13
0
livetrax/libs/ardour/monitor_processor.cc
Paul Davis d5e09076ca much ado about nothing when it comes to gain control
git-svn-id: svn://localhost/ardour2/branches/3.0@9748 d708f5d6-7413-0410-9779-e7cbd77b26cf
2011-06-19 23:02:55 +00:00

509 lines
15 KiB
C++

#include "pbd/convert.h"
#include "pbd/error.h"
#include "pbd/locale_guard.h"
#include "pbd/xml++.h"
#include "ardour/amp.h"
#include "ardour/debug.h"
#include "ardour/audio_buffer.h"
#include "ardour/monitor_processor.h"
#include "ardour/session.h"
#include "i18n.h"
using namespace ARDOUR;
using namespace PBD;
using namespace std;
/* specialize for bool because of set_value() semantics */
namespace ARDOUR {
template<> void MPControl<bool>::set_value (double v) {
bool newval = fabs (v) >= 0.5;
if (newval != _value) {
_value = newval;
Changed(); /* EMIT SIGNAL */
}
}
}
MonitorProcessor::MonitorProcessor (Session& s)
: Processor (s, X_("MonitorOut"))
, solo_cnt (0)
, _dim_all_ptr (new MPControl<bool> (false, _("monitor dim"), Controllable::Toggle))
, _cut_all_ptr (new MPControl<bool> (false, _("monitor cut"), Controllable::Toggle))
, _mono_ptr (new MPControl<bool> (false, _("monitor mono"), Controllable::Toggle))
, _dim_level_ptr (new MPControl<volatile gain_t>
/* default is -12dB, range is -20dB to 0dB */
(0.251188635826, _("monitor dim level"), Controllable::Flag (0), 0.100000001490, 1.0))
, _solo_boost_level_ptr (new MPControl<volatile gain_t>
/* default is 0dB, range is 0dB to +20dB */
(1.0, _("monitor solo boost level"), Controllable::Flag (0), 1.0, 10.0))
, _dim_all_control (_dim_all_ptr)
, _cut_all_control (_cut_all_ptr)
, _mono_control (_mono_ptr)
, _dim_level_control (_dim_level_ptr)
, _solo_boost_level_control (_solo_boost_level_ptr)
, _dim_all (*_dim_all_ptr)
, _cut_all (*_cut_all_ptr)
, _mono (*_mono_ptr)
, _dim_level (*_dim_level_ptr)
, _solo_boost_level (*_solo_boost_level_ptr)
{
}
MonitorProcessor::~MonitorProcessor ()
{
allocate_channels (0);
}
void
MonitorProcessor::allocate_channels (uint32_t size)
{
while (_channels.size() > size) {
if (_channels.back()->soloed) {
if (solo_cnt > 0) {
--solo_cnt;
}
}
ChannelRecord* cr = _channels.back();
_channels.pop_back();
delete cr;
}
uint32_t n = _channels.size() + 1;
while (_channels.size() < size) {
_channels.push_back (new ChannelRecord (n));
}
}
int
MonitorProcessor::set_state (const XMLNode& node, int version)
{
int ret = Processor::set_state (node, version);
if (ret != 0) {
return ret;
}
const XMLProperty* prop;
if ((prop = node.property (X_("type"))) == 0) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings have no type information"))
<< endmsg;
return -1;
}
if (prop->value() != X_("monitor")) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor given unknown XML settings"))
<< endmsg;
return -1;
}
if ((prop = node.property (X_("channels"))) == 0) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing a channel cnt"))
<< endmsg;
return -1;
}
allocate_channels (atoi (prop->value()));
if ((prop = node.property (X_("dim-level"))) != 0) {
gain_t val = atof (prop->value());
_dim_level = val;
}
if ((prop = node.property (X_("solo-boost-level"))) != 0) {
gain_t val = atof (prop->value());
_solo_boost_level = val;
}
if ((prop = node.property (X_("cut-all"))) != 0) {
bool val = string_is_affirmative (prop->value());
_cut_all = val;
}
if ((prop = node.property (X_("dim-all"))) != 0) {
bool val = string_is_affirmative (prop->value());
_dim_all = val;
}
if ((prop = node.property (X_("mono"))) != 0) {
bool val = string_is_affirmative (prop->value());
_mono = val;
}
for (XMLNodeList::const_iterator i = node.children().begin(); i != node.children().end(); ++i) {
if ((*i)->name() == X_("Channel")) {
if ((prop = (*i)->property (X_("id"))) == 0) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing an ID"))
<< endmsg;
return -1;
}
uint32_t chn;
if (sscanf (prop->value().c_str(), "%u", &chn) != 1) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an unreadable channel ID"))
<< endmsg;
return -1;
}
if (chn >= _channels.size()) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an illegal channel count"))
<< endmsg;
return -1;
}
ChannelRecord& cr (*_channels[chn]);
if ((prop = (*i)->property ("cut")) != 0) {
if (string_is_affirmative (prop->value())){
cr.cut = 0.0f;
} else {
cr.cut = 1.0f;
}
}
if ((prop = (*i)->property ("dim")) != 0) {
bool val = string_is_affirmative (prop->value());
cr.dim = val;
}
if ((prop = (*i)->property ("invert")) != 0) {
if (string_is_affirmative (prop->value())) {
cr.polarity = -1.0f;
} else {
cr.polarity = 1.0f;
}
}
if ((prop = (*i)->property ("solo")) != 0) {
bool val = string_is_affirmative (prop->value());
cr.soloed = val;
}
}
}
/* reset solo cnt */
solo_cnt = 0;
for (vector<ChannelRecord*>::const_iterator x = _channels.begin(); x != _channels.end(); ++x) {
if ((*x)->soloed) {
solo_cnt++;
}
}
return 0;
}
XMLNode&
MonitorProcessor::state (bool full)
{
LocaleGuard lg (X_("POSIX"));
XMLNode& node (Processor::state (full));
char buf[64];
/* this replaces any existing "type" property */
node.add_property (X_("type"), X_("monitor"));
snprintf (buf, sizeof(buf), "%.12g", _dim_level.val());
node.add_property (X_("dim-level"), buf);
snprintf (buf, sizeof(buf), "%.12g", _solo_boost_level.val());
node.add_property (X_("solo-boost-level"), buf);
node.add_property (X_("cut-all"), (_cut_all ? "yes" : "no"));
node.add_property (X_("dim-all"), (_dim_all ? "yes" : "no"));
node.add_property (X_("mono"), (_mono ? "yes" : "no"));
uint32_t limit = _channels.size();
snprintf (buf, sizeof (buf), "%u", limit);
node.add_property (X_("channels"), buf);
XMLNode* chn_node;
uint32_t chn = 0;
for (vector<ChannelRecord*>::const_iterator x = _channels.begin(); x != _channels.end(); ++x, ++chn) {
chn_node = new XMLNode (X_("Channel"));
snprintf (buf, sizeof (buf), "%u", chn);
chn_node->add_property ("id", buf);
chn_node->add_property (X_("cut"), (*x)->cut == 1.0f ? "no" : "yes");
chn_node->add_property (X_("invert"), (*x)->polarity == 1.0f ? "no" : "yes");
chn_node->add_property (X_("dim"), (*x)->dim ? "yes" : "no");
chn_node->add_property (X_("solo"), (*x)->soloed ? "yes" : "no");
node.add_child_nocopy (*chn_node);
}
return node;
}
void
MonitorProcessor::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool /*result_required*/)
{
uint32_t chn = 0;
gain_t target_gain;
gain_t dim_level_this_time = _dim_level;
gain_t global_cut = (_cut_all ? 0.0f : 1.0f);
gain_t global_dim = (_dim_all ? dim_level_this_time : 1.0);
gain_t solo_boost;
if (_session.listening() || _session.soloing()) {
solo_boost = _solo_boost_level;
} else {
solo_boost = 1.0;
}
for (BufferSet::audio_iterator b = bufs.audio_begin(); b != bufs.audio_end(); ++b) {
/* don't double-scale by both track dim and global dim coefficients */
gain_t dim_level = (global_dim == 1.0 ? (_channels[chn]->dim ? dim_level_this_time : 1.0) : 1.0);
if (_channels[chn]->soloed) {
target_gain = _channels[chn]->polarity * _channels[chn]->cut * dim_level * global_cut * global_dim * solo_boost;
} else {
if (solo_cnt == 0) {
target_gain = _channels[chn]->polarity * _channels[chn]->cut * dim_level * global_cut * global_dim * solo_boost;
} else {
target_gain = 0.0;
}
}
if (target_gain != _channels[chn]->current_gain || target_gain != 1.0f) {
Amp::apply_gain (*b, nframes, _channels[chn]->current_gain, target_gain);
_channels[chn]->current_gain = target_gain;
}
++chn;
}
if (_mono) {
DEBUG_TRACE (DEBUG::Monitor, "mono-izing\n");
/* chn is now the number of channels, use as a scaling factor when mixing
*/
gain_t scale = 1.0/chn;
BufferSet::audio_iterator b = bufs.audio_begin();
AudioBuffer& ab (*b);
Sample* buf = ab.data();
/* scale the first channel */
for (pframes_t n = 0; n < nframes; ++n) {
buf[n] *= scale;
}
/* add every other channel into the first channel's buffer */
++b;
for (; b != bufs.audio_end(); ++b) {
AudioBuffer& ob (*b);
Sample* obuf = ob.data ();
for (pframes_t n = 0; n < nframes; ++n) {
buf[n] += obuf[n] * scale;
}
}
/* copy the first channel to every other channel's buffer */
b = bufs.audio_begin();
++b;
for (; b != bufs.audio_end(); ++b) {
AudioBuffer& ob (*b);
Sample* obuf = ob.data ();
memcpy (obuf, buf, sizeof (Sample) * nframes);
}
}
}
bool
MonitorProcessor::configure_io (ChanCount in, ChanCount out)
{
allocate_channels (in.n_audio());
return Processor::configure_io (in, out);
}
bool
MonitorProcessor::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
{
out = in;
return true;
}
void
MonitorProcessor::set_polarity (uint32_t chn, bool invert)
{
if (invert) {
_channels[chn]->polarity = -1.0f;
} else {
_channels[chn]->polarity = 1.0f;
}
}
void
MonitorProcessor::set_dim (uint32_t chn, bool yn)
{
_channels[chn]->dim = yn;
}
void
MonitorProcessor::set_cut (uint32_t chn, bool yn)
{
if (yn) {
_channels[chn]->cut = 0.0f;
} else {
_channels[chn]->cut = 1.0f;
}
}
void
MonitorProcessor::set_solo (uint32_t chn, bool solo)
{
if (solo != _channels[chn]->soloed) {
_channels[chn]->soloed = solo;
if (solo) {
solo_cnt++;
} else {
if (solo_cnt > 0) {
solo_cnt--;
}
}
}
}
void
MonitorProcessor::set_mono (bool yn)
{
_mono = yn;
}
void
MonitorProcessor::set_cut_all (bool yn)
{
_cut_all = yn;
}
void
MonitorProcessor::set_dim_all (bool yn)
{
_dim_all = yn;
}
bool
MonitorProcessor::display_to_user () const
{
return false;
}
bool
MonitorProcessor::soloed (uint32_t chn) const
{
return _channels[chn]->soloed;
}
bool
MonitorProcessor::inverted (uint32_t chn) const
{
return _channels[chn]->polarity < 0.0f;
}
bool
MonitorProcessor::cut (uint32_t chn) const
{
return _channels[chn]->cut == 0.0f;
}
bool
MonitorProcessor::dimmed (uint32_t chn) const
{
return _channels[chn]->dim;
}
bool
MonitorProcessor::mono () const
{
return _mono;
}
bool
MonitorProcessor::dim_all () const
{
return _dim_all;
}
bool
MonitorProcessor::cut_all () const
{
return _cut_all;
}
boost::shared_ptr<Controllable>
MonitorProcessor::channel_cut_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->cut_control;
}
return boost::shared_ptr<Controllable>();
}
boost::shared_ptr<Controllable>
MonitorProcessor::channel_dim_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->dim_control;
}
return boost::shared_ptr<Controllable>();
}
boost::shared_ptr<Controllable>
MonitorProcessor::channel_polarity_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->polarity_control;
}
return boost::shared_ptr<Controllable>();
}
boost::shared_ptr<Controllable>
MonitorProcessor::channel_solo_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->soloed_control;
}
return boost::shared_ptr<Controllable>();
}
MonitorProcessor::ChannelRecord::ChannelRecord (uint32_t chn)
: current_gain (1.0)
, cut_ptr (new MPControl<gain_t> (1.0, string_compose (_("cut control %1"), chn), PBD::Controllable::GainLike))
, dim_ptr (new MPControl<bool> (false, string_compose (_("dim control"), chn), PBD::Controllable::Toggle))
, polarity_ptr (new MPControl<gain_t> (1.0, string_compose (_("polarity control"), chn), PBD::Controllable::Toggle))
, soloed_ptr (new MPControl<bool> (false, string_compose (_("solo control"), chn), PBD::Controllable::Toggle))
, cut_control (cut_ptr)
, dim_control (dim_ptr)
, polarity_control (polarity_ptr)
, soloed_control (soloed_ptr)
, cut (*cut_ptr)
, dim (*dim_ptr)
, polarity (*polarity_ptr)
, soloed (*soloed_ptr)
{
}