13
0
livetrax/libs/canvas/wave_view.cc

706 lines
16 KiB
C++

/*
Copyright (C) 2011-2013 Paul Davis
Author: Carl Hetherington <cth@carlh.net>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <cmath>
#include <cairomm/cairomm.h>
#include "gtkmm2ext/utils.h"
#include "pbd/compose.h"
#include "pbd/signals.h"
#include "pbd/stacktrace.h"
#include "ardour/types.h"
#include "ardour/dB.h"
#include "ardour/audioregion.h"
#include "canvas/wave_view.h"
#include "canvas/utils.h"
#include "canvas/canvas.h"
#include <gdkmm/general.h>
using namespace std;
using namespace ARDOUR;
using namespace ArdourCanvas;
double WaveView::_global_gradient_depth = 0.6;
bool WaveView::_global_logscaled = false;
WaveView::Shape WaveView::_global_shape = WaveView::Normal;
PBD::Signal0<void> WaveView::VisualPropertiesChanged;
WaveView::WaveView (Group* parent, boost::shared_ptr<ARDOUR::AudioRegion> region)
: Item (parent)
, Outline (parent)
, Fill (parent)
, _region (region)
, _channel (0)
, _samples_per_pixel (0)
, _height (64)
, _wave_color (0xffffffff)
, _show_zero (true)
, _zero_color (0xff0000ff)
, _clip_color (0xff0000ff)
, _logscaled (_global_logscaled)
, _shape (_global_shape)
, _gradient_depth (_global_gradient_depth)
, _shape_independent (false)
, _logscaled_independent (false)
, _gradient_depth_independent (false)
, _amplitude_above_axis (1.0)
, _region_start (region->start())
{
VisualPropertiesChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_visual_property_change, this));
}
void
WaveView::handle_visual_property_change ()
{
bool changed = false;
if (!_shape_independent && (_shape != global_shape())) {
_shape = global_shape();
changed = true;
}
if (!_logscaled_independent && (_logscaled != global_logscaled())) {
_logscaled = global_logscaled();
changed = true;
}
if (!_gradient_depth_independent && (_gradient_depth != global_gradient_depth())) {
_gradient_depth = global_gradient_depth();
changed = true;
}
if (changed) {
invalidate_image_cache ();
}
}
void
WaveView::set_fill_color (Color c)
{
if (c != _fill_color) {
invalidate_image_cache ();
Fill::set_fill_color (c);
}
}
void
WaveView::set_outline_color (Color c)
{
if (c != _outline_color) {
invalidate_image_cache ();
Outline::set_outline_color (c);
}
}
void
WaveView::set_samples_per_pixel (double samples_per_pixel)
{
if (samples_per_pixel != _samples_per_pixel) {
begin_change ();
_samples_per_pixel = samples_per_pixel;
_bounding_box_dirty = true;
end_change ();
invalidate_whole_cache ();
}
}
static inline double
to_src_sample_offset (frameoffset_t src_sample_start, double pixel_offset, double spp)
{
return llrintf (src_sample_start + (pixel_offset * spp));
}
static inline double
to_pixel_offset (frameoffset_t src_sample_start, double sample_offset, double spp)
{
return llrintf ((sample_offset - src_sample_start) / spp);
}
static inline double
image_to_window (double wave_origin, double image_start)
{
return wave_origin + image_start;
}
static inline double
window_to_image (double wave_origin, double image_start)
{
return image_start - wave_origin;
}
void
WaveView::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
{
assert (_samples_per_pixel != 0);
if (!_region) {
return;
}
Rect self = item_to_window (Rect (0.0, 0.0, floor (_region->length() / _samples_per_pixel), _height));
boost::optional<Rect> d = self.intersection (area);
if (!d) {
return;
}
/* we have a set of cached images that have precise pixel positions
* whose origin is 0,0 within our own rect. To convert these pixel
* positions so that they are useful when rendering, they need to
* be offset by the window position of our own origin. This is given
* by self.x0
*/
Rect draw = d.get();
/* pixel coordinates */
double start = floor (draw.x0);
double const end = ceil (draw.x1);
cerr << this << ' ' << name << " draw " << start << " .. " << end << endl;
list<CacheEntry*>::iterator cache;
cache = _cache.begin ();
while (end > start) {
/* Step through cache entries that end at or before our current position */
for (; cache != _cache.end(); ++cache) {
if (image_to_window (self.x0, (*cache)->pixel_start()) <= start) {
break;
}
}
/* Now either:
1. we have run out of cache entries
2. we have found a cache entry that starts after start
create a new cache entry to "fill in" before the one we have found.
3. we have found a cache entry that starts at or before
start, but finishes before end: create a new cache entry
to extend the cache further along the timeline.
Set up a pointer to the cache entry that we will use on this iteration.
*/
CacheEntry* image = 0;
/* Cairo limit, caused by its use of 16.16 fixed point */
const double BIG_IMAGE_SIZE = 32767.0;
if (cache == _cache.end ()) {
/* Case 1: we have run out of cache entries, so make a new one for
the whole required area and put it in the list.
We would like to avoid lots of little images in the
cache, so when we create a new one, make it as wide
as possible, within the limits inherent in Cairo.
However, we don't want to try to make it larger than
the source could allow, so clamp with that too.
*/
double const region_end_pixel = image_to_window (self.x0, floor (_region->latest_possible_frame() / _samples_per_pixel));
double const end_pixel = min (region_end_pixel, start + BIG_IMAGE_SIZE);
cerr << "Need new image " << start << " .. " << end_pixel << " (region end = " << region_end_pixel << ")" << endl;
if (end_pixel <= start) {
/* nothing more to draw */
image = 0;
} else {
CacheEntry* c = new CacheEntry (this, window_to_image (self.x0, start), window_to_image (self.x0, end_pixel));
_cache.push_back (c);
image = c;
}
} else if (image_to_window (self.x0, (*cache)->pixel_start()) > start) {
/* Case 2: we have a cache entry, but it begins after
* start, so we need another one for the missing section.
*
* Create a new cached image that extends as far as the
* next cached image's start, or the end of the region,
* or the end of a BIG_IMAGE, whichever comes first.
*/
double end_pixel;
if (end > image_to_window (self.x0, (*cache)->pixel_start())) {
double const region_end_pixel = image_to_window (self.x0, floor (_region->length() / _samples_per_pixel));
end_pixel = min (region_end_pixel, max (image_to_window (self.x0, (*cache)->pixel_start()), start + BIG_IMAGE_SIZE));
} else {
end_pixel = image_to_window (self.x0, (*cache)->pixel_start());
}
cerr << "Need fill image " << start << " .. " << end_pixel << endl;
CacheEntry* c = new CacheEntry (this, window_to_image (self.x0, start), window_to_image (self.x0, end_pixel));
cache = _cache.insert (cache, c);
++cache;
image = c;
} else {
/* Case 3: we have a cache entry that covers some of what
we have left to render
*/
image = *cache;
++cache;
cerr << "have image to " << image->pixel_end() << " win = " << image_to_window (self.x0, image->pixel_end()) << endl;
}
if (!image) {
break;
}
double this_end = min (end, image_to_window (self.x0, image->pixel_end ()));
double const image_origin = image_to_window (self.x0, image->pixel_start ());
#if 0
cerr << "\t\tDraw image between "
<< start
<< " .. "
<< this_end
<< " using image spanning "
<< image->pixel_start()
<< " .. "
<< image->pixel_end ()
<< " WINDOW = "
<< image_to_window (self.x0, image->pixel_start())
<< " .. "
<< image_to_window (self.x0, image->pixel_end())
<< endl;
#endif
context->rectangle (start, draw.y0, this_end - start, draw.height());
context->set_source (image->image(), self.x0 + (start - image_origin), self.y0);
context->fill ();
start = this_end;
}
}
void
WaveView::compute_bounding_box () const
{
if (_region) {
_bounding_box = Rect (0.0, 0.0, _region->length() / _samples_per_pixel, _height);
} else {
_bounding_box = boost::optional<Rect> ();
}
_bounding_box_dirty = false;
}
void
WaveView::set_height (Distance height)
{
if (height != _height) {
begin_change ();
_height = height;
_bounding_box_dirty = true;
end_change ();
invalidate_image_cache ();
}
}
void
WaveView::set_channel (int channel)
{
if (channel != _channel) {
begin_change ();
_channel = channel;
_bounding_box_dirty = true;
end_change ();
invalidate_whole_cache ();
}
}
void
WaveView::invalidate_whole_cache ()
{
begin_visual_change ();
for (list<CacheEntry*>::iterator i = _cache.begin(); i != _cache.end(); ++i) {
delete *i;
}
_cache.clear ();
end_visual_change ();
}
void
WaveView::invalidate_image_cache ()
{
begin_visual_change ();
for (list<CacheEntry*>::iterator i = _cache.begin(); i != _cache.end(); ++i) {
(*i)->clear_image ();
}
end_visual_change ();
}
void
WaveView::set_logscaled (bool yn)
{
if (_logscaled != yn) {
_logscaled = yn;
invalidate_image_cache ();
}
}
void
WaveView::gain_changed ()
{
invalidate_whole_cache ();
}
void
WaveView::set_zero_color (Color c)
{
if (_zero_color != c) {
_zero_color = c;
invalidate_image_cache ();
}
}
void
WaveView::set_clip_color (Color c)
{
if (_clip_color != c) {
_clip_color = c;
invalidate_image_cache ();
}
}
void
WaveView::set_show_zero_line (bool yn)
{
if (_show_zero != yn) {
_show_zero = yn;
invalidate_image_cache ();
}
}
void
WaveView::set_shape (Shape s)
{
if (_shape != s) {
_shape = s;
invalidate_image_cache ();
}
}
void
WaveView::set_amplitude_above_axis (double a)
{
if (_amplitude_above_axis != a) {
_amplitude_above_axis = a;
invalidate_image_cache ();
}
}
void
WaveView::set_global_shape (Shape s)
{
if (_global_shape != s) {
_global_shape = s;
VisualPropertiesChanged (); /* EMIT SIGNAL */
}
}
void
WaveView::set_global_logscaled (bool yn)
{
if (_global_logscaled != yn) {
_global_logscaled = yn;
VisualPropertiesChanged (); /* EMIT SIGNAL */
}
}
void
WaveView::region_resized ()
{
if (!_region) {
return;
}
/* special: do not use _region->length() here to compute
bounding box because it will already have changed.
if we have a bounding box, use it.
*/
_pre_change_bounding_box = _bounding_box;
frameoffset_t s = _region->start();
if (s != _region_start) {
/* if the region start changes, the information we have
in the image cache is out of date and not useful
since it will fragmented into little pieces. invalidate
the cache.
*/
_region_start = _region->start();
invalidate_whole_cache ();
}
_bounding_box_dirty = true;
compute_bounding_box ();
end_change ();
}
WaveView::CacheEntry::CacheEntry (WaveView const * wave_view, double pixel_start, double pixel_end)
: _wave_view (wave_view)
, _pixel_start (pixel_start)
, _pixel_end (pixel_end)
, _n_peaks (_pixel_end - _pixel_start)
{
_peaks.reset (new PeakData[_n_peaks]);
_sample_start = pixel_start * _wave_view->_samples_per_pixel;
_sample_end = pixel_end * _wave_view->_samples_per_pixel;
_wave_view->_region->read_peaks (_peaks.get(), _n_peaks,
_sample_start, _sample_end,
_wave_view->_channel,
_wave_view->_samples_per_pixel);
}
WaveView::CacheEntry::~CacheEntry ()
{
}
static inline float
_log_meter (float power, double lower_db, double upper_db, double non_linearity)
{
return (power < lower_db ? 0.0 : pow((power-lower_db)/(upper_db-lower_db), non_linearity));
}
static inline float
alt_log_meter (float power)
{
return _log_meter (power, -192.0, 0.0, 8.0);
}
Cairo::RefPtr<Cairo::ImageSurface>
WaveView::CacheEntry::image ()
{
if (!_image) {
_image = Cairo::ImageSurface::create (Cairo::FORMAT_ARGB32, _n_peaks, _wave_view->_height);
Cairo::RefPtr<Cairo::Context> context = Cairo::Context::create (_image);
/* Draw the edge of the waveform, top half first, the loop back
* for the bottom half to create a clockwise path
*/
context->begin_new_path();
if (_wave_view->_shape == WaveView::Rectified) {
/* top edge of waveform is based on max (fabs (peak_min, peak_max))
*/
if (_wave_view->_logscaled) {
for (int i = 0; i < _n_peaks; ++i) {
context->line_to (i + 0.5, position (alt_log_meter (fast_coefficient_to_dB (
max (fabs (_peaks[i].max), fabs (_peaks[i].min))))));
}
} else {
for (int i = 0; i < _n_peaks; ++i) {
context->line_to (i + 0.5, position (max (fabs (_peaks[i].max), fabs (_peaks[i].min))));
}
}
} else {
if (_wave_view->_logscaled) {
for (int i = 0; i < _n_peaks; ++i) {
Coord y = _peaks[i].max;
if (y > 0.0) {
y = position (alt_log_meter (fast_coefficient_to_dB (y)));
} else if (y < 0.0) {
y = position (-alt_log_meter (fast_coefficient_to_dB (-y)));
} else {
y = position (0.0);
}
context->line_to (i + 0.5, y);
}
} else {
for (int i = 0; i < _n_peaks; ++i) {
context->line_to (i + 0.5, position (_peaks[i].max));
}
}
}
/* from final top point, move out of the clip zone */
context->line_to (_n_peaks + 10, position (0.0));
/* bottom half, in reverse */
if (_wave_view->_shape == WaveView::Rectified) {
/* lower half: drop to the bottom, then a line back to
* beyond the left edge of the clip region
*/
context->line_to (_n_peaks + 10, _wave_view->_height);
context->line_to (-10.0, _wave_view->_height);
} else {
if (_wave_view->_logscaled) {
for (int i = _n_peaks-1; i >= 0; --i) {
Coord y = _peaks[i].min;
if (y > 0.0) {
context->line_to (i + 0.5, position (alt_log_meter (fast_coefficient_to_dB (y))));
} else if (y < 0.0) {
context->line_to (i + 0.5, position (-alt_log_meter (fast_coefficient_to_dB (-y))));
} else {
context->line_to (i + 0.5, position (0.0));
}
}
} else {
for (int i = _n_peaks-1; i >= 0; --i) {
context->line_to (i + 0.5, position (_peaks[i].min));
}
}
/* from final bottom point, move out of the clip zone */
context->line_to (-10.0, position (0.0));
}
context->close_path ();
if (_wave_view->gradient_depth() != 0.0) {
Cairo::RefPtr<Cairo::LinearGradient> gradient (Cairo::LinearGradient::create (0, 0, 0, _wave_view->_height));
double stops[3];
double r, g, b, a;
if (_wave_view->_shape == Rectified) {
stops[0] = 0.1;
stops[0] = 0.3;
stops[0] = 0.9;
} else {
stops[0] = 0.1;
stops[1] = 0.5;
stops[2] = 0.9;
}
color_to_rgba (_wave_view->_fill_color, r, g, b, a);
gradient->add_color_stop_rgba (stops[0], r, g, b, a);
gradient->add_color_stop_rgba (stops[2], r, g, b, a);
/* generate a new color for the middle of the gradient */
double h, s, v;
color_to_hsv (_wave_view->_fill_color, h, s, v);
/* tone down the saturation */
s *= 1.0 - _wave_view->gradient_depth();
Color center = hsv_to_color (h, s, v, a);
color_to_rgba (center, r, g, b, a);
gradient->add_color_stop_rgba (stops[1], r, g, b, a);
context->set_source (gradient);
} else {
set_source_rgba (context, _wave_view->_fill_color);
}
context->fill_preserve ();
_wave_view->setup_outline_context (context);
context->stroke ();
if (_wave_view->show_zero_line()) {
set_source_rgba (context, _wave_view->_zero_color);
context->move_to (0, position (0.0));
context->line_to (_n_peaks, position (0.0));
context->stroke ();
}
}
return _image;
}
Coord
WaveView::CacheEntry::position (double s) const
{
switch (_wave_view->_shape) {
case Rectified:
return _wave_view->_height - (s * _wave_view->_height);
default:
break;
}
return (1.0-s) * (_wave_view->_height / 2.0);
}
void
WaveView::CacheEntry::clear_image ()
{
_image.clear ();
}
void
WaveView::set_global_gradient_depth (double depth)
{
if (_global_gradient_depth != depth) {
_global_gradient_depth = depth;
VisualPropertiesChanged (); /* EMIT SIGNAL */
}
}