13
0
livetrax/libs/pbd/pbd/control_math.h

123 lines
3.6 KiB
C

/*
* Copyright (C) 2017-2019 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef __pbd_control_math_h__
#define __pbd_control_math_h__
#include <assert.h>
#include <math.h>
#include <stdint.h>
/* these numbers ar arbitrary; we use them to keep floats well out of the denormal range */
#define TINY_NUMBER (0.0000001) /* (-140dB) */
/* map gain-coeff [0..2] to position [0..1] */
static inline double
gain_to_position (double g)
{
if (g == 0) {
return 0;
}
return pow ((6.0 * log (g) / log (2.0) + 192.0) / 198.0, 8.0);
}
/* map position [0..1] to gain-coeff [0..2] */
static inline double
position_to_gain (double pos)
{
if (pos == 0.0) {
return 0.0;
}
return exp (((pow (pos, 1.0 / 8.0) * 198.0) - 192.0) / 6.0 * log (2.0));
}
/* map position [0..1] to parameter [lower..upper] on a logarithmic scale */
static inline double
position_to_logscale (double pos, double lower, double upper)
{
assert (upper > lower && lower * upper > 0);
assert (pos >= 0.0 && pos <= 1.0);
return lower * pow (upper / lower, pos);
}
/* map parameter [lower..upper] to position [0..1] on a logarithmic scale*/
static inline double
logscale_to_position (double val, double lower, double upper)
{
assert (upper > lower && lower * upper > 0);
assert (val >= lower && val <= upper);
return log (val / lower) / log (upper / lower);
}
static inline double
logscale_to_position_with_steps (double val, double lower, double upper, uint32_t steps)
{
assert (steps > 1);
double v = logscale_to_position (val, lower, upper) * (steps - 1.0);
return round (v) / (steps - 1.0);
}
static inline double
position_to_logscale_with_steps (double pos, double lower, double upper, uint32_t steps)
{
assert (steps > 1);
double p = round (pos * (steps - 1.0)) / (steps - 1.0);
return position_to_logscale (p, lower, upper);
}
static inline double
interpolate_linear (double from, double to, double fraction)
{
return from + (fraction * (to - from));
}
static inline double
interpolate_logarithmic (double from, double to, double fraction, double /*lower*/, double /*upper*/)
{
#if 0
/* this is expensive, original math incl. range-check assertions */
double l0 = logscale_to_position (from, lower, upper);
double l1 = logscale_to_position (to, lower, upper);
return position_to_logscale (l0 + fraction * (l1 - l0), lower, upper);
#else
assert (from > 0 && from * to > 0);
assert (fraction >= 0 && fraction <= 1);
return from * pow (to / from, fraction);
#endif
}
static inline double
interpolate_gain (double f, double t, double fraction, double upper)
{
double from = f + TINY_NUMBER; //kill denormals before we use them for anything
double to = t + TINY_NUMBER; //kill denormals before we use them for anything
if ( fabs(to-from) < TINY_NUMBER ){
return to;
}
// this is expensive -- optimize
double g0 = gain_to_position (from * 2. / upper);
double g1 = gain_to_position (to * 2. / upper);
double diff = g1 - g0;
return position_to_gain (g0 + fraction * (diff)) * upper / 2.;
}
#endif