13
0
livetrax/libs/backends/coreaudio/coreaudio_backend.cc

1857 lines
46 KiB
C++

/*
* Copyright (C) 2015-2018 Robin Gareus <robin@gareus.org>
* Copyright (C) 2016-2018 Paul Davis <paul@linuxaudiosystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <regex.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <mach/thread_policy.h>
#include <mach/thread_act.h>
#include <glibmm.h>
#include "coreaudio_backend.h"
#include "pbd/compose.h"
#include "pbd/error.h"
#include "pbd/file_utils.h"
#include "pbd/pthread_utils.h"
#include "ardour/filesystem_paths.h"
#include "ardour/port_manager.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
static std::string s_instance_name;
size_t CoreAudioBackend::_max_buffer_size = 8192;
std::vector<std::string> CoreAudioBackend::_midi_options;
std::vector<AudioBackend::DeviceStatus> CoreAudioBackend::_duplex_audio_device_status;
std::vector<AudioBackend::DeviceStatus> CoreAudioBackend::_input_audio_device_status;
std::vector<AudioBackend::DeviceStatus> CoreAudioBackend::_output_audio_device_status;
/* static class instance access */
static void hw_changed_callback_ptr (void *arg)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend*> (arg);
d->hw_changed_callback();
}
static void error_callback_ptr (void *arg)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend*> (arg);
d->error_callback();
}
static void xrun_callback_ptr (void *arg)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend*> (arg);
d->xrun_callback();
}
static void buffer_size_callback_ptr (void *arg)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend*> (arg);
d->buffer_size_callback();
}
static void sample_rate_callback_ptr (void *arg)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend*> (arg);
d->sample_rate_callback();
}
static void midi_port_change (void *arg)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend *>(arg);
d->coremidi_rediscover ();
}
CoreAudioBackend::CoreAudioBackend (AudioEngine& e, AudioBackendInfo& info)
: AudioBackend (e, info)
, PortEngineSharedImpl (e, s_instance_name)
, _run (false)
, _active_ca (false)
, _active_fw (false)
, _freewheeling (false)
, _freewheel (false)
, _freewheel_ack (false)
, _reinit_thread_callback (false)
, _measure_latency (false)
, _last_process_start (0)
, _input_audio_device("")
, _output_audio_device("")
, _midi_driver_option(get_standard_device_name(DeviceNone))
, _samplerate (48000)
, _samples_per_period (1024)
, _n_inputs (0)
, _n_outputs (0)
, _systemic_audio_input_latency (0)
, _systemic_audio_output_latency (0)
, _dsp_load (0)
, _processed_samples (0)
{
_instance_name = s_instance_name;
pthread_mutex_init (&_process_callback_mutex, 0);
pthread_mutex_init (&_freewheel_mutex, 0);
pthread_cond_init (&_freewheel_signal, 0);
_port_connection_queue.reserve (128);
_pcmio = new CoreAudioPCM ();
_midiio = new CoreMidiIo ();
_pcmio->set_hw_changed_callback (hw_changed_callback_ptr, this);
_pcmio->discover();
}
CoreAudioBackend::~CoreAudioBackend ()
{
delete _pcmio; _pcmio = 0;
delete _midiio; _midiio = 0;
clear_ports ();
pthread_mutex_destroy (&_process_callback_mutex);
pthread_mutex_destroy (&_freewheel_mutex);
pthread_cond_destroy (&_freewheel_signal);
}
/* AUDIOBACKEND API */
std::string
CoreAudioBackend::name () const
{
return X_("CoreAudio");
}
bool
CoreAudioBackend::is_realtime () const
{
return true;
}
std::vector<AudioBackend::DeviceStatus>
CoreAudioBackend::enumerate_devices () const
{
_duplex_audio_device_status.clear();
std::map<size_t, std::string> devices;
_pcmio->duplex_device_list(devices);
for (std::map<size_t, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (_input_audio_device == "") _input_audio_device = i->second;
if (_output_audio_device == "") _output_audio_device = i->second;
_duplex_audio_device_status.push_back (DeviceStatus (i->second, true));
}
return _duplex_audio_device_status;
}
std::vector<AudioBackend::DeviceStatus>
CoreAudioBackend::enumerate_input_devices () const
{
_input_audio_device_status.clear();
std::map<size_t, std::string> devices;
_pcmio->input_device_list(devices);
_input_audio_device_status.push_back (DeviceStatus (get_standard_device_name(DeviceNone), true));
for (std::map<size_t, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (_input_audio_device == "") _input_audio_device = i->second;
_input_audio_device_status.push_back (DeviceStatus (i->second, true));
}
return _input_audio_device_status;
}
std::vector<AudioBackend::DeviceStatus>
CoreAudioBackend::enumerate_output_devices () const
{
_output_audio_device_status.clear();
std::map<size_t, std::string> devices;
_pcmio->output_device_list(devices);
_output_audio_device_status.push_back (DeviceStatus (get_standard_device_name(DeviceNone), true));
for (std::map<size_t, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (_output_audio_device == "") _output_audio_device = i->second;
_output_audio_device_status.push_back (DeviceStatus (i->second, true));
}
return _output_audio_device_status;
}
std::vector<float>
CoreAudioBackend::available_sample_rates (const std::string& device) const
{
std::vector<float> sr;
_pcmio->available_sample_rates (name_to_id (device), sr);
return sr;
}
std::vector<float>
CoreAudioBackend::available_sample_rates2 (const std::string& input_device, const std::string& output_device) const
{
std::vector<float> sr;
std::vector<float> sr_in;
std::vector<float> sr_out;
const uint32_t inp = name_to_id (input_device, Input);
const uint32_t out = name_to_id (output_device, Output);
if (inp == UINT32_MAX && out == UINT32_MAX) {
return sr;
} else if (inp == UINT32_MAX) {
_pcmio->available_sample_rates (out, sr_out);
return sr_out;
} else if (out == UINT32_MAX) {
_pcmio->available_sample_rates (inp, sr_in);
return sr_in;
} else {
_pcmio->available_sample_rates (inp, sr_in);
_pcmio->available_sample_rates (out, sr_out);
// TODO allow to use different SR per device, tweak aggregate
std::set_intersection (sr_in.begin(), sr_in.end(), sr_out.begin(), sr_out.end(), std::back_inserter(sr));
return sr;
}
}
std::vector<uint32_t>
CoreAudioBackend::available_buffer_sizes (const std::string& device) const
{
std::vector<uint32_t> bs;
_pcmio->available_buffer_sizes (name_to_id (device), bs);
return bs;
}
std::vector<uint32_t>
CoreAudioBackend::available_buffer_sizes2 (const std::string& input_device, const std::string& output_device) const
{
std::vector<uint32_t> bs;
std::vector<uint32_t> bs_in;
std::vector<uint32_t> bs_out;
const uint32_t inp = name_to_id (input_device, Input);
const uint32_t out = name_to_id (output_device, Output);
if (inp == UINT32_MAX && out == UINT32_MAX) {
return bs;
} else if (inp == UINT32_MAX) {
_pcmio->available_buffer_sizes (out, bs_out);
return bs_out;
} else if (out == UINT32_MAX) {
_pcmio->available_buffer_sizes (inp, bs_in);
return bs_in;
} else {
_pcmio->available_buffer_sizes (inp, bs_in);
_pcmio->available_buffer_sizes (out, bs_out);
std::set_intersection (bs_in.begin(), bs_in.end(), bs_out.begin(), bs_out.end(), std::back_inserter(bs));
return bs;
}
}
uint32_t
CoreAudioBackend::available_input_channel_count (const std::string&) const
{
return 128; // TODO query current device
}
uint32_t
CoreAudioBackend::available_output_channel_count (const std::string&) const
{
return 128; // TODO query current device
}
bool
CoreAudioBackend::can_change_sample_rate_when_running () const
{
return false;
}
bool
CoreAudioBackend::can_change_buffer_size_when_running () const
{
return true;
}
int
CoreAudioBackend::set_device_name (const std::string& d)
{
int rv = 0;
rv |= set_input_device_name (d);
rv |= set_output_device_name (d);
return rv;
}
int
CoreAudioBackend::set_input_device_name (const std::string& d)
{
_input_audio_device = d;
const float sr = _pcmio->current_sample_rate(name_to_id(_input_audio_device, Input));
if (sr > 0) { set_sample_rate(sr); }
return 0;
}
int
CoreAudioBackend::set_output_device_name (const std::string& d)
{
_output_audio_device = d;
// TODO check SR.
const float sr = _pcmio->current_sample_rate(name_to_id(_output_audio_device, Output));
if (sr > 0) { set_sample_rate(sr); }
return 0;
}
int
CoreAudioBackend::set_sample_rate (float sr)
{
std::vector<float> srs = available_sample_rates2 (_input_audio_device, _output_audio_device);
if (std::find(srs.begin(), srs.end(), sr) == srs.end()) {
return -1;
}
_samplerate = sr;
engine.sample_rate_change (sr);
return 0;
}
int
CoreAudioBackend::set_buffer_size (uint32_t bs)
{
if (bs <= 0 || bs >= _max_buffer_size) {
return -1;
}
if (!_run) {
_samples_per_period = bs;
engine.buffer_size_change (bs);
}
_pcmio->set_samples_per_period(bs);
if (_run) {
pbd_mach_set_realtime_policy (_main_thread, 1e9 * bs / _samplerate);
}
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i) {
pbd_mach_set_realtime_policy (*i, 1e9 * bs / _samplerate);
}
return 0;
}
int
CoreAudioBackend::set_interleaved (bool yn)
{
if (!yn) { return 0; }
return -1;
}
int
CoreAudioBackend::set_input_channels (uint32_t cc)
{
_n_inputs = cc;
return 0;
}
int
CoreAudioBackend::set_output_channels (uint32_t cc)
{
_n_outputs = cc;
return 0;
}
int
CoreAudioBackend::set_systemic_input_latency (uint32_t sl)
{
_systemic_audio_input_latency = sl;
return 0;
}
int
CoreAudioBackend::set_systemic_output_latency (uint32_t sl)
{
_systemic_audio_output_latency = sl;
return 0;
}
/* Retrieving parameters */
std::string
CoreAudioBackend::device_name () const
{
return "";
}
std::string
CoreAudioBackend::input_device_name () const
{
return _input_audio_device;
}
std::string
CoreAudioBackend::output_device_name () const
{
return _output_audio_device;
}
float
CoreAudioBackend::sample_rate () const
{
return _samplerate;
}
uint32_t
CoreAudioBackend::buffer_size () const
{
return _samples_per_period;
}
bool
CoreAudioBackend::interleaved () const
{
return false;
}
uint32_t
CoreAudioBackend::input_channels () const
{
return _n_inputs;
}
uint32_t
CoreAudioBackend::output_channels () const
{
return _n_outputs;
}
uint32_t
CoreAudioBackend::systemic_input_latency () const
{
return _systemic_audio_input_latency;
}
uint32_t
CoreAudioBackend::systemic_output_latency () const
{
return _systemic_audio_output_latency;
}
uint32_t
CoreAudioBackend::systemic_hw_input_latency () const
{
if (name_to_id (_input_audio_device) != UINT32_MAX) {
return _pcmio->get_latency(name_to_id(_input_audio_device, Input), true);
}
return 0;
}
uint32_t
CoreAudioBackend::systemic_hw_output_latency () const
{
if (name_to_id (_output_audio_device) != UINT32_MAX) {
return _pcmio->get_latency(name_to_id(_output_audio_device, Output), false);
}
return 0;
}
/* MIDI */
std::vector<std::string>
CoreAudioBackend::enumerate_midi_options () const
{
if (_midi_options.empty()) {
_midi_options.push_back (_("CoreMidi"));
_midi_options.push_back (get_standard_device_name(DeviceNone));
}
return _midi_options;
}
int
CoreAudioBackend::set_midi_option (const std::string& opt)
{
if (opt != get_standard_device_name(DeviceNone) && opt != _("CoreMidi")) {
return -1;
}
_midi_driver_option = opt;
return 0;
}
std::string
CoreAudioBackend::midi_option () const
{
return _midi_driver_option;
}
void
CoreAudioBackend::launch_control_app ()
{
if (name_to_id (_input_audio_device) != UINT32_MAX) {
_pcmio->launch_control_app(name_to_id(_input_audio_device, Input));
}
if (name_to_id (_output_audio_device) != UINT32_MAX) {
_pcmio->launch_control_app(name_to_id(_output_audio_device, Output));
}
}
/* State Control */
static void * pthread_freewheel (void *arg)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend *>(arg);
pthread_set_name ("CAFreewheel");
d->freewheel_thread ();
pthread_exit (0);
return 0;
}
static int process_callback_ptr (void *arg, const uint32_t n_samples, const uint64_t host_time)
{
CoreAudioBackend *d = static_cast<CoreAudioBackend*> (arg);
return d->process_callback(n_samples, host_time);
}
int
CoreAudioBackend::_start (bool for_latency_measurement)
{
AudioBackend::ErrorCode error_code = NoError;
if ((!_active_ca || !_active_fw) && _run) {
// recover from 'halted', reap threads
stop();
}
if (_active_ca || _active_fw || _run) {
PBD::error << _("CoreAudioBackend: already active.") << endmsg;
return BackendReinitializationError;
}
clear_ports ();
uint32_t device1 = name_to_id(_input_audio_device, Input);
uint32_t device2 = name_to_id(_output_audio_device, Output);
assert(_active_ca == false);
assert(_active_fw == false);
_freewheel_ack = false;
_reinit_thread_callback = true;
_last_process_start = 0;
_pcmio->set_error_callback (error_callback_ptr, this);
_pcmio->set_buffer_size_callback (buffer_size_callback_ptr, this);
_pcmio->set_sample_rate_callback (sample_rate_callback_ptr, this);
_pcmio->pcm_start (device1, device2, _samplerate, _samples_per_period, process_callback_ptr, this);
#ifndef NDEBUG
printf("STATE: %d\n", _pcmio->state ());
#endif
switch (_pcmio->state ()) {
case 0: /* OK */
break;
case -1:
PBD::error << _("CoreAudioBackend: Invalid Device ID.") << endmsg;
error_code = AudioDeviceInvalidError;
break;
case -2:
PBD::error << _("CoreAudioBackend: Failed to resolve Device-Component by ID.") << endmsg;
error_code = AudioDeviceNotAvailableError;
break;
case -3:
PBD::error << _("CoreAudioBackend: failed to open device.") << endmsg;
error_code = AudioDeviceOpenError;
break;
case -4:
PBD::error << _("CoreAudioBackend: cannot set requested sample rate.") << endmsg;
error_code = SampleRateNotSupportedError;
break;
case -5:
PBD::error << _("CoreAudioBackend: cannot configure requested buffer size.") << endmsg;
error_code = PeriodSizeNotSupportedError;
break;
case -6:
PBD::error << _("CoreAudioBackend: unsupported sample format.") << endmsg;
error_code = SampleFormatNotSupportedError;
break;
case -7:
PBD::error << _("CoreAudioBackend: Failed to enable Device.") << endmsg;
error_code = BackendInitializationError; // XXX
break;
case -8:
PBD::error << _("CoreAudioBackend: Cannot allocate buffers, out-of-memory.") << endmsg;
error_code = OutOfMemoryError;
break;
case -9:
PBD::error << _("CoreAudioBackend: Failed to set device-property listeners.") << endmsg;
error_code = BackendInitializationError; // XXX
break;
case -10:
PBD::error << _("CoreAudioBackend: Setting Process Callback failed.") << endmsg;
error_code = AudioDeviceIOError;
break;
case -11:
PBD::error << _("CoreAudioBackend: cannot use requested period size.") << endmsg;
error_code = PeriodSizeNotSupportedError;
break;
case -12:
PBD::error << _("CoreAudioBackend: cannot create aggregate device.") << endmsg;
error_code = DeviceConfigurationNotSupportedError;
break;
default:
PBD::error << _("CoreAudioBackend: initialization failure.") << endmsg;
error_code = BackendInitializationError;
break;
}
if (_pcmio->state ()) {
return error_code;
}
if (_n_outputs != _pcmio->n_playback_channels ()) {
if (_n_outputs == 0) {
_n_outputs = _pcmio->n_playback_channels ();
} else {
_n_outputs = std::min (_n_outputs, _pcmio->n_playback_channels ());
}
PBD::info << _("CoreAudioBackend: adjusted output channel count to match device.") << endmsg;
}
if (_n_inputs != _pcmio->n_capture_channels ()) {
if (_n_inputs == 0) {
_n_inputs = _pcmio->n_capture_channels ();
} else {
_n_inputs = std::min (_n_inputs, _pcmio->n_capture_channels ());
}
PBD::info << _("CoreAudioBackend: adjusted input channel count to match device.") << endmsg;
}
if (_pcmio->sample_rate() != _samplerate) {
_samplerate = _pcmio->sample_rate();
engine.sample_rate_change (_samplerate);
PBD::warning << _("CoreAudioBackend: sample rate does not match.") << endmsg;
}
_measure_latency = for_latency_measurement;
_preinit = true;
_run = true;
_port_change_flag = false;
if (_midi_driver_option == _("CoreMidi")) {
_midiio->set_enabled(true);
_midiio->set_port_changed_callback(midi_port_change, this);
_midiio->start(); // triggers port discovery, callback coremidi_rediscover()
}
if (register_system_audio_ports()) {
PBD::error << _("CoreAudioBackend: failed to register system ports.") << endmsg;
_run = false;
return PortRegistrationError;
}
engine.sample_rate_change (_samplerate);
engine.buffer_size_change (_samples_per_period);
if (engine.reestablish_ports ()) {
PBD::error << _("CoreAudioBackend: Could not re-establish ports.") << endmsg;
_run = false;
return PortReconnectError;
}
if (pthread_create (&_freeewheel_thread, NULL, pthread_freewheel, this))
{
PBD::error << _("CoreAudioBackend: failed to create process thread.") << endmsg;
delete _pcmio; _pcmio = 0;
_run = false;
return ProcessThreadStartError;
}
int timeout = 5000;
while ((!_active_ca || !_active_fw) && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0) {
PBD::error << _("CoreAudioBackend: failed to start.") << endmsg;
}
if (!_active_fw) {
PBD::error << _("CoreAudioBackend: failed to start freewheeling thread.") << endmsg;
_run = false;
_pcmio->pcm_stop();
unregister_ports();
_active_ca = false;
_active_fw = false;
return FreewheelThreadStartError;
}
if (!_active_ca) {
PBD::error << _("CoreAudioBackend: failed to start coreaudio.") << endmsg;
stop();
_run = false;
return ProcessThreadStartError;
}
engine.reconnect_ports ();
// force an initial registration_callback() & latency re-compute
_port_change_flag = true;
pre_process ();
_dsp_load_calc.reset ();
// all systems go.
_pcmio->set_xrun_callback (xrun_callback_ptr, this);
_preinit = false;
return NoError;
}
int
CoreAudioBackend::stop ()
{
void *status;
if (!_run) {
return 0;
}
_run = false;
_pcmio->pcm_stop();
_midiio->set_port_changed_callback(NULL, NULL);
_midiio->stop();
pthread_mutex_lock (&_freewheel_mutex);
pthread_cond_signal (&_freewheel_signal);
pthread_mutex_unlock (&_freewheel_mutex);
if (pthread_join (_freeewheel_thread, &status)) {
PBD::error << _("CoreAudioBackend: failed to terminate.") << endmsg;
return -1;
}
unregister_ports();
_active_ca = false;
_active_fw = false; // ??
return 0;
}
int
CoreAudioBackend::freewheel (bool onoff)
{
if (onoff == _freewheeling) {
return 0;
}
_freewheeling = onoff;
// wake up freewheeling thread
if (0 == pthread_mutex_trylock (&_freewheel_mutex)) {
pthread_cond_signal (&_freewheel_signal);
pthread_mutex_unlock (&_freewheel_mutex);
}
return 0;
}
float
CoreAudioBackend::dsp_load () const
{
return 100.f * _dsp_load;
}
size_t
CoreAudioBackend::raw_buffer_size (DataType t)
{
switch (t) {
case DataType::AUDIO:
return _samples_per_period * sizeof(Sample);
case DataType::MIDI:
return _max_buffer_size; // XXX not really limited
}
return 0;
}
/* Process time */
samplepos_t
CoreAudioBackend::sample_time ()
{
return _processed_samples;
}
samplepos_t
CoreAudioBackend::sample_time_at_cycle_start ()
{
return _processed_samples;
}
pframes_t
CoreAudioBackend::samples_since_cycle_start ()
{
if (!_active_ca || !_run || _freewheeling || _freewheel) {
return 0;
}
if (_last_process_start == 0) {
return 0;
}
const uint64_t now = AudioGetCurrentHostTime ();
const int64_t elapsed_time_ns = AudioConvertHostTimeToNanos(now - _last_process_start);
return std::max((pframes_t)0, (pframes_t)rint(1e-9 * elapsed_time_ns * _samplerate));
}
uint32_t
CoreAudioBackend::name_to_id(std::string device_name, DeviceFilter filter) const {
uint32_t device_id = UINT32_MAX;
std::map<size_t, std::string> devices;
switch (filter) {
case Input:
_pcmio->input_device_list (devices);
break;
case Output:
_pcmio->output_device_list (devices);
break;
case Duplex:
_pcmio->duplex_device_list (devices);
break;
case All:
default:
_pcmio->device_list (devices);
break;
}
for (std::map<size_t, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (i->second == device_name) {
device_id = i->first;
break;
}
}
return device_id;
}
void *
CoreAudioBackend::coreaudio_process_thread (void *arg)
{
ThreadData* td = reinterpret_cast<ThreadData*> (arg);
boost::function<void ()> f = td->f;
delete td;
f ();
return 0;
}
int
CoreAudioBackend::create_process_thread (boost::function<void()> func)
{
pthread_t thread_id;
ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC);
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC,
&thread_id, coreaudio_process_thread, td)) {
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, coreaudio_process_thread, td)) {
PBD::error << _("AudioEngine: cannot create process thread.") << endmsg;
return -1;
}
PBD::warning << _("AudioEngine: process thread failed to acquire realtime permissions.") << endmsg;
}
if (pbd_mach_set_realtime_policy (thread_id, 1e9 * _samples_per_period / _samplerate)) {
PBD::warning << _("AudioEngine: process thread failed to set mach realtime policy.") << endmsg;
}
_threads.push_back (thread_id);
return 0;
}
int
CoreAudioBackend::join_process_threads ()
{
int rv = 0;
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
void *status;
if (pthread_join (*i, &status)) {
PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg;
rv -= 1;
}
}
_threads.clear ();
return rv;
}
bool
CoreAudioBackend::in_process_thread ()
{
if (pthread_equal (_main_thread, pthread_self()) != 0) {
return true;
}
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
if (pthread_equal (*i, pthread_self ()) != 0) {
return true;
}
}
return false;
}
uint32_t
CoreAudioBackend::process_thread_count ()
{
return _threads.size ();
}
void
CoreAudioBackend::update_latencies ()
{
// trigger latency callback in RT thread (locked graph)
port_connect_add_remove_callback();
}
/* PORTENGINE API */
void*
CoreAudioBackend::private_handle () const
{
return NULL;
}
const std::string&
CoreAudioBackend::my_name () const
{
return _instance_name;
}
int
CoreAudioBackend::register_system_audio_ports()
{
LatencyRange lr;
const uint32_t a_ins = _n_inputs;
const uint32_t a_out = _n_outputs;
const uint32_t coreaudio_reported_input_latency = _pcmio->get_latency(name_to_id(_input_audio_device, Input), true);
const uint32_t coreaudio_reported_output_latency = _pcmio->get_latency(name_to_id(_output_audio_device, Output), false);
#ifndef NDEBUG
printf("COREAUDIO LATENCY: i:%d, o:%d\n",
coreaudio_reported_input_latency,
coreaudio_reported_output_latency);
#endif
/* audio ports */
lr.min = lr.max = _measure_latency ? 0 : _systemic_audio_input_latency;
for (uint32_t i = 0; i < a_ins; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:capture_%d", i+1);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, false, lr);
BackendPortPtr cp = boost::dynamic_pointer_cast<BackendPort>(p);
cp->set_pretty_name (_pcmio->cached_port_name(i, true));
_system_inputs.push_back(cp);
}
lr.min = lr.max = _measure_latency ? 0 : _systemic_audio_output_latency;
for (uint32_t i = 0; i < a_out; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:playback_%d", i+1);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, true, lr);
BackendPortPtr cp = boost::dynamic_pointer_cast<BackendPort>(p);
cp->set_pretty_name (_pcmio->cached_port_name(i, false));
_system_outputs.push_back(cp);
}
return 0;
}
void
CoreAudioBackend::coremidi_rediscover()
{
if (!_run) { return; }
assert(_midi_driver_option == _("CoreMidi"));
pthread_mutex_lock (&_process_callback_mutex);
for (std::vector<BackendPortPtr>::iterator it = _system_midi_out.begin (); it != _system_midi_out.end ();) {
bool found = false;
for (size_t i = 0; i < _midiio->n_midi_outputs(); ++i) {
if ((*it)->name() == _midiio->port_id(i, false)) {
found = true;
break;
}
}
if (found) {
++it;
} else {
#ifndef NDEBUG
printf("unregister MIDI Output: %s\n", (*it)->name().c_str());
#endif
_port_change_flag = true;
unregister_port((*it));
it = _system_midi_out.erase(it);
}
}
for (std::vector<BackendPortPtr>::iterator it = _system_midi_in.begin (); it != _system_midi_in.end ();) {
bool found = false;
for (size_t i = 0; i < _midiio->n_midi_inputs(); ++i) {
if ((*it)->name() == _midiio->port_id(i, true)) {
found = true;
break;
}
}
if (found) {
++it;
} else {
#ifndef NDEBUG
printf("unregister MIDI Input: %s\n", (*it)->name().c_str());
#endif
_port_change_flag = true;
unregister_port((*it));
it = _system_midi_in.erase(it);
}
}
for (size_t i = 0; i < _midiio->n_midi_inputs(); ++i) {
std::string name = _midiio->port_id(i, true);
if (find_port_in(_system_midi_in, name)) {
continue;
}
#ifndef NDEBUG
printf("register MIDI Input: %s\n", name.c_str());
#endif
PortPtr p = add_port(name, DataType::MIDI, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) {
fprintf(stderr, "failed to register MIDI IN: %s\n", name.c_str());
continue;
}
LatencyRange lr;
lr.min = lr.max = _samples_per_period; // TODO add per-port midi-systemic latency
set_latency_range (p, false, lr);
BackendPortPtr pp = boost::dynamic_pointer_cast<BackendPort>(p);
pp->set_pretty_name(_midiio->port_name(i, true));
_system_midi_in.push_back(pp);
_port_change_flag = true;
}
for (size_t i = 0; i < _midiio->n_midi_outputs(); ++i) {
std::string name = _midiio->port_id(i, false);
if (find_port_in(_system_midi_out, name)) {
continue;
}
#ifndef NDEBUG
printf("register MIDI OUT: %s\n", name.c_str());
#endif
PortPtr p = add_port(name, DataType::MIDI, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) {
fprintf(stderr, "failed to register MIDI OUT: %s\n", name.c_str());
continue;
}
LatencyRange lr;
lr.min = lr.max = _samples_per_period; // TODO add per-port midi-systemic latency
set_latency_range (p, false, lr);
BackendPortPtr pp = boost::dynamic_pointer_cast<BackendPort>(p);
pp->set_pretty_name(_midiio->port_name(i, false));
_system_midi_out.push_back(pp);
_port_change_flag = true;
}
assert(_system_midi_out.size() == _midiio->n_midi_outputs());
assert(_system_midi_in.size() == _midiio->n_midi_inputs());
pthread_mutex_unlock (&_process_callback_mutex);
}
BackendPort*
CoreAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags)
{
BackendPort* port = 0;
switch (type) {
case DataType::AUDIO:
port = new CoreAudioPort (*this, name, flags);
break;
case DataType::MIDI:
port = new CoreMidiPort (*this, name, flags);
break;
default:
PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg;
return 0;
}
return port;
}
/* MIDI */
int
CoreAudioBackend::midi_event_get (
pframes_t& timestamp,
size_t& size, uint8_t const** buf, void* port_buffer,
uint32_t event_index)
{
if (!buf || !port_buffer) return -1;
CoreMidiBuffer& source = * static_cast<CoreMidiBuffer*>(port_buffer);
if (event_index >= source.size ()) {
return -1;
}
CoreMidiEvent const& event = source[event_index];
timestamp = event.timestamp ();
size = event.size ();
*buf = event.data ();
return 0;
}
int
CoreAudioBackend::_midi_event_put (
void* port_buffer,
pframes_t timestamp,
const uint8_t* buffer, size_t size)
{
if (!buffer || !port_buffer) return -1;
if (size >= MaxCoreMidiEventSize) {
return -1;
}
CoreMidiBuffer& dst = * static_cast<CoreMidiBuffer*>(port_buffer);
#ifndef NDEBUG
if (dst.size () && (pframes_t)dst.back ().timestamp () > timestamp) {
// nevermind, ::get_buffer() sorts events
fprintf (stderr, "CoreMidiBuffer: unordered event: %d > %d\n",
(pframes_t)dst.back ().timestamp (), timestamp);
}
#endif
dst.push_back (CoreMidiEvent (timestamp, buffer, size));
return 0;
}
uint32_t
CoreAudioBackend::get_midi_event_count (void* port_buffer)
{
if (!port_buffer) return 0;
return static_cast<CoreMidiBuffer*>(port_buffer)->size ();
}
void
CoreAudioBackend::midi_clear (void* port_buffer)
{
if (!port_buffer) return;
CoreMidiBuffer * buf = static_cast<CoreMidiBuffer*>(port_buffer);
assert (buf);
buf->clear ();
}
/* Monitoring */
bool
CoreAudioBackend::can_monitor_input () const
{
return false;
}
int
CoreAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
int
CoreAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
bool
CoreAudioBackend::monitoring_input (PortEngine::PortHandle)
{
return false;
}
/* Latency management */
void
CoreAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range)
{
boost::shared_ptr<BackendPort> port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
if (!valid_port (port)) {
PBD::warning << _("BackendPort::set_latency_range (): invalid port.") << endmsg;
return;
}
port->set_latency_range (latency_range, for_playback);
}
LatencyRange
CoreAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback)
{
boost::shared_ptr<BackendPort> port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
LatencyRange r;
if (!valid_port (port)) {
PBD::warning << _("BackendPort::get_latency_range (): invalid port.") << endmsg;
r.min = 0;
r.max = 0;
return r;
}
r = port->latency_range (for_playback);
if (port->is_physical() && port->is_terminal() && port->type() == DataType::AUDIO) {
if (port->is_input() && for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
if (port->is_output() && !for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
}
return r;
}
/* Getting access to the data buffer for a port */
void*
CoreAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes)
{
boost::shared_ptr<BackendPort> port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
assert (port);
assert (valid_port (port));
if (!port || !valid_port (port)) return NULL; // XXX remove me
return port->get_buffer (nframes);
}
void
CoreAudioBackend::pre_process ()
{
bool connections_changed = false;
bool ports_changed = false;
if (!pthread_mutex_trylock (&_port_callback_mutex)) {
if (_port_change_flag) {
ports_changed = true;
_port_change_flag = false;
}
if (!_port_connection_queue.empty ()) {
connections_changed = true;
}
while (!_port_connection_queue.empty ()) {
PortConnectData *c = _port_connection_queue.back ();
manager.connect_callback (c->a, c->b, c->c);
_port_connection_queue.pop_back ();
delete c;
}
pthread_mutex_unlock (&_port_callback_mutex);
}
if (ports_changed) {
manager.registration_callback();
}
if (connections_changed) {
manager.graph_order_callback();
}
if (connections_changed || ports_changed) {
update_system_port_latencies ();
engine.latency_callback(false);
engine.latency_callback(true);
}
}
void
CoreAudioBackend::reset_midi_parsers ()
{
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
boost::shared_ptr<CoreMidiPort> port = boost::dynamic_pointer_cast<CoreMidiPort>(*it);
if (port) {
port->reset_parser ();
}
}
}
void *
CoreAudioBackend::freewheel_thread ()
{
_active_fw = true;
bool first_run = false;
/* Freewheeling - use for export. The first call to
* engine.process_callback() after engine.freewheel_callback will
* if the first export cycle.
* For reliable precise export timing, the calls need to be in sync.
*
* Furthermore we need to make sure the registered process thread
* is correct.
*
* _freewheeling = GUI thread state as set by ::freewheel()
* _freewheel = in sync here (export thread)
*/
pthread_mutex_lock (&_freewheel_mutex);
while (_run) {
// check if we should run,
if (_freewheeling != _freewheel) {
if (!_freewheeling) {
// prepare leaving freewheeling mode
_freewheel = false; // first mark as disabled
_reinit_thread_callback = true; // hand over _main_thread
_freewheel_ack = false; // prepare next handshake
reset_midi_parsers ();
_midiio->set_enabled(true);
engine.freewheel_callback (_freewheeling);
} else {
first_run = true;
_freewheel = true;
}
}
if (!_freewheel || !_freewheel_ack) {
// wait for a change, we use a timed wait to
// terminate early in case some error sets _run = 0
struct timeval tv;
struct timespec ts;
gettimeofday (&tv, NULL);
ts.tv_sec = tv.tv_sec + 3;
ts.tv_nsec = 0;
pthread_cond_timedwait (&_freewheel_signal, &_freewheel_mutex, &ts);
continue;
}
if (first_run) {
// tell the engine we're ready to GO.
engine.freewheel_callback (_freewheeling);
first_run = false;
_main_thread = pthread_self();
AudioEngine::thread_init_callback (this);
_midiio->set_enabled(false);
reset_midi_parsers ();
pbd_mach_set_realtime_policy (_main_thread, 1e9 * _samples_per_period / _samplerate);
}
// process port updates first in every cycle.
pre_process();
// prevent coreaudio device changes
pthread_mutex_lock (&_process_callback_mutex);
/* Freewheelin' */
// clear input buffers
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample));
}
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
static_cast<CoreMidiBuffer*>((*it)->get_buffer(0))->clear ();
}
_last_process_start = 0;
if (engine.process_callback (_samples_per_period)) {
pthread_mutex_unlock (&_process_callback_mutex);
break;
}
pthread_mutex_unlock (&_process_callback_mutex);
_dsp_load = 1.0;
Glib::usleep (100); // don't hog cpu
}
pthread_mutex_unlock (&_freewheel_mutex);
_active_fw = false;
if (_run) {
// engine.process_callback() returner error
engine.halted_callback("CoreAudio Freehweeling aborted.");
}
return 0;
}
int
CoreAudioBackend::process_callback (const uint32_t n_samples, const uint64_t host_time)
{
uint32_t i = 0;
uint64_t clock1;
_active_ca = true;
if (_run && _freewheel && !_freewheel_ack) {
// acknowledge freewheeling; hand-over thread ID
pthread_mutex_lock (&_freewheel_mutex);
if (_freewheel) _freewheel_ack = true;
pthread_cond_signal (&_freewheel_signal);
pthread_mutex_unlock (&_freewheel_mutex);
}
if (!_run || _freewheel || _preinit) {
// NB if we return 1, the output is
// zeroed by the coreaudio callback
_dsp_load_calc.reset ();
return 1;
}
if (_reinit_thread_callback || _main_thread != pthread_self()) {
_reinit_thread_callback = false;
_main_thread = pthread_self();
AudioEngine::thread_init_callback (this);
pbd_mach_set_realtime_policy (_main_thread, 1e9 * _samples_per_period / _samplerate);
}
if (pthread_mutex_trylock (&_process_callback_mutex)) {
// block while devices are added/removed
#ifndef NDEBUG
printf("Xrun due to device change\n");
#endif
engine.Xrun();
return 1;
}
/* port-connection change */
pre_process();
// cycle-length in usec
const double nominal_time = 1e6 * n_samples / _samplerate;
clock1 = g_get_monotonic_time();
/* get midi */
i=0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) {
boost::shared_ptr<CoreMidiPort> port = boost::dynamic_pointer_cast<CoreMidiPort> (*it);
if (!port) {
continue;
}
uint64_t time_ns;
uint8_t data[MaxCoreMidiEventSize];
size_t size = sizeof(data);
port->clear_events ();
while (_midiio->recv_event (i, nominal_time, time_ns, data, size)) {
pframes_t time = floor((float) time_ns * _samplerate * 1e-9);
assert (time < n_samples);
port->parse_events (time, data, size);
size = sizeof(data); /* prepare for next call to recv_event */
}
}
/* get audio */
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++i) {
_pcmio->get_capture_channel (i, (float*)(*it)->get_buffer(n_samples), n_samples);
}
/* clear output buffers */
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
memset ((*it)->get_buffer (n_samples), 0, n_samples * sizeof (Sample));
}
_midiio->start_cycle();
_last_process_start = host_time;
if (engine.process_callback (n_samples)) {
fprintf(stderr, "ENGINE PROCESS ERROR\n");
//_pcmio->pcm_stop ();
_active_ca = false;
pthread_mutex_unlock (&_process_callback_mutex);
return -1;
}
/* mixdown midi */
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) {
(*it)->get_buffer(0);
}
/* queue outgoing midi */
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) {
const CoreMidiBuffer *src = boost::dynamic_pointer_cast<CoreMidiPort>(*it)->const_buffer();
for (CoreMidiBuffer::const_iterator mit = src->begin (); mit != src->end (); ++mit) {
_midiio->send_event (i, mit->timestamp (), mit->data (), mit->size ());
}
}
/* write back audio */
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) {
_pcmio->set_playback_channel (i, (float const*)(*it)->get_buffer (n_samples), n_samples);
}
_processed_samples += n_samples;
/* calc DSP load. */
_dsp_load_calc.set_max_time (_samplerate, _samples_per_period);
_dsp_load_calc.set_start_timestamp_us (clock1);
_dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time());
_dsp_load = _dsp_load_calc.get_dsp_load ();
pthread_mutex_unlock (&_process_callback_mutex);
return 0;
}
void
CoreAudioBackend::error_callback ()
{
_pcmio->set_error_callback (NULL, NULL);
_pcmio->set_sample_rate_callback (NULL, NULL);
_pcmio->set_xrun_callback (NULL, NULL);
_midiio->set_port_changed_callback(NULL, NULL);
engine.halted_callback("CoreAudio Process aborted.");
_active_ca = false;
}
void
CoreAudioBackend::xrun_callback ()
{
engine.Xrun ();
}
void
CoreAudioBackend::buffer_size_callback ()
{
uint32_t bs = _pcmio->samples_per_period();
if (bs == _samples_per_period) {
return;
}
_samples_per_period = bs;
engine.buffer_size_change (_samples_per_period);
}
void
CoreAudioBackend::sample_rate_callback ()
{
if (_preinit) {
#ifndef NDEBUG
printf("Samplerate change during initialization.\n");
#endif
return;
}
_pcmio->set_error_callback (NULL, NULL);
_pcmio->set_sample_rate_callback (NULL, NULL);
_pcmio->set_xrun_callback (NULL, NULL);
_midiio->set_port_changed_callback(NULL, NULL);
engine.halted_callback("Sample Rate Changed.");
stop();
}
void
CoreAudioBackend::hw_changed_callback ()
{
_reinit_thread_callback = true;
engine.request_device_list_update();
}
/******************************************************************************/
static boost::shared_ptr<CoreAudioBackend> _instance;
static boost::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
static int deinstantiate ();
static bool already_configured ();
static bool available ();
static ARDOUR::AudioBackendInfo _descriptor = {
"CoreAudio",
instantiate,
deinstantiate,
backend_factory,
already_configured,
available
};
static boost::shared_ptr<AudioBackend>
backend_factory (AudioEngine& e)
{
if (!_instance) {
_instance.reset (new CoreAudioBackend (e, _descriptor));
}
return _instance;
}
static int
instantiate (const std::string& arg1, const std::string& /* arg2 */)
{
s_instance_name = arg1;
return 0;
}
static int
deinstantiate ()
{
_instance.reset ();
return 0;
}
static bool
already_configured ()
{
return false;
}
static bool
available ()
{
return true;
}
extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor ()
{
return &_descriptor;
}
/******************************************************************************/
CoreAudioPort::CoreAudioPort (CoreAudioBackend &b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
{
memset (_buffer, 0, sizeof (_buffer));
mlock (_buffer, sizeof (_buffer));
}
CoreAudioPort::~CoreAudioPort ()
{
}
void*
CoreAudioPort::get_buffer (pframes_t n_samples)
{
if (is_input ()) {
const std::set<BackendPortPtr>& connections = get_connections ();
std::set<BackendPortPtr>::const_iterator it = connections.begin ();
if (it == connections.end ()) {
memset (_buffer, 0, n_samples * sizeof (Sample));
} else {
boost::shared_ptr<const CoreAudioPort> source = boost::dynamic_pointer_cast<const CoreAudioPort>(*it);
assert (source && source->is_output ());
memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
while (++it != connections.end ()) {
source = boost::dynamic_pointer_cast<const CoreAudioPort>(*it);
assert (source && source->is_output ());
Sample* dst = buffer ();
const Sample* src = source->const_buffer ();
for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
*dst += *src;
}
}
}
}
return _buffer;
}
CoreMidiPort::CoreMidiPort (CoreAudioBackend &b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
, _n_periods (1)
, _bufperiod (0)
, _event (0, 0)
, _first_time(true)
, _unbuffered_bytes(0)
, _total_bytes(0)
, _expected_bytes(0)
, _status_byte(0)
{
_buffer[0].clear ();
_buffer[1].clear ();
_buffer[0].reserve (256);
_buffer[1].reserve (256);
}
CoreMidiPort::~CoreMidiPort () { }
struct MidiEventSorter {
bool operator() (CoreMidiEvent const& a, CoreMidiEvent const& b) {
return a < b;
}
};
void* CoreMidiPort::get_buffer (pframes_t /* nframes */)
{
if (is_input ()) {
(_buffer[_bufperiod]).clear ();
const std::set<BackendPortPtr>& connections = get_connections ();
for (std::set<BackendPortPtr>::const_iterator i = connections.begin ();
i != connections.end ();
++i) {
const CoreMidiBuffer * src = boost::dynamic_pointer_cast<const CoreMidiPort>(*i)->const_buffer ();
for (CoreMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
(_buffer[_bufperiod]).push_back (*it);
}
}
std::stable_sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter());
}
return &(_buffer[_bufperiod]);
}
int
CoreMidiPort::queue_event (
void* port_buffer,
pframes_t timestamp,
const uint8_t* buffer, size_t size)
{
const int ret = CoreAudioBackend::_midi_event_put (port_buffer, timestamp, buffer, size);
if (!ret) { /* success */
_event._pending = false;
}
return ret;
}
void
CoreMidiPort::reset_parser ()
{
_event._pending = false;
_first_time = true;
_unbuffered_bytes = 0;
_total_bytes = 0;
_expected_bytes = 0;
_status_byte = 0;
}
void
CoreMidiPort::clear_events ()
{
CoreMidiBuffer* mbuf = static_cast<CoreMidiBuffer*>(get_buffer(0));
mbuf->clear();
}
void
CoreMidiPort::parse_events (const uint64_t time, const uint8_t *data, const size_t size)
{
CoreMidiBuffer* mbuf = static_cast<CoreMidiBuffer*>(get_buffer(0));
if (_event._pending) {
if (queue_event (mbuf, _event._time, _parser_buffer, _event._size)) {
return;
}
}
for (size_t i = 0; i < size; ++i) {
if (_first_time && !(data[i] & 0x80)) {
continue;
}
_first_time = false;
if (process_byte(time, data[i])) {
if (queue_event (mbuf, _event._time, _parser_buffer, _event._size)) {
return;
}
}
}
}
// based on JackMidiRawInputWriteQueue by Devin Anderson //
bool
CoreMidiPort::process_byte(const uint64_t time, const uint8_t byte)
{
if (byte >= 0xf8) {
// Realtime
if (byte == 0xfd) {
return false;
}
_parser_buffer[0] = byte;
prepare_byte_event(time, byte);
return true;
}
if (byte == 0xf7) {
// Sysex end
if (_status_byte == 0xf0) {
record_byte(byte);
return prepare_buffered_event(time);
}
_total_bytes = 0;
_unbuffered_bytes = 0;
_expected_bytes = 0;
_status_byte = 0;
return false;
}
if (byte >= 0x80) {
// Non-realtime status byte
if (_total_bytes) {
printf ("CoreMidiPort: discarded bogus midi message\n");
#if 0
for (size_t i=0; i < _total_bytes; ++i) {
printf("%02x ", _parser_buffer[i]);
}
printf("\n");
#endif
_total_bytes = 0;
_unbuffered_bytes = 0;
}
_status_byte = byte;
switch (byte & 0xf0) {
case 0x80:
case 0x90:
case 0xa0:
case 0xb0:
case 0xe0:
// Note On, Note Off, Aftertouch, Control Change, Pitch Wheel
_expected_bytes = 3;
break;
case 0xc0:
case 0xd0:
// Program Change, Channel Pressure
_expected_bytes = 2;
break;
case 0xf0:
switch (byte) {
case 0xf0:
// Sysex
_expected_bytes = 0;
break;
case 0xf1:
case 0xf3:
// MTC Quarter Frame, Song Select
_expected_bytes = 2;
break;
case 0xf2:
// Song Position
_expected_bytes = 3;
break;
case 0xf4:
case 0xf5:
// Undefined
_expected_bytes = 0;
_status_byte = 0;
return false;
case 0xf6:
// Tune Request
prepare_byte_event(time, byte);
_expected_bytes = 0;
_status_byte = 0;
return true;
}
}
record_byte(byte);
return false;
}
// Data byte
if (! _status_byte) {
// Data bytes without a status will be discarded.
_total_bytes++;
_unbuffered_bytes++;
return false;
}
if (! _total_bytes) {
record_byte(_status_byte);
}
record_byte(byte);
return (_total_bytes == _expected_bytes) ? prepare_buffered_event(time) : false;
}
CoreMidiEvent::CoreMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
: _size (size)
, _timestamp (timestamp)
{
if (size > 0 && size < MaxCoreMidiEventSize) {
memcpy (_data, data, size);
}
}
CoreMidiEvent::CoreMidiEvent (const CoreMidiEvent& other)
: _size (other.size ())
, _timestamp (other.timestamp ())
{
if (other._size > 0) {
assert (other._size < MaxCoreMidiEventSize);
memcpy (_data, other._data, other._size);
}
};