#include "pbd/convert.h" #include "pbd/error.h" #include "pbd/xml++.h" #include "ardour/amp.h" #include "ardour/dB.h" #include "ardour/debug.h" #include "ardour/audio_buffer.h" #include "ardour/monitor_processor.h" #include "ardour/session.h" #include "i18n.h" using namespace ARDOUR; using namespace PBD; using namespace std; MonitorProcessor::MonitorProcessor (Session& s) : Processor (s, X_("MonitorOut")) { solo_cnt = 0; _cut_all = false; _dim_all = false; _dim_level = 0.2; _solo_boost_level = 1.0; } MonitorProcessor::MonitorProcessor (Session& s, const XMLNode& node) : Processor (s, node) { set_state (node, Stateful::loading_state_version); } void MonitorProcessor::allocate_channels (uint32_t size) { while (_channels.size() > size) { if (_channels.back().soloed) { if (solo_cnt > 0) { --solo_cnt; } } _channels.pop_back(); } while (_channels.size() < size) { _channels.push_back (ChannelRecord()); } } int MonitorProcessor::set_state (const XMLNode& node, int version) { int ret = Processor::set_state (node, version); if (ret != 0) { return ret; } const XMLProperty* prop; if ((prop = node.property (X_("type"))) == 0) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings have no type information")) << endmsg; return -1; } if (prop->value() != X_("monitor")) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor given unknown XML settings")) << endmsg; return -1; } if ((prop = node.property (X_("channels"))) == 0) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing a channel cnt")) << endmsg; return -1; } allocate_channels (atoi (prop->value())); if ((prop = node.property (X_("dim-level"))) != 0) { double val = atof (prop->value()); _dim_level = val; } if ((prop = node.property (X_("solo-boost-level"))) != 0) { double val = atof (prop->value()); _solo_boost_level = val; } if ((prop = node.property (X_("cut-all"))) != 0) { bool val = string_is_affirmative (prop->value()); _cut_all = val; } if ((prop = node.property (X_("dim-all"))) != 0) { bool val = string_is_affirmative (prop->value()); _dim_all = val; } if ((prop = node.property (X_("mono"))) != 0) { bool val = string_is_affirmative (prop->value()); _mono = val; } for (XMLNodeList::const_iterator i = node.children().begin(); i != node.children().end(); ++i) { if ((*i)->name() == X_("Channel")) { if ((prop = (*i)->property (X_("id"))) == 0) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing an ID")) << endmsg; return -1; } uint32_t chn; if (sscanf (prop->value().c_str(), "%u", &chn) != 1) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an unreadable channel ID")) << endmsg; return -1; } if (chn >= _channels.size()) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an illegal channel count")) << endmsg; return -1; } ChannelRecord& cr (_channels[chn]); if ((prop = (*i)->property ("cut")) != 0) { if (string_is_affirmative (prop->value())){ cr.cut = 0.0f; } else { cr.cut = 1.0f; } } if ((prop = (*i)->property ("dim")) != 0) { bool val = string_is_affirmative (prop->value()); cr.dim = val; } if ((prop = (*i)->property ("invert")) != 0) { if (string_is_affirmative (prop->value())) { cr.polarity = -1.0f; } else { cr.polarity = 1.0f; } } if ((prop = (*i)->property ("solo")) != 0) { bool val = string_is_affirmative (prop->value()); cr.soloed = val; } } } /* reset solo cnt */ solo_cnt = 0; for (vector::const_iterator x = _channels.begin(); x != _channels.end(); ++x) { if (x->soloed) { solo_cnt++; } } return 0; } XMLNode& MonitorProcessor::state (bool full) { XMLNode& node (Processor::state (full)); char buf[64]; /* this replaces any existing "type" property */ node.add_property (X_("type"), X_("monitor")); snprintf (buf, sizeof(buf), "%.12g", _dim_level); node.add_property (X_("dim-level"), buf); snprintf (buf, sizeof(buf), "%.12g", _solo_boost_level); node.add_property (X_("solo-boost-level"), buf); node.add_property (X_("cut-all"), (_cut_all ? "yes" : "no")); node.add_property (X_("dim-all"), (_dim_all ? "yes" : "no")); node.add_property (X_("mono"), (_mono ? "yes" : "no")); uint32_t limit = _channels.size(); snprintf (buf, sizeof (buf), "%u", limit); node.add_property (X_("channels"), buf); XMLNode* chn_node; uint32_t chn = 0; for (vector::const_iterator x = _channels.begin(); x != _channels.end(); ++x, ++chn) { chn_node = new XMLNode (X_("Channel")); snprintf (buf, sizeof (buf), "%u", chn); chn_node->add_property ("id", buf); chn_node->add_property (X_("cut"), x->cut == 1.0 ? "no" : "yes"); chn_node->add_property (X_("invert"), x->polarity == 1.0 ? "no" : "yes"); chn_node->add_property (X_("dim"), x->dim ? "yes" : "no"); chn_node->add_property (X_("solo"), x->soloed ? "yes" : "no"); node.add_child_nocopy (*chn_node); } return node; } void MonitorProcessor::run (BufferSet& bufs, sframes_t /*start_frame*/, sframes_t /*end_frame*/, nframes_t nframes, bool /*result_required*/) { uint32_t chn = 0; gain_t target_gain; gain_t dim_level_this_time = _dim_level; gain_t global_cut = (_cut_all ? 0.0f : 1.0f); gain_t global_dim = (_dim_all ? dim_level_this_time : 1.0f); gain_t solo_boost; if (_session.listening() || _session.soloing()) { solo_boost = _solo_boost_level; } else { solo_boost = 1.0; } for (BufferSet::audio_iterator b = bufs.audio_begin(); b != bufs.audio_end(); ++b) { /* don't double-scale by both track dim and global dim coefficients */ gain_t dim_level = (global_dim == 1.0 ? (_channels[chn].dim ? dim_level_this_time : 1.0) : 1.0); if (_channels[chn].soloed) { target_gain = _channels[chn].polarity * _channels[chn].cut * dim_level * global_cut * global_dim * solo_boost; } else { if (solo_cnt == 0) { target_gain = _channels[chn].polarity * _channels[chn].cut * dim_level * global_cut * global_dim * solo_boost; } else { target_gain = 0.0; } } DEBUG_TRACE (DEBUG::Monitor, string_compose("channel %1 sb %2 gc %3 gd %4 cd %5 dl %6 cp %7 cc %8 cs %9 sc %10 TG %11\n", chn, solo_boost, global_cut, global_dim, _channels[chn].dim, dim_level, _channels[chn].polarity, _channels[chn].cut, _channels[chn].soloed, solo_cnt, target_gain)); if (target_gain != _channels[chn].current_gain || target_gain != 1.0f) { Amp::apply_gain (*b, nframes, _channels[chn].current_gain, target_gain); _channels[chn].current_gain = target_gain; } ++chn; } if (_mono) { /* chn is now the number of channels, use as a scaling factor when mixing */ gain_t scale = 1.0/chn; BufferSet::audio_iterator b = bufs.audio_begin(); AudioBuffer& ab (*b); Sample* buf = ab.data(); /* scale the first channel */ for (nframes_t n = 0; n < nframes; ++n) { buf[n] *= scale; } /* add every other channel into the first channel's buffer */ ++b; for (; b != bufs.audio_end(); ++b) { AudioBuffer& ob (*b); Sample* obuf = ob.data (); for (nframes_t n = 0; n < nframes; ++n) { buf[n] += obuf[n] * scale; } } /* copy the first channel to every other channel's buffer */ b = bufs.audio_begin(); ++b; for (; b != bufs.audio_end(); ++b) { AudioBuffer& ob (*b); Sample* obuf = ob.data (); memcpy (obuf, buf, sizeof (Sample) * nframes); } } } bool MonitorProcessor::configure_io (ChanCount in, ChanCount out) { allocate_channels (in.n_audio()); return Processor::configure_io (in, out); } bool MonitorProcessor::can_support_io_configuration (const ChanCount& in, ChanCount& out) const { return in == out; } void MonitorProcessor::set_polarity (uint32_t chn, bool invert) { if (invert) { _channels[chn].polarity = -1.0f; } else { _channels[chn].polarity = 1.0f; } } void MonitorProcessor::set_dim (uint32_t chn, bool yn) { _channels[chn].dim = yn; } void MonitorProcessor::set_cut (uint32_t chn, bool yn) { if (yn) { _channels[chn].cut = 0.0f; } else { _channels[chn].cut = 1.0f; } } void MonitorProcessor::set_solo (uint32_t chn, bool solo) { if (solo != _channels[chn].soloed) { _channels[chn].soloed = solo; if (solo) { solo_cnt++; } else { if (solo_cnt > 0) { solo_cnt--; } } } } void MonitorProcessor::set_mono (bool yn) { _mono = yn; } void MonitorProcessor::set_cut_all (bool yn) { _cut_all = yn; } void MonitorProcessor::set_dim_all (bool yn) { _dim_all = yn; } bool MonitorProcessor::display_to_user () const { return false; } void MonitorProcessor::set_dim_level (gain_t val) { _dim_level = val; } void MonitorProcessor::set_solo_boost_level (gain_t val) { _solo_boost_level = val; } bool MonitorProcessor::soloed (uint32_t chn) const { return _channels[chn].soloed; } bool MonitorProcessor::inverted (uint32_t chn) const { return _channels[chn].polarity < 0.0f; } bool MonitorProcessor::cut (uint32_t chn) const { return _channels[chn].cut == 0.0f; } bool MonitorProcessor::dimmed (uint32_t chn) const { return _channels[chn].dim; } bool MonitorProcessor::mono () const { return _mono; } bool MonitorProcessor::dim_all () const { return _dim_all; } bool MonitorProcessor::cut_all () const { return _cut_all; }