13
0
livetrax/libs/surfaces/generic_midi/midicontrollable.cc
Paul Davis dcccd5b4d6 patch from roy vegard to stop feedback from causing jumps when a MIDI controller and ardour are out of sync
git-svn-id: svn://localhost/ardour2/branches/3.0@11001 d708f5d6-7413-0410-9779-e7cbd77b26cf
2011-12-14 15:57:48 +00:00

473 lines
12 KiB
C++

/*
Copyright (C) 1998-2006 Paul Davis
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdint.h>
#include <cmath>
#include <climits>
#include <iostream>
#include "pbd/error.h"
#include "pbd/controllable_descriptor.h"
#include "pbd/xml++.h"
#include "midi++/port.h"
#include "midi++/channel.h"
#include "ardour/automation_control.h"
#include "ardour/utils.h"
#include "midicontrollable.h"
using namespace std;
using namespace MIDI;
using namespace PBD;
using namespace ARDOUR;
MIDIControllable::MIDIControllable (Port& p, bool m)
: controllable (0)
, _descriptor (0)
, _port (p)
, _momentary (m)
{
_learned = false; /* from URI */
setting = false;
last_value = 0; // got a better idea ?
last_controllable_value = 0.0f;
control_type = none;
_control_description = "MIDI Control: none";
control_additional = (byte) -1;
feedback = true; // for now
}
MIDIControllable::MIDIControllable (Port& p, Controllable& c, bool m)
: controllable (&c)
, _descriptor (0)
, _port (p)
, _momentary (m)
{
_learned = true; /* from controllable */
setting = false;
last_value = 0; // got a better idea ?
last_controllable_value = 0.0f;
control_type = none;
_control_description = "MIDI Control: none";
control_additional = (byte) -1;
feedback = true; // for now
}
MIDIControllable::~MIDIControllable ()
{
drop_external_control ();
}
int
MIDIControllable::init (const std::string& s)
{
_current_uri = s;
delete _descriptor;
_descriptor = new ControllableDescriptor;
return _descriptor->set (s);
}
void
MIDIControllable::midi_forget ()
{
/* stop listening for incoming messages, but retain
our existing event + type information.
*/
midi_sense_connection[0].disconnect ();
midi_sense_connection[1].disconnect ();
midi_learn_connection.disconnect ();
}
void
MIDIControllable::drop_external_control ()
{
midi_forget ();
control_type = none;
control_additional = (byte) -1;
}
void
MIDIControllable::set_controllable (Controllable* c)
{
controllable = c;
}
void
MIDIControllable::midi_rebind (channel_t c)
{
if (c >= 0) {
bind_midi (c, control_type, control_additional);
} else {
midi_forget ();
}
}
void
MIDIControllable::learn_about_external_control ()
{
drop_external_control ();
_port.parser()->any.connect_same_thread (midi_learn_connection, boost::bind (&MIDIControllable::midi_receiver, this, _1, _2, _3));
}
void
MIDIControllable::stop_learning ()
{
midi_learn_connection.disconnect ();
}
float
MIDIControllable::control_to_midi (float val)
{
const float midi_range = 127.0f; // TODO: NRPN etc.
if (controllable->is_gain_like()) {
return gain_to_slider_position (val/midi_range);
}
float control_min = controllable->lower ();
float control_max = controllable->upper ();
const float control_range = control_max - control_min;
return (val - control_min) / control_range * midi_range;
}
float
MIDIControllable::midi_to_control(float val)
{
/* fiddle with MIDI value so that we get an odd number of integer steps
and can thus represent "middle" precisely as 0.5. this maps to
the range 0..+1.0
TODO: 14bit values
*/
val = (val == 0.0f ? 0.0f : (val-1.0f) / 126.0f);
if (controllable->is_gain_like()) {
return slider_position_to_gain (val);
}
float control_min = controllable->lower ();
float control_max = controllable->upper ();
const float control_range = control_max - control_min;
return (val * control_range) + control_min;
}
void
MIDIControllable::midi_sense_note_on (Parser &p, EventTwoBytes *tb)
{
midi_sense_note (p, tb, true);
}
void
MIDIControllable::midi_sense_note_off (Parser &p, EventTwoBytes *tb)
{
midi_sense_note (p, tb, false);
}
void
MIDIControllable::midi_sense_note (Parser &, EventTwoBytes *msg, bool /*is_on*/)
{
if (!controllable) {
return;
}
if (!controllable->is_toggle()) {
controllable->set_value (msg->note_number/127.0);
} else {
if (control_additional == msg->note_number) {
controllable->set_value (controllable->get_value() > 0.5f ? 0.0f : 1.0f);
}
}
last_value = (MIDI::byte) (controllable->get_value() * 127.0); // to prevent feedback fights
}
void
MIDIControllable::midi_sense_controller (Parser &, EventTwoBytes *msg)
{
if (!controllable) {
return;
}
if (controllable->touching()) {
return; // to prevent feedback fights when e.g. dragging a UI slider
}
if (control_additional == msg->controller_number) {
if (!controllable->is_toggle()) {
float new_value = msg->value;
float max_value = max(last_controllable_value, new_value);
float min_value = min(last_controllable_value, new_value);
float range = max_value - min_value;
float threshold = 10;
// prevent jumps when MIDI controller and controllable are "out of sync"
if (range < threshold &&
controllable->get_value() <= midi_to_control(max_value) &&
controllable->get_value() >= midi_to_control(min_value)) {
controllable->set_value (midi_to_control (new_value) );
}
last_controllable_value = new_value;
} else {
if (msg->value > 64.0f) {
controllable->set_value (1);
} else {
controllable->set_value (0);
}
}
last_value = (MIDI::byte) (control_to_midi(controllable->get_value())); // to prevent feedback fights
}
}
void
MIDIControllable::midi_sense_program_change (Parser &, byte msg)
{
if (!controllable) {
return;
}
if (!controllable->is_toggle()) {
controllable->set_value (msg/127.0);
} else {
controllable->set_value (controllable->get_value() > 0.5f ? 0.0f : 1.0f);
}
last_value = (MIDI::byte) (controllable->get_value() * 127.0); // to prevent feedback fights
}
void
MIDIControllable::midi_sense_pitchbend (Parser &, pitchbend_t pb)
{
if (!controllable) {
return;
}
if (!controllable->is_toggle()) {
/* XXX gack - get rid of assumption about typeof pitchbend_t */
controllable->set_value ((pb/(float) SHRT_MAX));
} else {
controllable->set_value (controllable->get_value() > 0.5f ? 0.0f : 1.0f);
}
last_value = (MIDI::byte) (controllable->get_value() * 127.0); // to prevent feedback fights
}
void
MIDIControllable::midi_receiver (Parser &, byte *msg, size_t /*len*/)
{
/* we only respond to channel messages */
if ((msg[0] & 0xF0) < 0x80 || (msg[0] & 0xF0) > 0xE0) {
return;
}
/* if the our port doesn't do input anymore, forget it ... */
if (!_port.parser()) {
return;
}
bind_midi ((channel_t) (msg[0] & 0xf), eventType (msg[0] & 0xF0), msg[1]);
controllable->LearningFinished ();
}
void
MIDIControllable::bind_midi (channel_t chn, eventType ev, MIDI::byte additional)
{
char buf[64];
drop_external_control ();
control_type = ev;
control_channel = chn;
control_additional = additional;
if (_port.parser() == 0) {
return;
}
Parser& p = *_port.parser();
int chn_i = chn;
switch (ev) {
case MIDI::off:
p.channel_note_off[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_note_off, this, _1, _2));
/* if this is a togglee, connect to noteOn as well,
and we'll toggle back and forth between the two.
*/
if (_momentary) {
p.channel_note_on[chn_i].connect_same_thread (midi_sense_connection[1], boost::bind (&MIDIControllable::midi_sense_note_on, this, _1, _2));
}
_control_description = "MIDI control: NoteOff";
break;
case MIDI::on:
p.channel_note_on[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_note_on, this, _1, _2));
if (_momentary) {
p.channel_note_off[chn_i].connect_same_thread (midi_sense_connection[1], boost::bind (&MIDIControllable::midi_sense_note_off, this, _1, _2));
}
_control_description = "MIDI control: NoteOn";
break;
case MIDI::controller:
p.channel_controller[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_controller, this, _1, _2));
snprintf (buf, sizeof (buf), "MIDI control: Controller %d", control_additional);
_control_description = buf;
break;
case MIDI::program:
p.channel_program_change[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_program_change, this, _1, _2));
_control_description = "MIDI control: ProgramChange";
break;
case MIDI::pitchbend:
p.channel_pitchbend[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_pitchbend, this, _1, _2));
_control_description = "MIDI control: Pitchbend";
break;
default:
break;
}
}
void
MIDIControllable::send_feedback ()
{
byte msg[3];
if (!_learned || setting || !feedback || control_type == none || !controllable) {
return;
}
msg[0] = (control_type & 0xF0) | (control_channel & 0xF);
msg[1] = control_additional;
if (controllable->is_gain_like()) {
msg[2] = (byte) lrintf (gain_to_slider_position (controllable->get_value()) * 127.0f);
} else {
msg[2] = (byte) (control_to_midi(controllable->get_value()));
}
_port.write (msg, 3, 0);
}
MIDI::byte*
MIDIControllable::write_feedback (MIDI::byte* buf, int32_t& bufsize, bool /*force*/)
{
if (controllable && control_type != none && feedback && bufsize > 2) {
MIDI::byte gm;
if (controllable->is_gain_like()) {
gm = (byte) lrintf (gain_to_slider_position (controllable->get_value()) * 127.0f);
} else {
gm = (byte) (control_to_midi(controllable->get_value()));
}
if (gm != last_value) {
*buf++ = (0xF0 & control_type) | (0xF & control_channel);
*buf++ = control_additional; /* controller number */
*buf++ = gm;
last_value = gm;
bufsize -= 3;
}
}
return buf;
}
int
MIDIControllable::set_state (const XMLNode& node, int /*version*/)
{
const XMLProperty* prop;
int xx;
if ((prop = node.property ("event")) != 0) {
sscanf (prop->value().c_str(), "0x%x", &xx);
control_type = (MIDI::eventType) xx;
} else {
return -1;
}
if ((prop = node.property ("channel")) != 0) {
sscanf (prop->value().c_str(), "%d", &xx);
control_channel = (MIDI::channel_t) xx;
} else {
return -1;
}
if ((prop = node.property ("additional")) != 0) {
sscanf (prop->value().c_str(), "0x%x", &xx);
control_additional = (MIDI::byte) xx;
} else {
return -1;
}
if ((prop = node.property ("feedback")) != 0) {
feedback = (prop->value() == "yes");
} else {
feedback = true; // default
}
bind_midi (control_channel, control_type, control_additional);
return 0;
}
XMLNode&
MIDIControllable::get_state ()
{
char buf[32];
XMLNode* node = new XMLNode ("MIDIControllable");
if (_current_uri.empty()) {
node->add_property ("id", controllable->id().to_s());
} else {
node->add_property ("uri", _current_uri);
}
if (controllable) {
snprintf (buf, sizeof(buf), "0x%x", (int) control_type);
node->add_property ("event", buf);
snprintf (buf, sizeof(buf), "%d", (int) control_channel);
node->add_property ("channel", buf);
snprintf (buf, sizeof(buf), "0x%x", (int) control_additional);
node->add_property ("additional", buf);
node->add_property ("feedback", (feedback ? "yes" : "no"));
}
return *node;
}