13
0
livetrax/libs/panners/vbap/vbap.cc
Paul Davis 2a8629d11c tentative commit of new panners subtree
git-svn-id: svn://localhost/ardour2/branches/3.0@8521 d708f5d6-7413-0410-9779-e7cbd77b26cf
2011-01-17 17:51:44 +00:00

307 lines
8.1 KiB
C++

#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include "pbd/cartesian.h"
#include "ardour/pannable.h"
#include "ardour/speakers.h"
#include "ardour/vbap.h"
#include "ardour/vbap_speakers.h"
#include "ardour/audio_buffer.h"
#include "ardour/buffer_set.h"
#include "ardour/pan_controllable.h"
using namespace PBD;
using namespace ARDOUR;
using namespace std;
static PanPluginDescriptor _descriptor = {
"VBAP 2D panner",
1, -1, 2, -1,
VBAPanner::factory
};
extern "C" { PanPluginDescriptor* panner_descriptor () { return &_descriptor; } }
VBAPanner::Signal::Signal (Session& session, VBAPanner& p, uint32_t n)
: azimuth_control (new PanControllable (session, string_compose (_("azimuth %1"), n+1), &p, Evoral::Parameter (PanAzimuthAutomation, 0, n)))
, elevation_control (new PanControllable (session, string_compose (_("elevation %1"), n+1), &p, Evoral::Parameter (PanElevationAutomation, 0, n)))
{
gains[0] = gains[1] = gains[2] = 0;
desired_gains[0] = desired_gains[1] = desired_gains[2] = 0;
outputs[0] = outputs[1] = outputs[2] = -1;
desired_outputs[0] = desired_outputs[1] = desired_outputs[2] = -1;
};
VBAPanner::VBAPanner (boost::shared_ptr<Pannable> p, Speakers& s)
: Panner (p)
, _dirty (true)
, _speakers (VBAPSpeakers::instance (s))
{
}
VBAPanner::~VBAPanner ()
{
for (vector<Signal*>::iterator i = _signals.begin(); i != _signals.end(); ++i) {
delete *i;
}
}
void
VBAPanner::configure_io (const ChanCount& in, const ChanCount& /* ignored - we use Speakers */)
{
uint32_t n = in.n_audio();
/* 2d panning: spread signals equally around a circle */
double degree_step = 360.0 / _speakers.n_speakers();
double deg;
/* even number of signals? make sure the top two are either side of "top".
otherwise, just start at the "top" (90.0 degrees) and rotate around
*/
if (n % 2) {
deg = 90.0 - degree_step;
} else {
deg = 90.0;
}
_signals.clear ();
for (uint32_t i = 0; i < n; ++i) {
_signals.push_back (new Signal (_pannable->session(), *this, i));
_signals[i]->direction = AngularVector (deg, 0.0);
deg += degree_step;
}
}
void
VBAPanner::compute_gains (double gains[3], int speaker_ids[3], int azi, int ele)
{
/* calculates gain factors using loudspeaker setup and given direction */
double cartdir[3];
double power;
int i,j,k;
double small_g;
double big_sm_g, gtmp[3];
azi_ele_to_cart (azi,ele, cartdir[0], cartdir[1], cartdir[2]);
big_sm_g = -100000.0;
gains[0] = gains[1] = gains[2] = 0;
speaker_ids[0] = speaker_ids[1] = speaker_ids[2] = 0;
for (i = 0; i < _speakers.n_tuples(); i++) {
small_g = 10000000.0;
for (j = 0; j < _speakers.dimension(); j++) {
gtmp[j] = 0.0;
for (k = 0; k < _speakers.dimension(); k++) {
gtmp[j] += cartdir[k] * _speakers.matrix(i)[j*_speakers.dimension()+k];
}
if (gtmp[j] < small_g) {
small_g = gtmp[j];
}
}
if (small_g > big_sm_g) {
big_sm_g = small_g;
gains[0] = gtmp[0];
gains[1] = gtmp[1];
speaker_ids[0] = _speakers.speaker_for_tuple (i, 0);
speaker_ids[1] = _speakers.speaker_for_tuple (i, 1);
if (_speakers.dimension() == 3) {
gains[2] = gtmp[2];
speaker_ids[2] = _speakers.speaker_for_tuple (i, 2);
} else {
gains[2] = 0.0;
speaker_ids[2] = -1;
}
}
}
power = sqrt (gains[0]*gains[0] + gains[1]*gains[1] + gains[2]*gains[2]);
if (power > 0) {
gains[0] /= power;
gains[1] /= power;
gains[2] /= power;
}
_dirty = false;
}
void
VBAPanner::do_distribute (BufferSet& inbufs, BufferSet& obufs, gain_t gain_coefficient, pframes_t nframes)
{
bool was_dirty = _dirty;
uint32_t n;
vector<Signal*>::iterator s;
assert (inbufs.count().n_audio() == _signals.size());
/* XXX need to handle mono case */
for (s = _signals.begin(), n = 0; s != _signals.end(); ++s, ++n) {
Signal* signal (*s);
if (was_dirty) {
compute_gains (signal->desired_gains, signal->desired_outputs, signal->direction.azi, signal->direction.ele);
cerr << " @ " << signal->direction.azi << " /= " << signal->direction.ele
<< " Outputs: "
<< signal->desired_outputs[0] + 1 << ' '
<< signal->desired_outputs[1] + 1 << ' '
<< " Gains "
<< signal->desired_gains[0] << ' '
<< signal->desired_gains[1] << ' '
<< endl;
}
do_distribute_one (inbufs.get_audio (n), obufs, gain_coefficient, nframes, n);
if (was_dirty) {
memcpy (signal->gains, signal->desired_gains, sizeof (signal->gains));
memcpy (signal->outputs, signal->desired_outputs, sizeof (signal->outputs));
}
}
}
void
VBAPanner::do_distribute_one (AudioBuffer& srcbuf, BufferSet& obufs, gain_t gain_coefficient, pframes_t nframes, uint32_t which)
{
Sample* const src = srcbuf.data();
Sample* dst;
pan_t pan;
uint32_t n_audio = obufs.count().n_audio();
bool todo[n_audio];
Signal* signal (_signals[which]);
for (uint32_t o = 0; o < n_audio; ++o) {
todo[o] = true;
}
/* VBAP may distribute the signal across up to 3 speakers depending on
the configuration of the speakers.
*/
for (int o = 0; o < 3; ++o) {
if (signal->desired_outputs[o] != -1) {
pframes_t n = 0;
/* XXX TODO: interpolate across changes in gain and/or outputs
*/
dst = obufs.get_audio (signal->desired_outputs[o]).data();
pan = gain_coefficient * signal->desired_gains[o];
mix_buffers_with_gain (dst+n,src+n,nframes-n,pan);
todo[o] = false;
}
}
for (uint32_t o = 0; o < n_audio; ++o) {
if (todo[o]) {
/* VBAP decided not to deliver any audio to this output, so we write silence */
dst = obufs.get_audio(o).data();
memset (dst, 0, sizeof (Sample) * nframes);
}
}
}
void
VBAPanner::do_distribute_one_automated (AudioBuffer& src, BufferSet& obufs,
framepos_t start, framepos_t end, pframes_t nframes, pan_t** buffers, uint32_t which)
{
}
XMLNode&
VBAPanner::get_state ()
{
return state (true);
}
XMLNode&
VBAPanner::state (bool full_state)
{
XMLNode& node (Panner::get_state());
node.add_property (X_("type"), _descriptor.name);
return node;
}
int
VBAPanner::set_state (const XMLNode& node, int /*version*/)
{
return 0;
}
boost::shared_ptr<AutomationControl>
VBAPanner::azimuth_control (uint32_t n)
{
if (n >= _signals.size()) {
return boost::shared_ptr<AutomationControl>();
}
return _signals[n]->azimuth_control;
}
boost::shared_ptr<AutomationControl>
VBAPanner::evelation_control (uint32_t n)
{
if (n >= _signals.size()) {
return boost::shared_ptr<AutomationControl>();
}
return _signals[n]->elevation_control;
}
Panner*
VBAPanner::factory (boost::shared_ptr<Pannable> p, Speakers& s)
{
return new VBAPanner (p, s);
}
string
VBAPanner::describe_parameter (Evoral::Parameter param)
{
stringstream ss;
switch (param.type()) {
case PanElevationAutomation:
return string_compose ( _("Pan:elevation %1"), param.id() + 1);
case PanWidthAutomation:
return string_compose ( _("Pan:diffusion %1"), param.id() + 1);
case PanAzimuthAutomation:
return string_compose ( _("Pan:azimuth %1"), param.id() + 1);
}
return Automatable::describe_parameter (param);
}
ChanCount
VBAPanner::in() const
{
return ChanCount (DataType::AUDIO, _signals.size());
}
ChanCount
VBAPanner::out() const
{
return ChanCount (DataType::AUDIO, _speakers.n_speakers());
}