13
0
livetrax/libs/glibmm2/glibmm/main.cc
Taybin Rutkin d09f6b3016 Initial revision
git-svn-id: svn://localhost/trunk/ardour2@4 d708f5d6-7413-0410-9779-e7cbd77b26cf
2005-05-13 20:47:18 +00:00

987 lines
22 KiB
C++

// -*- c++ -*-
/* $Id$ */
/* Copyright (C) 2002 The gtkmm Development Team
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <glibmm/main.h>
#include <glibmm/exceptionhandler.h>
#include <glibmm/thread.h>
#include <glibmm/wrap.h>
#include <glibmm/iochannel.h>
#include <glib/gmessages.h>
#include <algorithm>
GLIBMM_USING_STD(min)
namespace
{
class SourceConnectionNode
{
public:
explicit inline SourceConnectionNode(const sigc::slot_base& slot);
static void* notify(void* data);
static void destroy_notify_callback(void* data);
inline void install(GSource* source);
inline sigc::slot_base* get_slot();
private:
sigc::slot_base slot_;
GSource* source_;
};
inline
SourceConnectionNode::SourceConnectionNode(const sigc::slot_base& slot)
:
slot_ (slot),
source_ (0)
{
slot_.set_parent(this, &SourceConnectionNode::notify);
}
void* SourceConnectionNode::notify(void* data)
{
SourceConnectionNode *const self = static_cast<SourceConnectionNode*>(data);
// if there is no object, this call was triggered from destroy_notify_handler(),
// because we set self->source_ to 0 there:
if (self->source_)
{
GSource* s = self->source_;
self->source_ = 0;
g_source_destroy(s);
// Destroying the object triggers execution of destroy_notify_handler(),
// eiter immediately or later, so we leave that to do the deletion.
}
return 0;
}
// static
void SourceConnectionNode::destroy_notify_callback(void* data)
{
SourceConnectionNode *const self = static_cast<SourceConnectionNode*>(data);
if (self)
{
// The GLib side is disconnected now, thus the GSource* is no longer valid.
self->source_ = 0;
delete self;
}
}
inline
void SourceConnectionNode::install(GSource* source)
{
source_ = source;
}
inline
sigc::slot_base* SourceConnectionNode::get_slot()
{
return &slot_;
}
/* We use the callback data member of GSource to store both a pointer to our
* wrapper and a pointer to the connection node that is currently being used.
* The one and only SourceCallbackData object of a Glib::Source is constructed
* in the ctor of Glib::Source and destroyed after the GSource object when the
* reference counter of the GSource object reaches zero!
*/
struct SourceCallbackData
{
explicit inline SourceCallbackData(Glib::Source* wrapper_);
void set_node(SourceConnectionNode* node_);
static void destroy_notify_callback(void* data);
Glib::Source* wrapper;
SourceConnectionNode* node;
};
inline
SourceCallbackData::SourceCallbackData(Glib::Source* wrapper_)
:
wrapper (wrapper_),
node (0)
{}
void SourceCallbackData::set_node(SourceConnectionNode* node_)
{
if(node)
SourceConnectionNode::destroy_notify_callback(node);
node = node_;
}
// static
void SourceCallbackData::destroy_notify_callback(void* data)
{
SourceCallbackData *const self = static_cast<SourceCallbackData*>(data);
if(self->node)
SourceConnectionNode::destroy_notify_callback(self->node);
if(self->wrapper)
Glib::Source::destroy_notify_callback(self->wrapper);
delete self;
}
/* Retrieve the callback data from a wrapped GSource object.
*/
static SourceCallbackData* glibmm_source_get_callback_data(GSource* source)
{
g_return_val_if_fail(source->callback_funcs->get != 0, 0);
GSourceFunc func;
void* user_data = 0;
// Retrieve the callback function and data.
(*source->callback_funcs->get)(source->callback_data, source, &func, &user_data);
return static_cast<SourceCallbackData*>(user_data);
}
/* Glib::Source doesn't use the callback function installed with
* g_source_set_callback(). Instead, it invokes the sigc++ slot
* directly from dispatch_vfunc(), which is both simpler and more
* efficient.
* For correctness, provide a pointer to this dummy callback rather
* than some random pointer. That also allows for sanity checks
* here as well as in Source::dispatch_vfunc().
*/
static gboolean glibmm_dummy_source_callback(void*)
{
g_assert_not_reached();
return 0;
}
/* Only used by SignalTimeout::connect() and SignalIdle::connect().
* These don't use Glib::Source, to avoid the unnecessary overhead
* of a completely unused wrapper object.
*/
static gboolean glibmm_source_callback(void* data)
{
SourceConnectionNode *const conn_data = static_cast<SourceConnectionNode*>(data);
try
{
// Recreate the specific slot from the generic slot node.
return (*static_cast<sigc::slot<bool>*>(conn_data->get_slot()))();
}
catch(...)
{
Glib::exception_handlers_invoke();
}
return 0;
}
static gboolean glibmm_iosource_callback(GIOChannel*, GIOCondition condition, void* data)
{
SourceCallbackData *const callback_data = static_cast<SourceCallbackData*>(data);
g_return_val_if_fail(callback_data->node != 0, 0);
try
{
// Recreate the specific slot from the generic slot node.
return (*static_cast<sigc::slot<bool,Glib::IOCondition>*>(callback_data->node->get_slot()))
((Glib::IOCondition) condition);
}
catch(...)
{
Glib::exception_handlers_invoke();
}
return 0;
}
} // anonymous namespace
namespace Glib
{
/**** Glib::PollFD *********************************************************/
PollFD::PollFD()
{
gobject_.fd = 0;
gobject_.events = 0;
gobject_.revents = 0;
}
PollFD::PollFD(int fd)
{
gobject_.fd = fd;
gobject_.events = 0;
gobject_.revents = 0;
}
PollFD::PollFD(int fd, IOCondition events)
{
gobject_.fd = fd;
gobject_.events = events;
gobject_.revents = 0;
}
/**** Glib::SignalTimeout **************************************************/
inline
SignalTimeout::SignalTimeout(GMainContext* context)
:
context_ (context)
{}
sigc::connection SignalTimeout::connect(const sigc::slot<bool>& slot,
unsigned int interval, int priority)
{
SourceConnectionNode *const conn_node = new SourceConnectionNode(slot);
const sigc::connection connection (*conn_node->get_slot());
GSource *const source = g_timeout_source_new(interval);
if(priority != G_PRIORITY_DEFAULT)
g_source_set_priority(source, priority);
g_source_set_callback(
source, &glibmm_source_callback, conn_node,
&SourceConnectionNode::destroy_notify_callback);
g_source_attach(source, context_);
g_source_unref(source); // GMainContext holds a reference
conn_node->install(source);
return connection;
}
SignalTimeout signal_timeout()
{
return SignalTimeout(0); // 0 means default context
}
/**** Glib::SignalIdle *****************************************************/
inline
SignalIdle::SignalIdle(GMainContext* context)
:
context_ (context)
{}
sigc::connection SignalIdle::connect(const sigc::slot<bool>& slot, int priority)
{
SourceConnectionNode *const conn_node = new SourceConnectionNode(slot);
const sigc::connection connection (*conn_node->get_slot());
GSource *const source = g_idle_source_new();
if(priority != G_PRIORITY_DEFAULT)
g_source_set_priority(source, priority);
g_source_set_callback(
source, &glibmm_source_callback, conn_node,
&SourceConnectionNode::destroy_notify_callback);
g_source_attach(source, context_);
g_source_unref(source); // GMainContext holds a reference
conn_node->install(source);
return connection;
}
SignalIdle signal_idle()
{
return SignalIdle(0); // 0 means default context
}
/**** Glib::SignalIO *******************************************************/
inline
SignalIO::SignalIO(GMainContext* context)
:
context_ (context)
{}
sigc::connection SignalIO::connect(const sigc::slot<bool,IOCondition>& slot,
int fd, IOCondition condition, int priority)
{
const Glib::RefPtr<IOSource> source = IOSource::create(fd, condition);
if(priority != G_PRIORITY_DEFAULT)
source->set_priority(priority);
const sigc::connection connection = source->connect(slot);
g_source_attach(source->gobj(), context_);
return connection;
}
sigc::connection SignalIO::connect(const sigc::slot<bool,IOCondition>& slot,
const Glib::RefPtr<IOChannel>& channel,
IOCondition condition, int priority)
{
const Glib::RefPtr<IOSource> source = IOSource::create(channel, condition);
if(priority != G_PRIORITY_DEFAULT)
source->set_priority(priority);
const sigc::connection connection = source->connect(slot);
g_source_attach(source->gobj(), context_);
return connection;
}
SignalIO signal_io()
{
return SignalIO(0); // 0 means default context
}
/**** Glib::MainContext ****************************************************/
// static
Glib::RefPtr<MainContext> MainContext::create()
{
return Glib::RefPtr<MainContext>(reinterpret_cast<MainContext*>(g_main_context_new()));
}
// static
Glib::RefPtr<MainContext> MainContext::get_default()
{
return Glib::wrap(g_main_context_default(), true);
}
bool MainContext::iteration(bool may_block)
{
return g_main_context_iteration(gobj(), may_block);
}
bool MainContext::pending()
{
return g_main_context_pending(gobj());
}
void MainContext::wakeup()
{
g_main_context_wakeup(gobj());
}
bool MainContext::acquire()
{
return g_main_context_acquire(gobj());
}
bool MainContext::wait(Glib::Cond& cond, Glib::Mutex& mutex)
{
return g_main_context_wait(gobj(), cond.gobj(), mutex.gobj());
}
void MainContext::release()
{
g_main_context_release(gobj());
}
bool MainContext::prepare(int& priority)
{
return g_main_context_prepare(gobj(), &priority);
}
bool MainContext::prepare()
{
return g_main_context_prepare(gobj(), 0);
}
void MainContext::query(int max_priority, int& timeout, std::vector<PollFD>& fds)
{
if(fds.empty())
fds.resize(8); // rather bogus number, but better than 0
for(;;)
{
const int size_before = fds.size();
const int size_needed = g_main_context_query(
gobj(), max_priority, &timeout, reinterpret_cast<GPollFD*>(&fds.front()), size_before);
fds.resize(size_needed);
if(size_needed <= size_before)
break;
}
}
bool MainContext::check(int max_priority, std::vector<PollFD>& fds)
{
if(!fds.empty())
return g_main_context_check(gobj(), max_priority, reinterpret_cast<GPollFD*>(&fds.front()), fds.size());
else
return false;
}
void MainContext::dispatch()
{
g_main_context_dispatch(gobj());
}
void MainContext::set_poll_func(GPollFunc poll_func)
{
g_main_context_set_poll_func(gobj(), poll_func);
}
GPollFunc MainContext::get_poll_func()
{
return g_main_context_get_poll_func(gobj());
}
void MainContext::add_poll(PollFD& fd, int priority)
{
g_main_context_add_poll(gobj(), fd.gobj(), priority);
}
void MainContext::remove_poll(PollFD& fd)
{
g_main_context_remove_poll(gobj(), fd.gobj());
}
SignalTimeout MainContext::signal_timeout()
{
return SignalTimeout(gobj());
}
SignalIdle MainContext::signal_idle()
{
return SignalIdle(gobj());
}
SignalIO MainContext::signal_io()
{
return SignalIO(gobj());
}
void MainContext::reference() const
{
g_main_context_ref(reinterpret_cast<GMainContext*>(const_cast<MainContext*>(this)));
}
void MainContext::unreference() const
{
g_main_context_unref(reinterpret_cast<GMainContext*>(const_cast<MainContext*>(this)));
}
GMainContext* MainContext::gobj()
{
return reinterpret_cast<GMainContext*>(this);
}
const GMainContext* MainContext::gobj() const
{
return reinterpret_cast<const GMainContext*>(this);
}
GMainContext* MainContext::gobj_copy() const
{
reference();
return const_cast<GMainContext*>(gobj());
}
Glib::RefPtr<MainContext> wrap(GMainContext* gobject, bool take_copy)
{
if(take_copy && gobject)
g_main_context_ref(gobject);
return Glib::RefPtr<MainContext>(reinterpret_cast<MainContext*>(gobject));
}
/**** Glib::MainLoop *******************************************************/
Glib::RefPtr<MainLoop> MainLoop::create(bool is_running)
{
return Glib::RefPtr<MainLoop>(
reinterpret_cast<MainLoop*>(g_main_loop_new(0, is_running)));
}
Glib::RefPtr<MainLoop> MainLoop::create(const Glib::RefPtr<MainContext>& context, bool is_running)
{
return Glib::RefPtr<MainLoop>(
reinterpret_cast<MainLoop*>(g_main_loop_new(Glib::unwrap(context), is_running)));
}
void MainLoop::run()
{
g_main_loop_run(gobj());
}
void MainLoop::quit()
{
g_main_loop_quit(gobj());
}
bool MainLoop::is_running()
{
return g_main_loop_is_running(gobj());
}
Glib::RefPtr<MainContext> MainLoop::get_context()
{
return Glib::wrap(g_main_loop_get_context(gobj()), true);
}
//static:
int MainLoop::depth()
{
return g_main_depth();
}
void MainLoop::reference() const
{
g_main_loop_ref(reinterpret_cast<GMainLoop*>(const_cast<MainLoop*>(this)));
}
void MainLoop::unreference() const
{
g_main_loop_unref(reinterpret_cast<GMainLoop*>(const_cast<MainLoop*>(this)));
}
GMainLoop* MainLoop::gobj()
{
return reinterpret_cast<GMainLoop*>(this);
}
const GMainLoop* MainLoop::gobj() const
{
return reinterpret_cast<const GMainLoop*>(this);
}
GMainLoop* MainLoop::gobj_copy() const
{
reference();
return const_cast<GMainLoop*>(gobj());
}
Glib::RefPtr<MainLoop> wrap(GMainLoop* gobject, bool take_copy)
{
if(take_copy && gobject)
g_main_loop_ref(gobject);
return Glib::RefPtr<MainLoop>(reinterpret_cast<MainLoop*>(gobject));
}
/**** Glib::Source *********************************************************/
// static
const GSourceFuncs Source::vfunc_table_ =
{
&Source::prepare_vfunc,
&Source::check_vfunc,
&Source::dispatch_vfunc,
0, // finalize_vfunc // We can't use finalize_vfunc because there is no way
// to store a pointer to our wrapper anywhere in GSource so
// that it persists until finalize_vfunc would be called from here.
0, // closure_callback
0, // closure_marshal
};
unsigned int Source::attach(const Glib::RefPtr<MainContext>& context)
{
return g_source_attach(gobject_, Glib::unwrap(context));
}
unsigned int Source::attach()
{
return g_source_attach(gobject_, 0);
}
void Source::destroy()
{
g_source_destroy(gobject_);
}
void Source::set_priority(int priority)
{
g_source_set_priority(gobject_, priority);
}
int Source::get_priority() const
{
return g_source_get_priority(gobject_);
}
void Source::set_can_recurse(bool can_recurse)
{
g_source_set_can_recurse(gobject_, can_recurse);
}
bool Source::get_can_recurse() const
{
return g_source_get_can_recurse(gobject_);
}
unsigned int Source::get_id() const
{
return g_source_get_id(gobject_);
}
Glib::RefPtr<MainContext> Source::get_context()
{
return Glib::wrap(g_source_get_context(gobject_), true);
}
GSource* Source::gobj_copy() const
{
return g_source_ref(gobject_);
}
void Source::reference() const
{
g_source_ref(gobject_);
}
void Source::unreference() const
{
g_source_unref(gobject_);
}
Source::Source()
:
gobject_ (g_source_new(const_cast<GSourceFuncs*>(&vfunc_table_), sizeof(GSource)))
{
g_source_set_callback(
gobject_, &glibmm_dummy_source_callback,
new SourceCallbackData(this), // our persistant callback data object
&SourceCallbackData::destroy_notify_callback);
}
Source::Source(GSource* cast_item, GSourceFunc callback_func)
:
gobject_ (cast_item)
{
g_source_set_callback(
gobject_, callback_func,
new SourceCallbackData(this), // our persistant callback data object
&SourceCallbackData::destroy_notify_callback);
}
Source::~Source()
{
// The dtor should be invoked by destroy_notify_callback() only, which clears
// gobject_ before deleting. However, we might also get to this point if
// a derived ctor threw an exception, and then we need to unref manually.
if(gobject_)
{
SourceCallbackData *const data = glibmm_source_get_callback_data(gobject_);
data->wrapper = 0;
GSource *const tmp_gobject = gobject_;
gobject_ = 0;
g_source_unref(tmp_gobject);
}
}
sigc::connection Source::connect_generic(const sigc::slot_base& slot)
{
SourceConnectionNode *const conn_node = new SourceConnectionNode(slot);
const sigc::connection connection (*conn_node->get_slot());
// Don't override the callback data. Reuse the existing one
// calling SourceCallbackData::set_node() to register conn_node.
SourceCallbackData *const data = glibmm_source_get_callback_data(gobject_);
data->set_node(conn_node);
conn_node->install(gobject_);
return connection;
}
void Source::add_poll(Glib::PollFD& poll_fd)
{
g_source_add_poll(gobject_, poll_fd.gobj());
}
void Source::remove_poll(Glib::PollFD& poll_fd)
{
g_source_remove_poll(gobject_, poll_fd.gobj());
}
void Source::get_current_time(Glib::TimeVal& current_time)
{
g_source_get_current_time(gobject_, &current_time);
}
inline // static
Source* Source::get_wrapper(GSource* source)
{
SourceCallbackData *const data = glibmm_source_get_callback_data(source);
return data->wrapper;
}
// static
gboolean Source::prepare_vfunc(GSource* source, int* timeout)
{
try
{
Source *const self = get_wrapper(source);
return self->prepare(*timeout);
}
catch(...)
{
Glib::exception_handlers_invoke();
}
return 0;
}
// static
gboolean Source::check_vfunc(GSource* source)
{
try
{
Source *const self = get_wrapper(source);
return self->check();
}
catch(...)
{
Glib::exception_handlers_invoke();
}
return 0;
}
// static
gboolean Source::dispatch_vfunc(GSource*, GSourceFunc callback, void* user_data)
{
SourceCallbackData *const callback_data = static_cast<SourceCallbackData*>(user_data);
g_return_val_if_fail(callback == &glibmm_dummy_source_callback, 0);
g_return_val_if_fail(callback_data != 0 && callback_data->node != 0, 0);
try
{
Source *const self = callback_data->wrapper;
return self->dispatch(callback_data->node->get_slot());
}
catch(...)
{
Glib::exception_handlers_invoke();
}
return 0;
}
// static
void Source::destroy_notify_callback(void* data)
{
if(data)
{
Source *const self = static_cast<Source*>(data);
// gobject_ is already invalid at this point.
self->gobject_ = 0;
// No exception checking: if the dtor throws, you're out of luck anyway.
delete self;
}
}
/**** Glib::TimeoutSource **************************************************/
// static
Glib::RefPtr<TimeoutSource> TimeoutSource::create(unsigned int interval)
{
return Glib::RefPtr<TimeoutSource>(new TimeoutSource(interval));
}
sigc::connection TimeoutSource::connect(const sigc::slot<bool>& slot)
{
return connect_generic(slot);
}
TimeoutSource::TimeoutSource(unsigned int interval)
:
interval_ (interval)
{
expiration_.assign_current_time();
expiration_.add_milliseconds(std::min<unsigned long>(G_MAXLONG, interval_));
}
TimeoutSource::~TimeoutSource()
{}
bool TimeoutSource::prepare(int& timeout)
{
Glib::TimeVal current_time;
get_current_time(current_time);
Glib::TimeVal remaining = expiration_;
remaining.subtract(current_time);
if(remaining.negative())
{
// Already expired.
timeout = 0;
}
else
{
const unsigned long milliseconds =
static_cast<unsigned long>(remaining.tv_sec) * 1000U +
static_cast<unsigned long>(remaining.tv_usec) / 1000U;
// Set remaining milliseconds.
timeout = std::min<unsigned long>(G_MAXINT, milliseconds);
// Check if the system time has been set backwards. (remaining > interval)
remaining.add_milliseconds(- std::min<unsigned long>(G_MAXLONG, interval_) - 1);
if(!remaining.negative())
{
// Oh well. Reset the expiration time to now + interval;
// this at least avoids hanging for long periods of time.
expiration_ = current_time;
expiration_.add_milliseconds(interval_);
timeout = std::min<unsigned int>(G_MAXINT, interval_);
}
}
return (timeout == 0);
}
bool TimeoutSource::check()
{
Glib::TimeVal current_time;
get_current_time(current_time);
return (expiration_ <= current_time);
}
bool TimeoutSource::dispatch(sigc::slot_base* slot)
{
const bool again = (*static_cast<sigc::slot<bool>*>(slot))();
if(again)
{
get_current_time(expiration_);
expiration_.add_milliseconds(std::min<unsigned long>(G_MAXLONG, interval_));
}
return again;
}
/**** Glib::IdleSource *****************************************************/
// static
Glib::RefPtr<IdleSource> IdleSource::create()
{
return Glib::RefPtr<IdleSource>(new IdleSource());
}
sigc::connection IdleSource::connect(const sigc::slot<bool>& slot)
{
return connect_generic(slot);
}
IdleSource::IdleSource()
{
set_priority(PRIORITY_DEFAULT_IDLE);
}
IdleSource::~IdleSource()
{}
bool IdleSource::prepare(int& timeout)
{
timeout = 0;
return true;
}
bool IdleSource::check()
{
return true;
}
bool IdleSource::dispatch(sigc::slot_base* slot)
{
return (*static_cast<sigc::slot<bool>*>(slot))();
}
/**** Glib::IOSource *******************************************************/
// static
Glib::RefPtr<IOSource> IOSource::create(int fd, IOCondition condition)
{
return Glib::RefPtr<IOSource>(new IOSource(fd, condition));
}
Glib::RefPtr<IOSource> IOSource::create(const Glib::RefPtr<IOChannel>& channel, IOCondition condition)
{
return Glib::RefPtr<IOSource>(new IOSource(channel, condition));
}
sigc::connection IOSource::connect(const sigc::slot<bool,IOCondition>& slot)
{
return connect_generic(slot);
}
IOSource::IOSource(int fd, IOCondition condition)
:
poll_fd_ (fd, condition)
{
add_poll(poll_fd_);
}
IOSource::IOSource(const Glib::RefPtr<IOChannel>& channel, IOCondition condition)
:
Source(g_io_create_watch(channel->gobj(), (GIOCondition) condition),
(GSourceFunc) &glibmm_iosource_callback)
{}
IOSource::~IOSource()
{}
bool IOSource::prepare(int& timeout)
{
timeout = -1;
return false;
}
bool IOSource::check()
{
return ((poll_fd_.get_revents() & poll_fd_.get_events()) != 0);
}
bool IOSource::dispatch(sigc::slot_base* slot)
{
return (*static_cast<sigc::slot<bool,IOCondition>*>(slot))
(poll_fd_.get_revents());
}
} // namespace Glib