13
0
livetrax/libs/ardour/meter.cc
David Robillard 62e730b57a Fix broken whitespace (no functional changes).
git-svn-id: svn://localhost/ardour2/branches/3.0@9288 d708f5d6-7413-0410-9779-e7cbd77b26cf
2011-04-04 22:46:48 +00:00

207 lines
5.0 KiB
C++

/*
Copyright (C) 2006 Paul Davis
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "ardour/meter.h"
#include <algorithm>
#include <cmath>
#include "ardour/buffer_set.h"
#include "ardour/peak.h"
#include "ardour/dB.h"
#include "ardour/session.h"
#include "ardour/midi_buffer.h"
#include "ardour/audio_buffer.h"
#include "ardour/runtime_functions.h"
using namespace std;
using namespace ARDOUR;
PBD::Signal0<void> Metering::Meter;
/** Get peaks from @a bufs
* Input acceptance is lenient - the first n buffers from @a bufs will
* be metered, where n was set by the last call to setup(), excess meters will
* be set to 0.
*/
void
PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool)
{
if (!_active && !_pending_active) {
return;
}
// cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n";
const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio());
const uint32_t n_midi = min (current_meters.n_midi(), bufs.count().n_midi());
uint32_t n = 0;
// Meter MIDI in to the first n_midi peaks
for (uint32_t i = 0; i < n_midi; ++i, ++n) {
float val = 0.0f;
for (MidiBuffer::iterator e = bufs.get_midi(i).begin(); e != bufs.get_midi(i).end(); ++e) {
const Evoral::MIDIEvent<framepos_t> ev(*e, false);
if (ev.is_note_on()) {
const float this_vel = log(ev.buffer()[2] / 127.0 * (M_E*M_E-M_E) + M_E) - 1.0;
if (this_vel > val) {
val = this_vel;
}
} else {
val += 1.0 / bufs.get_midi(n).capacity();
if (val > 1.0) {
val = 1.0;
}
}
}
_peak_power[n] = max (val, _peak_power[n]);
}
// Meter audio in to the rest of the peaks
for (uint32_t i = 0; i < n_audio; ++i, ++n) {
_peak_power[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_power[n]);
}
// Zero any excess peaks
for (uint32_t i = n; i < _peak_power.size(); ++i) {
_peak_power[i] = 0.0f;
}
_active = _pending_active;
}
void
PeakMeter::reset ()
{
for (size_t i = 0; i < _peak_power.size(); ++i) {
_peak_power[i] = 0.0f;
}
}
void
PeakMeter::reset_max ()
{
for (size_t i = 0; i < _max_peak_power.size(); ++i) {
_max_peak_power[i] = -INFINITY;
}
}
bool
PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
{
out = in;
return true;
}
bool
PeakMeter::configure_io (ChanCount in, ChanCount out)
{
if (out != in) { // always 1:1
return false;
}
current_meters = in;
reset_max_channels (in);
return Processor::configure_io (in, out);
}
void
PeakMeter::reflect_inputs (const ChanCount& in)
{
current_meters = in;
}
void
PeakMeter::reset_max_channels (const ChanCount& chn)
{
uint32_t const limit = chn.n_total();
while (_peak_power.size() > limit) {
_peak_power.pop_back();
_visible_peak_power.pop_back();
_max_peak_power.pop_back();
}
while (_peak_power.size() < limit) {
_peak_power.push_back(0);
_visible_peak_power.push_back(minus_infinity());
_max_peak_power.push_back(minus_infinity());
}
assert(_peak_power.size() == limit);
assert(_visible_peak_power.size() == limit);
assert(_max_peak_power.size() == limit);
}
/** To be driven by the Meter signal from IO.
* Caller MUST hold its own processor_lock to prevent reconfiguration
* of meter size during this call.
*/
void
PeakMeter::meter ()
{
if (!_active) {
return;
}
assert(_visible_peak_power.size() == _peak_power.size());
const size_t limit = min (_peak_power.size(), (size_t) current_meters.n_total ());
for (size_t n = 0; n < limit; ++n) {
/* grab peak since last read */
float new_peak = _peak_power[n]; /* XXX we should use atomic exchange from here ... */
_peak_power[n] = 0; /* ... to here */
/* compute new visible value using falloff */
if (new_peak > 0.0) {
new_peak = fast_coefficient_to_dB (new_peak);
} else {
new_peak = minus_infinity();
}
/* update max peak */
_max_peak_power[n] = std::max (new_peak, _max_peak_power[n]);
if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
_visible_peak_power[n] = new_peak;
} else {
// do falloff
new_peak = _visible_peak_power[n] - (Config->get_meter_falloff() * 0.01f);
_visible_peak_power[n] = std::max (new_peak, -INFINITY);
}
}
}
XMLNode&
PeakMeter::state (bool full_state)
{
XMLNode& node (Processor::state (full_state));
node.add_property("type", "meter");
return node;
}