ardour/libs/ardour/monitor_processor.cc

441 lines
13 KiB
C++

#include "pbd/convert.h"
#include "pbd/error.h"
#include "pbd/xml++.h"
#include "ardour/amp.h"
#include "ardour/dB.h"
#include "ardour/debug.h"
#include "ardour/audio_buffer.h"
#include "ardour/monitor_processor.h"
#include "ardour/session.h"
#include "i18n.h"
using namespace ARDOUR;
using namespace PBD;
using namespace std;
MonitorProcessor::MonitorProcessor (Session& s)
: Processor (s, X_("MonitorOut"))
{
solo_cnt = 0;
_cut_all = false;
_dim_all = false;
_dim_level = 0.2;
_solo_boost_level = 1.0;
}
MonitorProcessor::MonitorProcessor (Session& s, const XMLNode& node)
: Processor (s, node)
{
set_state (node, Stateful::loading_state_version);
}
void
MonitorProcessor::allocate_channels (uint32_t size)
{
while (_channels.size() > size) {
if (_channels.back().soloed) {
if (solo_cnt > 0) {
--solo_cnt;
}
}
_channels.pop_back();
}
while (_channels.size() < size) {
_channels.push_back (ChannelRecord());
}
}
int
MonitorProcessor::set_state (const XMLNode& node, int version)
{
int ret = Processor::set_state (node, version);
if (ret != 0) {
return ret;
}
const XMLProperty* prop;
if ((prop = node.property (X_("type"))) == 0) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings have no type information"))
<< endmsg;
return -1;
}
if (prop->value() != X_("monitor")) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor given unknown XML settings"))
<< endmsg;
return -1;
}
if ((prop = node.property (X_("channels"))) == 0) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing a channel cnt"))
<< endmsg;
return -1;
}
allocate_channels (atoi (prop->value()));
if ((prop = node.property (X_("dim-level"))) != 0) {
double val = atof (prop->value());
_dim_level = val;
}
if ((prop = node.property (X_("solo-boost-level"))) != 0) {
double val = atof (prop->value());
_solo_boost_level = val;
}
if ((prop = node.property (X_("cut-all"))) != 0) {
bool val = string_is_affirmative (prop->value());
_cut_all = val;
}
if ((prop = node.property (X_("dim-all"))) != 0) {
bool val = string_is_affirmative (prop->value());
_dim_all = val;
}
if ((prop = node.property (X_("mono"))) != 0) {
bool val = string_is_affirmative (prop->value());
_mono = val;
}
for (XMLNodeList::const_iterator i = node.children().begin(); i != node.children().end(); ++i) {
if ((*i)->name() == X_("Channel")) {
if ((prop = (*i)->property (X_("id"))) == 0) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing an ID"))
<< endmsg;
return -1;
}
uint32_t chn;
if (sscanf (prop->value().c_str(), "%u", &chn) != 1) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an unreadable channel ID"))
<< endmsg;
return -1;
}
if (chn >= _channels.size()) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an illegal channel count"))
<< endmsg;
return -1;
}
ChannelRecord& cr (_channels[chn]);
if ((prop = (*i)->property ("cut")) != 0) {
if (string_is_affirmative (prop->value())){
cr.cut = 0.0f;
} else {
cr.cut = 1.0f;
}
}
if ((prop = (*i)->property ("dim")) != 0) {
bool val = string_is_affirmative (prop->value());
cr.dim = val;
}
if ((prop = (*i)->property ("invert")) != 0) {
if (string_is_affirmative (prop->value())) {
cr.polarity = -1.0f;
} else {
cr.polarity = 1.0f;
}
}
if ((prop = (*i)->property ("solo")) != 0) {
bool val = string_is_affirmative (prop->value());
cr.soloed = val;
}
}
}
/* reset solo cnt */
solo_cnt = 0;
for (vector<ChannelRecord>::const_iterator x = _channels.begin(); x != _channels.end(); ++x) {
if (x->soloed) {
solo_cnt++;
}
}
return 0;
}
XMLNode&
MonitorProcessor::state (bool full)
{
XMLNode& node (Processor::state (full));
char buf[64];
/* this replaces any existing "type" property */
node.add_property (X_("type"), X_("monitor"));
snprintf (buf, sizeof(buf), "%.12g", _dim_level);
node.add_property (X_("dim-level"), buf);
snprintf (buf, sizeof(buf), "%.12g", _solo_boost_level);
node.add_property (X_("solo-boost-level"), buf);
node.add_property (X_("cut-all"), (_cut_all ? "yes" : "no"));
node.add_property (X_("dim-all"), (_dim_all ? "yes" : "no"));
node.add_property (X_("mono"), (_mono ? "yes" : "no"));
uint32_t limit = _channels.size();
snprintf (buf, sizeof (buf), "%u", limit);
node.add_property (X_("channels"), buf);
XMLNode* chn_node;
uint32_t chn = 0;
for (vector<ChannelRecord>::const_iterator x = _channels.begin(); x != _channels.end(); ++x, ++chn) {
chn_node = new XMLNode (X_("Channel"));
snprintf (buf, sizeof (buf), "%u", chn);
chn_node->add_property ("id", buf);
chn_node->add_property (X_("cut"), x->cut == 1.0 ? "no" : "yes");
chn_node->add_property (X_("invert"), x->polarity == 1.0 ? "no" : "yes");
chn_node->add_property (X_("dim"), x->dim ? "yes" : "no");
chn_node->add_property (X_("solo"), x->soloed ? "yes" : "no");
node.add_child_nocopy (*chn_node);
}
return node;
}
void
MonitorProcessor::run (BufferSet& bufs, sframes_t /*start_frame*/, sframes_t /*end_frame*/, nframes_t nframes, bool /*result_required*/)
{
uint32_t chn = 0;
gain_t target_gain;
gain_t dim_level_this_time = _dim_level;
gain_t global_cut = (_cut_all ? 0.0f : 1.0f);
gain_t global_dim = (_dim_all ? dim_level_this_time : 1.0f);
gain_t solo_boost;
if (_session.listening() || _session.soloing()) {
solo_boost = _solo_boost_level;
} else {
solo_boost = 1.0;
}
for (BufferSet::audio_iterator b = bufs.audio_begin(); b != bufs.audio_end(); ++b) {
/* don't double-scale by both track dim and global dim coefficients */
gain_t dim_level = (global_dim == 1.0 ? (_channels[chn].dim ? dim_level_this_time : 1.0) : 1.0);
if (_channels[chn].soloed) {
target_gain = _channels[chn].polarity * _channels[chn].cut * dim_level * global_cut * global_dim * solo_boost;
} else {
if (solo_cnt == 0) {
target_gain = _channels[chn].polarity * _channels[chn].cut * dim_level * global_cut * global_dim * solo_boost;
} else {
target_gain = 0.0;
}
}
DEBUG_TRACE (DEBUG::Monitor,
string_compose("channel %1 sb %2 gc %3 gd %4 cd %5 dl %6 cp %7 cc %8 cs %9 sc %10 TG %11\n",
chn,
solo_boost,
global_cut,
global_dim,
_channels[chn].dim,
dim_level,
_channels[chn].polarity,
_channels[chn].cut,
_channels[chn].soloed,
solo_cnt,
target_gain));
if (target_gain != _channels[chn].current_gain || target_gain != 1.0f) {
Amp::apply_gain (*b, nframes, _channels[chn].current_gain, target_gain);
_channels[chn].current_gain = target_gain;
}
++chn;
}
if (_mono) {
/* chn is now the number of channels, use as a scaling factor when mixing
*/
gain_t scale = 1.0/chn;
BufferSet::audio_iterator b = bufs.audio_begin();
AudioBuffer& ab (*b);
Sample* buf = ab.data();
/* scale the first channel */
for (nframes_t n = 0; n < nframes; ++n) {
buf[n] *= scale;
}
/* add every other channel into the first channel's buffer */
++b;
for (; b != bufs.audio_end(); ++b) {
AudioBuffer& ob (*b);
Sample* obuf = ob.data ();
for (nframes_t n = 0; n < nframes; ++n) {
buf[n] += obuf[n] * scale;
}
}
/* copy the first channel to every other channel's buffer */
b = bufs.audio_begin();
++b;
for (; b != bufs.audio_end(); ++b) {
AudioBuffer& ob (*b);
Sample* obuf = ob.data ();
memcpy (obuf, buf, sizeof (Sample) * nframes);
}
}
}
bool
MonitorProcessor::configure_io (ChanCount in, ChanCount out)
{
allocate_channels (in.n_audio());
return Processor::configure_io (in, out);
}
bool
MonitorProcessor::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
{
return in == out;
}
void
MonitorProcessor::set_polarity (uint32_t chn, bool invert)
{
if (invert) {
_channels[chn].polarity = -1.0f;
} else {
_channels[chn].polarity = 1.0f;
}
}
void
MonitorProcessor::set_dim (uint32_t chn, bool yn)
{
_channels[chn].dim = yn;
}
void
MonitorProcessor::set_cut (uint32_t chn, bool yn)
{
if (yn) {
_channels[chn].cut = 0.0f;
} else {
_channels[chn].cut = 1.0f;
}
}
void
MonitorProcessor::set_solo (uint32_t chn, bool solo)
{
if (solo != _channels[chn].soloed) {
_channels[chn].soloed = solo;
if (solo) {
solo_cnt++;
} else {
if (solo_cnt > 0) {
solo_cnt--;
}
}
}
}
void
MonitorProcessor::set_mono (bool yn)
{
_mono = yn;
}
void
MonitorProcessor::set_cut_all (bool yn)
{
_cut_all = yn;
}
void
MonitorProcessor::set_dim_all (bool yn)
{
_dim_all = yn;
}
bool
MonitorProcessor::display_to_user () const
{
return false;
}
void
MonitorProcessor::set_dim_level (gain_t val)
{
_dim_level = val;
}
void
MonitorProcessor::set_solo_boost_level (gain_t val)
{
_solo_boost_level = val;
}
bool
MonitorProcessor::soloed (uint32_t chn) const
{
return _channels[chn].soloed;
}
bool
MonitorProcessor::inverted (uint32_t chn) const
{
return _channels[chn].polarity < 0.0f;
}
bool
MonitorProcessor::cut (uint32_t chn) const
{
return _channels[chn].cut == 0.0f;
}
bool
MonitorProcessor::dimmed (uint32_t chn) const
{
return _channels[chn].dim;
}
bool
MonitorProcessor::mono () const
{
return _mono;
}
bool
MonitorProcessor::dim_all () const
{
return _dim_all;
}
bool
MonitorProcessor::cut_all () const
{
return _cut_all;
}