13
0
livetrax/scripts/spectrogram.lua
Julien "_FrnchFrgg_" RIVAUD a9d2955f83 Replace a ringbuffer with a multi-reader circular table
a-Inline Spectrogram used a ringbuffer to send mixed down audio data
from the DSP thread to the inline display thread. The problem is that
several inline display threads can coexist (one for the channel strip in
the editor, one for the channel strip in the mixer, and soon one for an
inline display in the generic plugin UI). A ringbuffer is single-writer
single-reader so each display only got part of the data, and all were
competing for it.

Replace it with a circular table, where the DSP sets a write pointer,
and every (inline display) user keeps its own read pointer and checks it
is not so far in the past as to be overtaken by the DSP write pointer.
2017-07-24 15:05:05 +02:00

364 lines
11 KiB
Lua

ardour {
["type"] = "dsp",
name = "a-Inline Spectrogram",
category = "Visualization",
license = "MIT",
author = "Ardour Team",
description = [[Mixer strip inline spectrum display]]
}
-- return possible i/o configurations
function dsp_ioconfig ()
-- -1, -1 = any number of channels as long as input and output count matches
return { [1] = { audio_in = -1, audio_out = -1}, }
end
function dsp_params ()
return
{
{ ["type"] = "input", name = "Logscale", min = 0, max = 1, default = 0, toggled = true },
{ ["type"] = "input", name = "1/f scale", min = 0, max = 1, default = 1, toggled = true },
{ ["type"] = "input", name = "FFT Size", min = 0, max = 4, default = 3, enum = true, scalepoints =
{
["512"] = 0,
["1024"] = 1,
["2048"] = 2,
["4096"] = 3,
["8192"] = 4,
}
},
{ ["type"] = "input", name = "Height (Aspect)", min = 0, max = 3, default = 1, enum = true, scalepoints =
{
["Min"] = 0,
["16:10"] = 1,
["1:1"] = 2,
["Max"] = 3
}
},
{ ["type"] = "input", name = "Range", min = 20, max = 160, default = 60, unit="dB"},
{ ["type"] = "input", name = "Offset", min = -40, max = 40, default = 0, unit="dB"},
}
end
-- symbolic names for shmem offsets
local SHMEM_RATE = 0
local SHMEM_WRITEPTR = 1
local SHMEM_AUDIO = 2
-- a C memory area.
-- It needs to be in global scope.
-- When the variable is set to nil, the allocated memory is free()ed.
-- the memory can be interpeted as float* for use in DSP, or read/write
-- to a C++ Ringbuffer instance.
-- http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:DSP:DspShm
local cmem = nil
function dsp_init (rate)
-- global variables (DSP part only)
dpy_hz = rate / 25
dpy_wr = 0
-- create a shared memory area to hold the sample rate, the write_pointer,
-- and (float) audio-data. Make it big enough to store 2s of audio which
-- should be enough. If not, the DSP will overwrite the oldest data anyway.
self:shmem ():allocate(2 + 2 * rate)
self:shmem ():clear()
self:shmem ():atomic_set_int (SHMEM_RATE, rate)
self:shmem ():atomic_set_int (SHMEM_WRITEPTR, 0)
-- allocate memory, local mix buffer
cmem = ARDOUR.DSP.DspShm (8192)
end
-- "dsp_runmap" uses Ardour's internal processor API, eqivalent to
-- 'connect_and_run()". There is no overhead (mapping, translating buffers).
-- The lua implementation is responsible to map all the buffers directly.
function dsp_runmap (bufs, in_map, out_map, n_samples, offset)
-- here we sum all audio input channels and then copy the data to a
-- custom-made circular table for the GUIs to process later
local audio_ins = in_map:count (): n_audio () -- number of audio input buffers
local ccnt = 0 -- processed channel count
local mem = cmem:to_float(0) -- a "FloatArray", float* for direct C API usage from the previously allocated buffer
local rate = self:shmem ():atomic_get_int (SHMEM_RATE)
local write_ptr = self:shmem ():atomic_get_int (SHMEM_WRITEPTR)
local ringsize = 2 * rate
local ptr_wrap = math.floor(2^50 / ringsize) * ringsize
for c = 1,audio_ins do
-- see http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:ChanMapping
-- Note: lua starts counting at 1, ardour's ChanMapping::get() at 0
local ib = in_map:get (ARDOUR.DataType ("audio"), c - 1) -- get index of mapped input buffer
local ob = out_map:get (ARDOUR.DataType ("audio"), c - 1) -- get index of mapped output buffer
-- check if the input is connected to a buffer
if (ib ~= ARDOUR.ChanMapping.Invalid) then
-- http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:AudioBuffer
-- http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:DSP
if c == 1 then
-- first channel, copy as-is
ARDOUR.DSP.copy_vector (mem, bufs:get_audio (ib):data (offset), n_samples)
else
-- all other channels, add to existing data.
ARDOUR.DSP.mix_buffers_no_gain (mem, bufs:get_audio (ib):data (offset), n_samples)
end
ccnt = ccnt + 1;
-- copy data to output (if not processing in-place)
if (ob ~= ARDOUR.ChanMapping.Invalid and ib ~= ob) then
ARDOUR.DSP.copy_vector (bufs:get_audio (ob):data (offset), bufs:get_audio (ib):data (offset), n_samples)
end
end
end
-- Clear unconnected output buffers.
-- In case we're processing in-place some buffers may be identical,
-- so this must be done *after processing*.
for c = 1,audio_ins do
local ib = in_map:get (ARDOUR.DataType ("audio"), c - 1)
local ob = out_map:get (ARDOUR.DataType ("audio"), c - 1)
if (ib == ARDOUR.ChanMapping.Invalid and ob ~= ARDOUR.ChanMapping.Invalid) then
bufs:get_audio (ob):silence (n_samples, offset)
end
end
-- Normalize gain (1 / channel-count)
if ccnt > 1 then
ARDOUR.DSP.apply_gain_to_buffer (mem, n_samples, 1 / ccnt)
end
-- if no channels were processed, feed silence.
if ccnt == 0 then
ARDOUR.DSP.memset (mem, 0, n_samples)
end
-- write data to the circular table
if (write_ptr % ringsize + n_samples < ringsize) then
ARDOUR.DSP.copy_vector (self:shmem ():to_float (SHMEM_AUDIO + write_ptr % ringsize), mem, n_samples)
else
local chunk = ringsize - write_ptr % ringsize
ARDOUR.DSP.copy_vector (self:shmem ():to_float (SHMEM_AUDIO + write_ptr % ringsize), mem, chunk)
ARDOUR.DSP.copy_vector (self:shmem ():to_float (SHMEM_AUDIO), cmem:to_float (chunk), n_samples - chunk)
end
self:shmem ():atomic_set_int (SHMEM_WRITEPTR, (write_ptr + n_samples) % ptr_wrap)
-- emit QueueDraw every FPS
-- TODO: call every FFT window-size worth of samples, at most every FPS
dpy_wr = dpy_wr + n_samples
if (dpy_wr > dpy_hz) then
dpy_wr = dpy_wr % dpy_hz
self:queue_draw ()
end
end
----------------------------------------------------------------
-- GUI
local fft = nil
local read_ptr = 0
local line = 0
local img = nil
local fft_size = 0
local last_log = false
function render_inline (ctx, w, max_h)
local ctrl = CtrlPorts:array () -- get control port array (read/write)
local rate = self:shmem ():atomic_get_int (SHMEM_RATE)
if not cmem then
cmem = ARDOUR.DSP.DspShm (0)
end
-- get settings
local logscale = ctrl[1] or 0; logscale = logscale > 0 -- x-axis logscale
local pink = ctrl[2] or 0; pink = pink > 0 -- 1/f scale
local fftsizeenum = ctrl[3] or 3 -- fft-size enum
local hmode = ctrl[4] or 1 -- height mode enum
local dbrange = ctrl[5] or 60
local gaindb = ctrl[6] or 0
local fftsize
if fftsizeenum == 0 then fftsize = 512
elseif fftsizeenum == 1 then fftsize = 1024
elseif fftsizeenum == 2 then fftsize = 2048
elseif fftsizeenum == 4 then fftsize = 8192
else fftsize = 4096
end
if fftsize ~= fft_size then
fft_size = fftsize
fft = nil
end
if dbrange < 20 then dbrange = 20; end
if dbrange > 160 then dbrange = 160; end
if gaindb < -40 then dbrange = -40; end
if gaindb > 40 then dbrange = 40; end
if not fft then
fft = ARDOUR.DSP.FFTSpectrum (fft_size, rate)
cmem:allocate (fft_size)
end
if last_log ~= logscale then
last_log = logscale
img = nil
line = 0
end
-- calc height
if hmode == 0 then
h = math.ceil (w * 10 / 16)
if (h > 44) then
h = 44
end
elseif (hmode == 2) then
h = w
elseif (hmode == 3) then
h = max_h
else
h = math.ceil (w * 10 / 16)
end
if (h > max_h) then
h = max_h
end
-- re-create image surface
if not img or img:get_width() ~= w or img:get_height () ~= h then
img = Cairo.ImageSurface (Cairo.Format.ARGB32, w, h)
line = 0
end
local ictx = img:context ()
local bins = fft_size / 2 - 1 -- fft bin count
local bpx = bins / w -- bins per x-pixel (linear)
local fpb = rate / fft_size -- freq-step per bin
local f_e = rate / 2 / fpb -- log-scale exponent
local f_b = w / math.log (fft_size / 2) -- inverse log-scale base
local f_l = math.log (fft_size / rate) * f_b -- inverse logscale lower-bound
local mem = cmem:to_float (0)
local ringsize = 2 * rate
local ptr_wrap = math.floor(2^50 / ringsize) * ringsize
local write_ptr
function read_space()
write_ptr = self:shmem ():atomic_get_int (SHMEM_WRITEPTR)
local space = (write_ptr - read_ptr + ptr_wrap) % ptr_wrap
if space > ringsize then
-- the GUI lagged too much and unread data was overwritten
-- jump to the oldest audio still present in the ringtable
read_ptr = write_ptr - ringsize
space = ringsize
end
return space
end
while (read_space() >= fft_size) do
-- read one window from the circular table
if (read_ptr % ringsize + fft_size < ringsize) then
ARDOUR.DSP.copy_vector (mem, self:shmem ():to_float (SHMEM_AUDIO + read_ptr % ringsize), fft_size)
else
local chunk = ringsize - read_ptr % ringsize
ARDOUR.DSP.copy_vector (mem, self:shmem ():to_float (SHMEM_AUDIO + read_ptr % ringsize), chunk)
ARDOUR.DSP.copy_vector (cmem:to_float(chunk), self:shmem ():to_float (SHMEM_AUDIO), fft_size - chunk)
end
read_ptr = (read_ptr + fft_size) % ptr_wrap
-- process one line
fft:set_data_hann (mem, fft_size, 0)
fft:execute ()
-- draw spectrum
assert (bpx >= 1)
-- scroll
if line == 0 then line = h - 1; else line = line - 1; end
-- clear this line
ictx:set_source_rgba (0, 0, 0, 1)
ictx:rectangle (0, line, w, 1)
ictx:fill ()
for x = 0, w - 1 do
local pk = 0
local b0, b1
if logscale then
-- 20 .. 20k
b0 = math.floor (f_e ^ (x / w))
b1 = math.floor (f_e ^ ((x + 1) / w))
else
b0 = math.floor (x * bpx)
b1 = math.floor ((x + 1) * bpx)
end
if b1 >= b0 and b1 <= bins and b0 >= 0 then
for i = b0, b1 do
local level = gaindb + fft:power_at_bin (i, pink and i or 1) -- pink ? i : 1
if level > -dbrange then
local p = (dbrange + level) / dbrange
if p > pk then pk = p; end
end
end
end
if pk > 0.0 then
if pk > 1.0 then pk = 1.0; end
ictx:set_source_rgba (ARDOUR.LuaAPI.hsla_to_rgba (.70 - .72 * pk, .9, .3 + pk * .4));
ictx:rectangle (x, line, 1, 1)
ictx:fill ()
end
end
end
-- copy image surface
if line == 0 then
img:set_as_source (ctx, 0, 0)
ctx:rectangle (0, 0, w, h)
ctx:fill ()
else
local yp = h - line - 1;
img:set_as_source (ctx, 0, yp)
ctx:rectangle (0, yp, w, line)
ctx:fill ()
img:set_as_source (ctx, 0, -line)
ctx:rectangle (0, 0, w, yp)
ctx:fill ()
end
-- draw grid on top
function x_at_freq (f)
if logscale then
return f_l + f_b * math.log (f)
else
return 2 * w * f / rate;
end
end
function grid_freq (f)
-- draw vertical grid line
local x = .5 + math.floor (x_at_freq (f))
ctx:move_to (x, 0)
ctx:line_to (x, h)
ctx:stroke ()
end
-- draw grid on top
local dash3 = C.DoubleVector ()
dash3:add ({1, 3})
ctx:set_line_width (1.0)
ctx:set_dash (dash3, 2) -- dotted line
ctx:set_source_rgba (.5, .5, .5, .8)
grid_freq (100)
grid_freq (1000)
grid_freq (10000)
ctx:unset_dash ()
return {w, h}
end