) cairo_surface_destroy(self->display); self->display = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, w, h); self->w = w; self->h = h; } cairo_t* cr = cairo_create (self->display); // clear background cairo_rectangle (cr, 0, 0, w, h); cairo_set_source_rgba (cr, .2, .2, .2, 1.0); cairo_fill (cr); cairo_set_line_width(cr, 1.0); // prepare grid drawing cairo_save (cr); const double dash2[] = {1, 3}; //cairo_set_line_cap(cr, CAIRO_LINE_CAP_ROUND); cairo_set_dash(cr, dash2, 2, 2); cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); // draw x-grid 6dB steps for (int32_t d = -18; d <= 18; d+=6) { float y = (float)h * (d / 40.0 + 0.5); y = rint (y) - .5; cairo_move_to (cr, 0, y); cairo_line_to (cr, w, y); cairo_stroke (cr); } // draw y-axis grid 100, 1k, 10K for (int32_t f = 100; f <= 10000; f *= 10) { float x = w * log10 (f / 20.0) / log10 (1000.0); x = rint (x) - .5; cairo_move_to (cr, x, 0); cairo_line_to (cr, x, h); cairo_stroke (cr); } cairo_restore (cr); // draw curve cairo_set_source_rgba (cr, .8, .8, .8, 1.0); cairo_move_to (cr, 0, h); for (uint32_t x = 0; x < w; ++x) { // plot 20..20kHz +-20dB const float x_hz = 20.f * powf (1000.f, (float)x / (float)w); const float y_db = to_dB(eq_curve(self, x_hz)) + self->v_master; const float y = (float)h * (-y_db / 40.0 + 0.5); cairo_line_to (cr, x, y); } cairo_stroke_preserve (cr); cairo_line_to (cr, w, h); cairo_close_path (cr); cairo_clip (cr); // create RGBA surface cairo_destroy (cr); cairo_surface_flush (self->display); self->surf.width = cairo_image_surface_get_width (self->display); self->surf.height = cairo_image_surface_get_height (self->display); self->surf.stride = cairo_image_surface_get_stride (self->display); self->surf.data = cairo_image_surface_get_data (self->display); return &self->surf; } #endif static const void* extension_data(const char* uri) { #ifdef LV2_EXTENDED static const LV2_Inline_Display_Interface display = { render_inline }; if (!strcmp(uri, LV2_INLINEDISPLAY__interface)) { return &display; } #endif return NULL; } static void cleanup(LV2_Handle instance) { #ifdef LV2_EXTENDED Aeq* aeq = (Aeq*)instance; if (aeq->display) { cairo_surface_destroy (aeq->display); } #endif free(instance); } static const LV2_Descriptor descriptor = { AEQ_URI, instantiate, connect_port, activate, run, NULL, cleanup, extension_data }; LV2_SYMBOL_EXPORT const LV2_Descriptor* lv2_descriptor(uint32_t index) { switch (index) { case 0: return &descriptor; default: return NULL; } }