Robin Gareus
09aa0a3d1a
This also adds some stack constraint to rt and fallback threads that didn't have those before (ALSA MIDI for example)
1908 lines
50 KiB
C++
1908 lines
50 KiB
C++
/*
|
|
* Copyright (C) 2014-2015 Tim Mayberry <mojofunk@gmail.com>
|
|
* Copyright (C) 2014-2018 Paul Davis <paul@linuxaudiosystems.com>
|
|
* Copyright (C) 2014-2019 Robin Gareus <robin@gareus.org>
|
|
* Copyright (C) 2016-2017 John Emmas <john@creativepost.co.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <sys/time.h>
|
|
#include <regex.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <glibmm.h>
|
|
|
|
#ifdef PLATFORM_WINDOWS
|
|
#include <windows.h>
|
|
#include <pbd/windows_timer_utils.h>
|
|
#endif
|
|
|
|
#include "dummy_audiobackend.h"
|
|
#include "dummy_midi_seq.h"
|
|
|
|
#include "pbd/error.h"
|
|
#include "pbd/compose.h"
|
|
#include "pbd/pthread_utils.h"
|
|
|
|
#include "ardour/port_manager.h"
|
|
|
|
#include "pbd/i18n.h"
|
|
|
|
using namespace ARDOUR;
|
|
|
|
static std::string s_instance_name;
|
|
size_t DummyAudioBackend::_max_buffer_size = 8192;
|
|
std::vector<std::string> DummyAudioBackend::_midi_options;
|
|
std::vector<AudioBackend::DeviceStatus> DummyAudioBackend::_device_status;
|
|
|
|
std::vector<DummyAudioBackend::DriverSpeed> DummyAudioBackend::_driver_speed;
|
|
|
|
static int64_t _x_get_monotonic_usec() {
|
|
#ifdef PLATFORM_WINDOWS
|
|
return PBD::get_microseconds();
|
|
#endif
|
|
return g_get_monotonic_time();
|
|
}
|
|
|
|
DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info)
|
|
: AudioBackend (e, info)
|
|
, PortEngineSharedImpl (e, s_instance_name)
|
|
, _running (false)
|
|
, _freewheel (false)
|
|
, _freewheeling (false)
|
|
, _speedup (1.0)
|
|
, _device ("")
|
|
, _samplerate (48000)
|
|
, _samples_per_period (1024)
|
|
, _dsp_load (0)
|
|
, _n_inputs (0)
|
|
, _n_outputs (0)
|
|
, _n_midi_inputs (0)
|
|
, _n_midi_outputs (0)
|
|
, _midi_mode (MidiNoEvents)
|
|
, _systemic_input_latency (0)
|
|
, _systemic_output_latency (0)
|
|
, _processed_samples (0)
|
|
, _port_change_flag (false)
|
|
{
|
|
_instance_name = s_instance_name;
|
|
_device = _("Silence");
|
|
pthread_mutex_init (&_port_callback_mutex, 0);
|
|
|
|
if (_driver_speed.empty()) {
|
|
_driver_speed.push_back (DriverSpeed (_("Half Speed"), 2.0f));
|
|
_driver_speed.push_back (DriverSpeed (_("Normal Speed"), 1.0f));
|
|
_driver_speed.push_back (DriverSpeed (_("Double Speed"), 0.5f));
|
|
_driver_speed.push_back (DriverSpeed (_("5x Speed"), 0.2f));
|
|
_driver_speed.push_back (DriverSpeed (_("10x Speed"), 0.1f));
|
|
_driver_speed.push_back (DriverSpeed (_("15x Speed"), 0.06666f));
|
|
_driver_speed.push_back (DriverSpeed (_("20x Speed"), 0.05f));
|
|
_driver_speed.push_back (DriverSpeed (_("50x Speed"), 0.02f));
|
|
}
|
|
|
|
}
|
|
|
|
DummyAudioBackend::~DummyAudioBackend ()
|
|
{
|
|
clear_ports ();
|
|
pthread_mutex_destroy (&_port_callback_mutex);
|
|
}
|
|
|
|
/* AUDIOBACKEND API */
|
|
|
|
std::string
|
|
DummyAudioBackend::name () const
|
|
{
|
|
return X_("Dummy"); // internal name
|
|
}
|
|
|
|
bool
|
|
DummyAudioBackend::is_realtime () const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
std::vector<AudioBackend::DeviceStatus>
|
|
DummyAudioBackend::enumerate_devices () const
|
|
{
|
|
if (_device_status.empty()) {
|
|
_device_status.push_back (DeviceStatus (_("Silence"), true));
|
|
_device_status.push_back (DeviceStatus (_("DC -6dBFS (+.5)"), true));
|
|
_device_status.push_back (DeviceStatus (_("Demolition"), true));
|
|
_device_status.push_back (DeviceStatus (_("Sine Wave"), true));
|
|
_device_status.push_back (DeviceStatus (_("Sine Wave 1K, 1/3 Oct"), true));
|
|
_device_status.push_back (DeviceStatus (_("Square Wave"), true));
|
|
_device_status.push_back (DeviceStatus (_("Impulses"), true));
|
|
_device_status.push_back (DeviceStatus (_("Uniform White Noise"), true));
|
|
_device_status.push_back (DeviceStatus (_("Gaussian White Noise"), true));
|
|
_device_status.push_back (DeviceStatus (_("Pink Noise"), true));
|
|
_device_status.push_back (DeviceStatus (_("Pink Noise (low CPU)"), true));
|
|
_device_status.push_back (DeviceStatus (_("Sine Sweep"), true));
|
|
_device_status.push_back (DeviceStatus (_("Sine Sweep Swell"), true));
|
|
_device_status.push_back (DeviceStatus (_("Square Sweep"), true));
|
|
_device_status.push_back (DeviceStatus (_("Square Sweep Swell"), true));
|
|
_device_status.push_back (DeviceStatus (_("Engine Pulse"), true));
|
|
_device_status.push_back (DeviceStatus (_("LTC"), true));
|
|
_device_status.push_back (DeviceStatus (_("Loopback"), true));
|
|
}
|
|
return _device_status;
|
|
}
|
|
|
|
std::vector<float>
|
|
DummyAudioBackend::available_sample_rates (const std::string&) const
|
|
{
|
|
std::vector<float> sr;
|
|
sr.push_back (8000.0);
|
|
sr.push_back (22050.0);
|
|
sr.push_back (24000.0);
|
|
sr.push_back (44100.0);
|
|
sr.push_back (48000.0);
|
|
sr.push_back (88200.0);
|
|
sr.push_back (96000.0);
|
|
sr.push_back (176400.0);
|
|
sr.push_back (192000.0);
|
|
return sr;
|
|
}
|
|
|
|
std::vector<uint32_t>
|
|
DummyAudioBackend::available_buffer_sizes (const std::string&) const
|
|
{
|
|
std::vector<uint32_t> bs;
|
|
bs.push_back (4);
|
|
bs.push_back (8);
|
|
bs.push_back (16);
|
|
bs.push_back (32);
|
|
bs.push_back (64);
|
|
bs.push_back (128);
|
|
bs.push_back (256);
|
|
bs.push_back (512);
|
|
bs.push_back (1024);
|
|
bs.push_back (2048);
|
|
bs.push_back (4096);
|
|
bs.push_back (8192);
|
|
return bs;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::available_input_channel_count (const std::string&) const
|
|
{
|
|
return 128;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::available_output_channel_count (const std::string&) const
|
|
{
|
|
return 128;
|
|
}
|
|
|
|
bool
|
|
DummyAudioBackend::can_change_sample_rate_when_running () const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
DummyAudioBackend::can_change_buffer_size_when_running () const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
std::vector<std::string>
|
|
DummyAudioBackend::enumerate_drivers () const
|
|
{
|
|
std::vector<std::string> speed_drivers;
|
|
for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
|
|
speed_drivers.push_back (it->name);
|
|
}
|
|
return speed_drivers;
|
|
}
|
|
|
|
std::string
|
|
DummyAudioBackend::driver_name () const
|
|
{
|
|
for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
|
|
if (rintf (1e6f * _speedup) == rintf (1e6f * it->speedup)) {
|
|
return it->name;
|
|
}
|
|
}
|
|
assert (0);
|
|
return _("Normal Speed");
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_driver (const std::string& d)
|
|
{
|
|
for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
|
|
if (d == it->name) {
|
|
_speedup = it->speedup;
|
|
return 0;
|
|
}
|
|
}
|
|
assert (0);
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_device_name (const std::string& d)
|
|
{
|
|
_device = d;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_sample_rate (float sr)
|
|
{
|
|
if (sr <= 0) { return -1; }
|
|
_samplerate = sr;
|
|
engine.sample_rate_change (sr);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_buffer_size (uint32_t bs)
|
|
{
|
|
if (bs <= 0 || bs > _max_buffer_size) {
|
|
return -1;
|
|
}
|
|
_samples_per_period = bs;
|
|
|
|
/* update port latencies
|
|
* with 'Loopback' there is exactly once cycle latency,
|
|
* divide it between In + Out;
|
|
*/
|
|
LatencyRange lr;
|
|
lr.min = lr.max = _systemic_input_latency;
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
|
|
set_latency_range (*it, false, lr);
|
|
}
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
|
|
set_latency_range (*it, false, lr);
|
|
}
|
|
|
|
lr.min = lr.max = _systemic_output_latency;
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
|
|
set_latency_range (*it, true, lr);
|
|
}
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) {
|
|
set_latency_range (*it, true, lr);
|
|
}
|
|
|
|
engine.buffer_size_change (bs);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_interleaved (bool yn)
|
|
{
|
|
if (!yn) { return 0; }
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_input_channels (uint32_t cc)
|
|
{
|
|
_n_inputs = cc;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_output_channels (uint32_t cc)
|
|
{
|
|
_n_outputs = cc;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_systemic_input_latency (uint32_t sl)
|
|
{
|
|
_systemic_input_latency = sl;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_systemic_output_latency (uint32_t sl)
|
|
{
|
|
_systemic_output_latency = sl;
|
|
return 0;
|
|
}
|
|
|
|
/* Retrieving parameters */
|
|
std::string
|
|
DummyAudioBackend::device_name () const
|
|
{
|
|
return _device;
|
|
}
|
|
|
|
float
|
|
DummyAudioBackend::sample_rate () const
|
|
{
|
|
return _samplerate;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::buffer_size () const
|
|
{
|
|
return _samples_per_period;
|
|
}
|
|
|
|
bool
|
|
DummyAudioBackend::interleaved () const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::input_channels () const
|
|
{
|
|
return _n_inputs;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::output_channels () const
|
|
{
|
|
return _n_outputs;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::systemic_input_latency () const
|
|
{
|
|
return _systemic_input_latency;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::systemic_output_latency () const
|
|
{
|
|
return _systemic_output_latency;
|
|
}
|
|
|
|
|
|
/* MIDI */
|
|
std::vector<std::string>
|
|
DummyAudioBackend::enumerate_midi_options () const
|
|
{
|
|
if (_midi_options.empty()) {
|
|
_midi_options.push_back (_("1 in, 1 out, Silence"));
|
|
_midi_options.push_back (_("2 in, 2 out, Silence"));
|
|
_midi_options.push_back (_("8 in, 8 out, Silence"));
|
|
_midi_options.push_back (_("Midi Event Generators"));
|
|
_midi_options.push_back (_("Engine Pulse"));
|
|
_midi_options.push_back (_("8 in, 8 out, Loopback"));
|
|
_midi_options.push_back (_("MIDI to Audio, Loopback"));
|
|
_midi_options.push_back (_("No MIDI I/O"));
|
|
}
|
|
return _midi_options;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::set_midi_option (const std::string& opt)
|
|
{
|
|
_midi_mode = MidiNoEvents;
|
|
if (opt == _("1 in, 1 out, Silence")) {
|
|
_n_midi_inputs = _n_midi_outputs = 1;
|
|
}
|
|
else if (opt == _("2 in, 2 out, Silence")) {
|
|
_n_midi_inputs = _n_midi_outputs = 2;
|
|
}
|
|
else if (opt == _("8 in, 8 out, Silence")) {
|
|
_n_midi_inputs = _n_midi_outputs = 8;
|
|
}
|
|
else if (opt == _("Engine Pulse")) {
|
|
_n_midi_inputs = _n_midi_outputs = 1;
|
|
_midi_mode = MidiOneHz;
|
|
}
|
|
else if (opt == _("Midi Event Generators")) {
|
|
_n_midi_inputs = _n_midi_outputs = NUM_MIDI_EVENT_GENERATORS;
|
|
_midi_mode = MidiGenerator;
|
|
}
|
|
else if (opt == _("8 in, 8 out, Loopback")) {
|
|
_n_midi_inputs = _n_midi_outputs = 8;
|
|
_midi_mode = MidiLoopback;
|
|
}
|
|
else if (opt == _("MIDI to Audio, Loopback")) {
|
|
_n_midi_inputs = _n_midi_outputs = UINT32_MAX;
|
|
_midi_mode = MidiToAudio;
|
|
}
|
|
else {
|
|
_n_midi_inputs = _n_midi_outputs = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
std::string
|
|
DummyAudioBackend::midi_option () const
|
|
{
|
|
return ""; // TODO
|
|
}
|
|
|
|
/* State Control */
|
|
|
|
static void * pthread_process (void *arg)
|
|
{
|
|
DummyAudioBackend *d = static_cast<DummyAudioBackend *>(arg);
|
|
d->main_process_thread ();
|
|
pthread_exit (0);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::_start (bool /*for_latency_measurement*/)
|
|
{
|
|
if (_running) {
|
|
PBD::error << _("DummyAudioBackend: already active.") << endmsg;
|
|
return BackendReinitializationError;
|
|
}
|
|
|
|
clear_ports ();
|
|
|
|
if (register_system_ports()) {
|
|
PBD::error << _("DummyAudioBackend: failed to register system ports.") << endmsg;
|
|
return PortRegistrationError;
|
|
}
|
|
|
|
engine.sample_rate_change (_samplerate);
|
|
engine.buffer_size_change (_samples_per_period);
|
|
|
|
if (engine.reestablish_ports ()) {
|
|
PBD::error << _("DummyAudioBackend: Could not re-establish ports.") << endmsg;
|
|
stop ();
|
|
return PortReconnectError;
|
|
}
|
|
|
|
engine.reconnect_ports ();
|
|
_port_change_flag = false;
|
|
|
|
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) {
|
|
PBD::error << _("DummyAudioBackend: cannot start.") << endmsg;
|
|
}
|
|
|
|
int timeout = 5000;
|
|
while (!_running && --timeout > 0) { Glib::usleep (1000); }
|
|
|
|
if (timeout == 0 || !_running) {
|
|
PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg;
|
|
return ProcessThreadStartError;
|
|
}
|
|
|
|
return NoError;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::stop ()
|
|
{
|
|
void *status;
|
|
if (!_running) {
|
|
return 0;
|
|
}
|
|
|
|
_running = false;
|
|
if (pthread_join (_main_thread, &status)) {
|
|
PBD::error << _("DummyAudioBackend: failed to terminate.") << endmsg;
|
|
return -1;
|
|
}
|
|
unregister_ports();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::freewheel (bool onoff)
|
|
{
|
|
_freewheeling = onoff;
|
|
return 0;
|
|
}
|
|
|
|
float
|
|
DummyAudioBackend::dsp_load () const
|
|
{
|
|
return 100.f * _dsp_load;
|
|
}
|
|
|
|
size_t
|
|
DummyAudioBackend::raw_buffer_size (DataType t)
|
|
{
|
|
switch (t) {
|
|
case DataType::AUDIO:
|
|
return _samples_per_period * sizeof(Sample);
|
|
case DataType::MIDI:
|
|
return _max_buffer_size; // XXX not really limited
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Process time */
|
|
samplepos_t
|
|
DummyAudioBackend::sample_time ()
|
|
{
|
|
return _processed_samples;
|
|
}
|
|
|
|
samplepos_t
|
|
DummyAudioBackend::sample_time_at_cycle_start ()
|
|
{
|
|
return _processed_samples;
|
|
}
|
|
|
|
pframes_t
|
|
DummyAudioBackend::samples_since_cycle_start ()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
void *
|
|
DummyAudioBackend::dummy_process_thread (void *arg)
|
|
{
|
|
ThreadData* td = reinterpret_cast<ThreadData*> (arg);
|
|
boost::function<void ()> f = td->f;
|
|
delete td;
|
|
f ();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::create_process_thread (boost::function<void()> func)
|
|
{
|
|
pthread_t thread_id;
|
|
ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC);
|
|
|
|
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, dummy_process_thread, td)) {
|
|
PBD::error << _("AudioEngine: cannot create process thread.") << endmsg;
|
|
return -1;
|
|
}
|
|
|
|
_threads.push_back (thread_id);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::join_process_threads ()
|
|
{
|
|
int rv = 0;
|
|
|
|
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
|
|
{
|
|
void *status;
|
|
if (pthread_join (*i, &status)) {
|
|
PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg;
|
|
rv -= 1;
|
|
}
|
|
}
|
|
_threads.clear ();
|
|
return rv;
|
|
}
|
|
|
|
bool
|
|
DummyAudioBackend::in_process_thread ()
|
|
{
|
|
if (pthread_equal (_main_thread, pthread_self()) != 0) {
|
|
return true;
|
|
}
|
|
|
|
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
|
|
{
|
|
if (pthread_equal (*i, pthread_self ()) != 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::process_thread_count ()
|
|
{
|
|
return _threads.size ();
|
|
}
|
|
|
|
void
|
|
DummyAudioBackend::update_latencies ()
|
|
{
|
|
// trigger latency callback in RT thread (locked graph)
|
|
port_connect_add_remove_callback();
|
|
}
|
|
|
|
/* PORTENGINE API */
|
|
|
|
void*
|
|
DummyAudioBackend::private_handle () const
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
const std::string&
|
|
DummyAudioBackend::my_name () const
|
|
{
|
|
return _instance_name;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::register_system_ports()
|
|
{
|
|
LatencyRange lr;
|
|
enum DummyAudioPort::GeneratorType gt;
|
|
if (_device == _("Uniform White Noise")) {
|
|
gt = DummyAudioPort::UniformWhiteNoise;
|
|
} else if (_device == _("Gaussian White Noise")) {
|
|
gt = DummyAudioPort::GaussianWhiteNoise;
|
|
} else if (_device == _("Pink Noise")) {
|
|
gt = DummyAudioPort::PinkNoise;
|
|
} else if (_device == _("Pink Noise (low CPU)")) {
|
|
gt = DummyAudioPort::PonyNoise;
|
|
} else if (_device == _("Sine Wave")) {
|
|
gt = DummyAudioPort::SineWave;
|
|
} else if (_device == _("Sine Wave 1K, 1/3 Oct")) {
|
|
gt = DummyAudioPort::SineWaveOctaves;
|
|
} else if (_device == _("Square Wave")) {
|
|
gt = DummyAudioPort::SquareWave;
|
|
} else if (_device == _("Impulses")) {
|
|
gt = DummyAudioPort::KronekerDelta;
|
|
} else if (_device == _("Sine Sweep")) {
|
|
gt = DummyAudioPort::SineSweep;
|
|
} else if (_device == _("Sine Sweep Swell")) {
|
|
gt = DummyAudioPort::SineSweepSwell;
|
|
} else if (_device == _("Square Sweep")) {
|
|
gt = DummyAudioPort::SquareSweep;
|
|
} else if (_device == _("Square Sweep Swell")) {
|
|
gt = DummyAudioPort::SquareSweepSwell;
|
|
} else if (_device == _("Engine Pulse")) {
|
|
gt = DummyAudioPort::OneHz;
|
|
} else if (_device == _("LTC")) {
|
|
gt = DummyAudioPort::LTC;
|
|
} else if (_device == _("Loopback")) {
|
|
gt = DummyAudioPort::Loopback;
|
|
} else if (_device == _("Demolition")) {
|
|
gt = DummyAudioPort::Demolition;
|
|
} else if (_device == _("DC -6dBFS (+.5)")) {
|
|
gt = DummyAudioPort::DC05;
|
|
} else {
|
|
gt = DummyAudioPort::Silence;
|
|
}
|
|
|
|
if (_midi_mode == MidiToAudio) {
|
|
gt = DummyAudioPort::Loopback;
|
|
}
|
|
|
|
const int a_ins = _n_inputs > 0 ? _n_inputs : 8;
|
|
const int a_out = _n_outputs > 0 ? _n_outputs : 8;
|
|
const int m_ins = _n_midi_inputs == UINT_MAX ? 0 : _n_midi_inputs;
|
|
const int m_out = _n_midi_outputs == UINT_MAX ? a_ins : _n_midi_outputs;
|
|
|
|
|
|
/* audio ports */
|
|
lr.min = lr.max = _systemic_input_latency;
|
|
for (int i = 1; i <= a_ins; ++i) {
|
|
char tmp[64];
|
|
snprintf(tmp, sizeof(tmp), "system:capture_%d", i);
|
|
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
|
|
if (!p) return -1;
|
|
set_latency_range (p, false, lr);
|
|
|
|
boost::shared_ptr<DummyAudioPort> dp = boost::dynamic_pointer_cast<DummyAudioPort>(p);
|
|
|
|
_system_inputs.push_back (dp);
|
|
|
|
std::string name = dp->setup_generator (gt, _samplerate, i - 1, a_ins);
|
|
|
|
if (!name.empty ()) {
|
|
dp->set_pretty_name (name);
|
|
}
|
|
}
|
|
|
|
lr.min = lr.max = _systemic_output_latency;
|
|
for (int i = 1; i <= a_out; ++i) {
|
|
char tmp[64];
|
|
snprintf(tmp, sizeof(tmp), "system:playback_%d", i);
|
|
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
|
|
if (!p) return -1;
|
|
set_latency_range (p, true, lr);
|
|
_system_outputs.push_back (boost::dynamic_pointer_cast<BackendPort>(p));
|
|
}
|
|
|
|
/* midi ports */
|
|
lr.min = lr.max = _systemic_input_latency;
|
|
for (int i = 0; i < m_ins; ++i) {
|
|
char tmp[64];
|
|
snprintf(tmp, sizeof(tmp), "system:midi_capture_dummy_%d", i+1);
|
|
PortPtr p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
|
|
if (!p) return -1;
|
|
set_latency_range (p, false, lr);
|
|
|
|
boost::shared_ptr<DummyMidiPort> dp = boost::dynamic_pointer_cast<DummyMidiPort>(p);
|
|
|
|
_system_midi_in.push_back (dp);
|
|
|
|
if (_midi_mode == MidiGenerator) {
|
|
std::string name = dp->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate);
|
|
if (!name.empty ()) {
|
|
dp->set_pretty_name (name);
|
|
}
|
|
}
|
|
else if (_midi_mode == MidiOneHz) {
|
|
std::string name = dp->setup_generator (-1, _samplerate);
|
|
if (!name.empty ()) {
|
|
dp->set_pretty_name (name);
|
|
}
|
|
}
|
|
}
|
|
|
|
lr.min = lr.max = _systemic_output_latency;
|
|
for (int i = 1; i <= m_out; ++i) {
|
|
char tmp[64];
|
|
snprintf(tmp, sizeof(tmp), "system:midi_playback_dummy_%d", i);
|
|
PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
|
|
if (!p) return -1;
|
|
set_latency_range (p, true, lr);
|
|
|
|
boost::shared_ptr<DummyMidiPort> dp = boost::dynamic_pointer_cast<DummyMidiPort>(p);
|
|
_system_midi_out.push_back (dp);
|
|
|
|
if (_device == _("Loopback") && _midi_mode == MidiToAudio) {
|
|
std::stringstream ss;
|
|
ss << "Midi2Audio";
|
|
for (int apc = 0; apc < (int)_system_inputs.size(); ++apc) {
|
|
if ((apc % m_out) + 1 == i) {
|
|
ss << " >" << (apc + 1);
|
|
}
|
|
}
|
|
dp->set_pretty_name (ss.str());
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
BackendPort*
|
|
DummyAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags)
|
|
{
|
|
BackendPort* port = 0;
|
|
|
|
switch (type) {
|
|
case DataType::AUDIO:
|
|
port = new DummyAudioPort (*this, name, flags);
|
|
break;
|
|
case DataType::MIDI:
|
|
port = new DummyMidiPort (*this, name, flags);
|
|
break;
|
|
default:
|
|
PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg;
|
|
return 0;
|
|
}
|
|
|
|
return port;
|
|
}
|
|
|
|
/* MIDI */
|
|
int
|
|
DummyAudioBackend::midi_event_get (
|
|
pframes_t& timestamp,
|
|
size_t& size, uint8_t const** buf, void* port_buffer,
|
|
uint32_t event_index)
|
|
{
|
|
assert (buf && port_buffer);
|
|
DummyMidiBuffer& source = * static_cast<DummyMidiBuffer*>(port_buffer);
|
|
if (event_index >= source.size ()) {
|
|
return -1;
|
|
}
|
|
DummyMidiEvent * const event = source[event_index].get ();
|
|
|
|
timestamp = event->timestamp ();
|
|
size = event->size ();
|
|
*buf = event->data ();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::midi_event_put (
|
|
void* port_buffer,
|
|
pframes_t timestamp,
|
|
const uint8_t* buffer, size_t size)
|
|
{
|
|
assert (buffer && port_buffer);
|
|
DummyMidiBuffer& dst = * static_cast<DummyMidiBuffer*>(port_buffer);
|
|
if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) {
|
|
// nevermind, ::get_buffer() sorts events, but always print warning
|
|
fprintf (stderr, "DummyMidiBuffer: it's too late for this event %d > %d.\n", (pframes_t)dst.back ()->timestamp (), timestamp);
|
|
}
|
|
dst.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (timestamp, buffer, size)));
|
|
#if 0 // DEBUG MIDI EVENTS
|
|
printf("DummyAudioBackend::midi_event_put %d, %zu: ", timestamp, size);
|
|
for (size_t xx = 0; xx < size; ++xx) {
|
|
printf(" %02x", buffer[xx]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
DummyAudioBackend::get_midi_event_count (void* port_buffer)
|
|
{
|
|
assert (port_buffer);
|
|
return static_cast<DummyMidiBuffer*>(port_buffer)->size ();
|
|
}
|
|
|
|
void
|
|
DummyAudioBackend::midi_clear (void* port_buffer)
|
|
{
|
|
assert (port_buffer);
|
|
DummyMidiBuffer * buf = static_cast<DummyMidiBuffer*>(port_buffer);
|
|
assert (buf);
|
|
buf->clear ();
|
|
}
|
|
|
|
/* Monitoring */
|
|
|
|
bool
|
|
DummyAudioBackend::can_monitor_input () const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
DummyAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
bool
|
|
DummyAudioBackend::monitoring_input (PortEngine::PortHandle)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* Latency management */
|
|
|
|
void
|
|
DummyAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range)
|
|
{
|
|
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
|
|
if (!valid_port (port)) {
|
|
PBD::error << _("DummyPort::set_latency_range (): invalid port.") << endmsg;
|
|
}
|
|
port->set_latency_range (latency_range, for_playback);
|
|
}
|
|
|
|
LatencyRange
|
|
DummyAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback)
|
|
{
|
|
LatencyRange r;
|
|
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
|
|
if (!valid_port (port)) {
|
|
PBD::error << _("DummyPort::get_latency_range (): invalid port.") << endmsg;
|
|
r.min = 0;
|
|
r.max = 0;
|
|
return r;
|
|
}
|
|
|
|
r = port->latency_range (for_playback);
|
|
#ifndef ZERO_LATENCY
|
|
if (port->is_physical() && port->is_terminal()) {
|
|
if (port->is_input() && for_playback) {
|
|
const size_t l_in = _samples_per_period * .25;
|
|
r.min += l_in;
|
|
r.max += l_in;
|
|
}
|
|
if (port->is_output() && !for_playback) {
|
|
/* with 'Loopback' there is exactly once cycle latency, divide it between In + Out; */
|
|
const size_t l_in = _samples_per_period * .25;
|
|
const size_t l_out = _samples_per_period - l_in;
|
|
r.min += l_out;
|
|
r.max += l_out;
|
|
}
|
|
}
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
/* Getting access to the data buffer for a port */
|
|
|
|
void*
|
|
DummyAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes)
|
|
{
|
|
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
|
|
assert (port);
|
|
assert (valid_port (port));
|
|
return port->get_buffer (nframes);
|
|
}
|
|
|
|
/* Engine Process */
|
|
void *
|
|
DummyAudioBackend::main_process_thread ()
|
|
{
|
|
AudioEngine::thread_init_callback (this);
|
|
_running = true;
|
|
_processed_samples = 0;
|
|
|
|
manager.registration_callback();
|
|
manager.graph_order_callback();
|
|
|
|
int64_t clock1;
|
|
clock1 = -1;
|
|
while (_running) {
|
|
const size_t samples_per_period = _samples_per_period;
|
|
|
|
if (_freewheeling != _freewheel) {
|
|
_freewheel = _freewheeling;
|
|
engine.freewheel_callback (_freewheel);
|
|
}
|
|
|
|
// re-set input buffers, generate on demand.
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
|
|
boost::dynamic_pointer_cast<DummyPort>(*it)->next_period ();
|
|
}
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
|
|
boost::dynamic_pointer_cast<DummyPort>(*it)->next_period ();
|
|
}
|
|
|
|
if (engine.process_callback (samples_per_period)) {
|
|
return 0;
|
|
}
|
|
_processed_samples += samples_per_period;
|
|
|
|
if (_device == _("Loopback") && _midi_mode != MidiToAudio) {
|
|
int opn = 0;
|
|
int opc = _system_outputs.size();
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) {
|
|
BackendPortPtr op = _system_outputs[(opn % opc)];
|
|
boost::dynamic_pointer_cast<DummyAudioPort>(*it)->fill_wavetable ((const float*)op->get_buffer (samples_per_period), samples_per_period);
|
|
}
|
|
}
|
|
|
|
if (_midi_mode == MidiLoopback) {
|
|
int opn = 0;
|
|
int opc = _system_midi_out.size();
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++opn) {
|
|
boost::shared_ptr<DummyMidiPort> op = boost::dynamic_pointer_cast<DummyMidiPort> (_system_midi_out[(opn % opc)]);
|
|
op->get_buffer(0); // mix-down
|
|
boost::dynamic_pointer_cast<DummyMidiPort>(*it)->set_loopback (op->const_buffer());
|
|
}
|
|
}
|
|
else if (_midi_mode == MidiToAudio) {
|
|
int opn = 0;
|
|
int opc = _system_midi_out.size();
|
|
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) {
|
|
boost::shared_ptr<DummyMidiPort> op = boost::dynamic_pointer_cast<DummyMidiPort> (_system_midi_out[(opn % opc)]);
|
|
op->get_buffer(0); // mix-down
|
|
boost::dynamic_pointer_cast<DummyAudioPort>(*it)->midi_to_wavetable (op->const_buffer(), samples_per_period);
|
|
}
|
|
}
|
|
|
|
if (!_freewheel) {
|
|
_dsp_load_calc.set_max_time (_samplerate, samples_per_period);
|
|
_dsp_load_calc.set_start_timestamp_us (clock1);
|
|
_dsp_load_calc.set_stop_timestamp_us (_x_get_monotonic_usec());
|
|
_dsp_load = _dsp_load_calc.get_dsp_load_unbound ();
|
|
|
|
const int64_t elapsed_time = _dsp_load_calc.elapsed_time_us ();
|
|
const int64_t nominal_time = _dsp_load_calc.get_max_time_us ();
|
|
if (elapsed_time < nominal_time) {
|
|
const int64_t sleepy = _speedup * (nominal_time - elapsed_time);
|
|
Glib::usleep (std::max ((int64_t) 100, sleepy));
|
|
} else {
|
|
Glib::usleep (100); // don't hog cpu
|
|
}
|
|
} else {
|
|
_dsp_load = 1.0f;
|
|
Glib::usleep (100); // don't hog cpu
|
|
}
|
|
|
|
/* beginning of next cycle */
|
|
clock1 = _x_get_monotonic_usec();
|
|
|
|
bool connections_changed = false;
|
|
bool ports_changed = false;
|
|
if (!pthread_mutex_trylock (&_port_callback_mutex)) {
|
|
if (_port_change_flag) {
|
|
ports_changed = true;
|
|
_port_change_flag = false;
|
|
}
|
|
if (!_port_connection_queue.empty ()) {
|
|
connections_changed = true;
|
|
}
|
|
while (!_port_connection_queue.empty ()) {
|
|
PortConnectData *c = _port_connection_queue.back ();
|
|
manager.connect_callback (c->a, c->b, c->c);
|
|
_port_connection_queue.pop_back ();
|
|
delete c;
|
|
}
|
|
pthread_mutex_unlock (&_port_callback_mutex);
|
|
}
|
|
if (ports_changed) {
|
|
manager.registration_callback();
|
|
}
|
|
if (connections_changed) {
|
|
manager.graph_order_callback();
|
|
}
|
|
if (connections_changed || ports_changed) {
|
|
update_system_port_latencies ();
|
|
engine.latency_callback(false);
|
|
engine.latency_callback(true);
|
|
}
|
|
|
|
}
|
|
_running = false;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
|
|
static boost::shared_ptr<DummyAudioBackend> _instance;
|
|
|
|
static boost::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
|
|
static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
|
|
static int deinstantiate ();
|
|
static bool already_configured ();
|
|
static bool available ();
|
|
|
|
static ARDOUR::AudioBackendInfo _descriptor = {
|
|
_("None (Dummy)"),
|
|
instantiate,
|
|
deinstantiate,
|
|
backend_factory,
|
|
already_configured,
|
|
available
|
|
};
|
|
|
|
static boost::shared_ptr<AudioBackend>
|
|
backend_factory (AudioEngine& e)
|
|
{
|
|
if (!_instance) {
|
|
_instance.reset (new DummyAudioBackend (e, _descriptor));
|
|
}
|
|
return _instance;
|
|
}
|
|
|
|
static int
|
|
instantiate (const std::string& arg1, const std::string& /* arg2 */)
|
|
{
|
|
s_instance_name = arg1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
deinstantiate ()
|
|
{
|
|
_instance.reset ();
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
already_configured ()
|
|
{
|
|
// special-case: unit-tests require backend to be pre-configured.
|
|
if (s_instance_name == "Unit-Test") {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
available ()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor ()
|
|
{
|
|
return &_descriptor;
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
DummyPort::DummyPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
|
|
: BackendPort (b, name, flags)
|
|
, _rseed (0)
|
|
, _gen_cycle (false)
|
|
, _engine (b)
|
|
{
|
|
_backend.port_connect_add_remove_callback();
|
|
}
|
|
|
|
DummyPort::~DummyPort ()
|
|
{
|
|
_backend.port_connect_add_remove_callback();
|
|
}
|
|
|
|
void DummyPort::setup_random_number_generator ()
|
|
{
|
|
#ifdef PLATFORM_WINDOWS
|
|
LARGE_INTEGER Count;
|
|
if (QueryPerformanceCounter (&Count)) {
|
|
_rseed = Count.QuadPart;
|
|
} else
|
|
#endif
|
|
{
|
|
_rseed = g_get_monotonic_time();
|
|
}
|
|
_rseed = (_rseed + (uint64_t)this) % INT_MAX;
|
|
if (_rseed == 0) _rseed = 1;
|
|
}
|
|
|
|
inline uint32_t
|
|
DummyPort::randi ()
|
|
{
|
|
// 31bit Park-Miller-Carta Pseudo-Random Number Generator
|
|
// http://www.firstpr.com.au/dsp/rand31/
|
|
uint32_t hi, lo;
|
|
lo = 16807 * (_rseed & 0xffff);
|
|
hi = 16807 * (_rseed >> 16);
|
|
|
|
lo += (hi & 0x7fff) << 16;
|
|
lo += hi >> 15;
|
|
#if 1
|
|
lo = (lo & 0x7fffffff) + (lo >> 31);
|
|
#else
|
|
if (lo > 0x7fffffff) { lo -= 0x7fffffff; }
|
|
#endif
|
|
return (_rseed = lo);
|
|
}
|
|
|
|
inline float
|
|
DummyPort::randf ()
|
|
{
|
|
return (randi() / 1073741824.f) - 1.f;
|
|
}
|
|
|
|
pframes_t
|
|
DummyPort::pulse_position () const
|
|
{
|
|
samplecnt_t sr = _engine.sample_rate ();
|
|
samplepos_t st = _engine.sample_time_at_cycle_start();
|
|
return (sr - (st % sr)) % sr;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
|
|
DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
|
|
: DummyPort (b, name, flags)
|
|
, _gen_type (Silence)
|
|
, _b0 (0)
|
|
, _b1 (0)
|
|
, _b2 (0)
|
|
, _b3 (0)
|
|
, _b4 (0)
|
|
, _b5 (0)
|
|
, _b6 (0)
|
|
, _wavetable (0)
|
|
, _gen_period (0)
|
|
, _gen_offset (0)
|
|
, _gen_perio2 (0)
|
|
, _gen_count2 (0)
|
|
, _pass (false)
|
|
, _rn1 (0)
|
|
, _ltc (0)
|
|
, _ltcbuf (0)
|
|
{
|
|
memset (_buffer, 0, sizeof (_buffer));
|
|
}
|
|
|
|
DummyAudioPort::~DummyAudioPort () {
|
|
free(_wavetable);
|
|
ltc_encoder_free (_ltc);
|
|
delete _ltcbuf;
|
|
_wavetable = 0;
|
|
_ltc = 0;
|
|
_ltcbuf = 0;
|
|
}
|
|
|
|
static std::string format_hz (float freq) {
|
|
std::stringstream ss;
|
|
if (freq >= 10000) {
|
|
ss << std::setprecision (1) << std::fixed << freq / 1000 << "kHz";
|
|
} else if (freq >= 1000) {
|
|
ss << std::setprecision (2) << std::fixed << freq / 1000 << "kHz";
|
|
} else {
|
|
ss << std::setprecision (1) << std::fixed << freq << "Hz";
|
|
}
|
|
return ss.str ();
|
|
}
|
|
|
|
static size_t fit_wave (float freq, float rate, float precision = 0.001) {
|
|
const size_t max_mult = floor (freq * rate);
|
|
float minErr = 2;
|
|
size_t fact = 1;
|
|
for (size_t i = 1; i < max_mult; ++i) {
|
|
const float isc = rate * (float)i / freq; // ideal sample count
|
|
const float rsc = rintf (isc); // rounded sample count
|
|
const float err = fabsf (isc - rsc);
|
|
if (err < minErr) {
|
|
minErr = err;
|
|
fact = i;
|
|
}
|
|
if (err < precision) {
|
|
break;
|
|
}
|
|
}
|
|
//printf(" FIT %8.1f Hz / %8.1f Hz * %ld = %.0f (err: %e)\n", freq, rate, fact, fact * rate / freq, minErr);
|
|
return fact;
|
|
}
|
|
|
|
std::string
|
|
DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate, int c, int total)
|
|
{
|
|
std::string name;
|
|
DummyPort::setup_random_number_generator();
|
|
_gen_type = g;
|
|
|
|
switch (_gen_type) {
|
|
case PinkNoise:
|
|
case PonyNoise:
|
|
case UniformWhiteNoise:
|
|
case GaussianWhiteNoise:
|
|
case DC05:
|
|
case Silence:
|
|
break;
|
|
case OneHz:
|
|
name = string_compose ("One Hz (%1)", 1 + c);
|
|
break;
|
|
case Demolition:
|
|
_gen_period = 3 * samplerate;
|
|
break;
|
|
case KronekerDelta:
|
|
_gen_period = (5 + randi() % (int)(samplerate / 20.f));
|
|
name = "Delta " + format_hz (samplerate / _gen_period);
|
|
break;
|
|
case SquareWave:
|
|
_gen_period = (5 + randi() % (int)(samplerate / 20.f)) & ~1;
|
|
name = "Square " + format_hz (samplerate / _gen_period);
|
|
break;
|
|
case SineWaveOctaves:
|
|
{
|
|
const int x = c - floor (((float)total / 2));
|
|
float f = powf (2.f, x / 3.f) * 1000.f;
|
|
f = std::max (10.f, std::min (samplerate *.5f, f));
|
|
const size_t mult = fit_wave (f, samplerate);
|
|
_gen_period = rintf ((float)mult * samplerate / f);
|
|
name = "Sine " + format_hz (samplerate * mult / (float)_gen_period);
|
|
_wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
|
|
for (uint32_t i = 0 ; i < _gen_period; ++i) {
|
|
_wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)mult * (float)i / (float)(_gen_period)); // -18dBFS
|
|
}
|
|
}
|
|
break;
|
|
case SineWave:
|
|
_gen_period = 5 + randi() % (int)(samplerate / 20.f);
|
|
name = "Sine " + format_hz (samplerate / _gen_period);
|
|
_wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
|
|
for (uint32_t i = 0 ; i < _gen_period; ++i) {
|
|
_wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)i / (float)_gen_period); // -18dBFS
|
|
}
|
|
break;
|
|
case SquareSweep:
|
|
case SquareSweepSwell:
|
|
case SineSweep:
|
|
case SineSweepSwell:
|
|
{
|
|
_gen_period = 5 * samplerate + randi() % (int)(samplerate * 10.f);
|
|
_gen_period &= ~1;
|
|
_gen_perio2 = 1 | (int)ceilf (_gen_period * .89f); // Volume Swell period
|
|
const double f_min = 20.;
|
|
const double f_max = samplerate * .5;
|
|
const double g_p2 = _gen_period * .5;
|
|
#ifdef LINEAR_SWEEP
|
|
const double b = (f_max - f_min) / (2. * samplerate * g_p2);
|
|
const double a = f_min / samplerate;
|
|
#else
|
|
const double b = log (f_max / f_min) / g_p2;
|
|
const double a = f_min / (b * samplerate);
|
|
#endif
|
|
const uint32_t g_p2i = rint(g_p2);
|
|
_wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
|
|
for (uint32_t i = 0 ; i < g_p2i; ++i) {
|
|
#ifdef LINEAR_SWEEP
|
|
const double phase = i * (a + b * i);
|
|
#else
|
|
const double phase = a * exp (b * i) - a;
|
|
#endif
|
|
_wavetable[i] = (float)sin (2. * M_PI * (phase - floor (phase)));
|
|
}
|
|
for (uint32_t i = g_p2i; i < _gen_period; ++i) {
|
|
const uint32_t j = _gen_period - i;
|
|
#ifdef LINEAR_SWEEP
|
|
const double phase = j * (a + b * j);
|
|
#else
|
|
const double phase = a * exp (b * j) - a;
|
|
#endif
|
|
_wavetable[i] = -(float)sin (2. * M_PI * (phase - floor (phase)));
|
|
}
|
|
if (_gen_type == SquareSweep) {
|
|
for (uint32_t i = 0 ; i < _gen_period; ++i) {
|
|
_wavetable[i] = _wavetable[i] < 0 ? -.40709f : .40709f;
|
|
}
|
|
}
|
|
else if (_gen_type == SquareSweepSwell) {
|
|
for (uint32_t i = 0 ; i < _gen_period; ++i) {
|
|
_wavetable[i] = _wavetable[i] < 0 ? -1 : 1;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case LTC:
|
|
switch (c % 4) {
|
|
case 0:
|
|
_ltc = ltc_encoder_create (samplerate, 25, LTC_TV_625_50, 0);
|
|
name = "LTC25";
|
|
break;
|
|
case 1:
|
|
_ltc = ltc_encoder_create (samplerate, 30, LTC_TV_1125_60, 0);
|
|
name = "LTC30";
|
|
break;
|
|
case 2:
|
|
_ltc = ltc_encoder_create (samplerate, 30001.f / 1001.f, LTC_TV_525_60, 0);
|
|
name = "LTC29df";
|
|
break;
|
|
case 3:
|
|
_ltc = ltc_encoder_create (samplerate, 24, LTC_TV_FILM_24, 0);
|
|
name = "LTC24";
|
|
break;
|
|
}
|
|
_ltc_spd = 1.0;
|
|
_ltc_rand = floor((float)c / 4) * .001f;
|
|
if (c < 4) {
|
|
name += " (locked)";
|
|
} else {
|
|
name += " (varspd)";
|
|
}
|
|
SMPTETimecode tc;
|
|
tc.years = 0;
|
|
tc.months = 0;
|
|
tc.days = 0;
|
|
tc.hours = (3 * (c / 4)) % 24; // XXX
|
|
tc.mins = 0;
|
|
tc.secs = 0;
|
|
tc.frame = 0;
|
|
ltc_encoder_set_timecode (_ltc, &tc);
|
|
name += string_compose ("@%1h", (int)tc.hours);
|
|
_ltcbuf = new PBD::RingBuffer<Sample> (std::max (DummyAudioBackend::max_buffer_size() * 2.f, samplerate));
|
|
break;
|
|
case Loopback:
|
|
_wavetable = (Sample*) calloc (DummyAudioBackend::max_buffer_size(), sizeof(Sample));
|
|
break;
|
|
}
|
|
return name;
|
|
}
|
|
|
|
void DummyAudioPort::midi_to_wavetable (DummyMidiBuffer const * const src, size_t n_samples)
|
|
{
|
|
memset(_wavetable, 0, n_samples * sizeof(float));
|
|
/* generate an audio spike for every midi message
|
|
* to verify layency-compensation alignment
|
|
* (here: midi-out playback-latency + audio-in capture-latency)
|
|
*/
|
|
for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
|
|
const pframes_t t = (*it)->timestamp();
|
|
assert(t < n_samples);
|
|
// somewhat arbitrary mapping for quick visual feedback
|
|
float v = -.5f;
|
|
if ((*it)->size() == 3) {
|
|
const unsigned char *d = (*it)->const_data();
|
|
if ((d[0] & 0xf0) == 0x90) { // note on
|
|
v = .25f + d[2] / 512.f;
|
|
}
|
|
else if ((d[0] & 0xf0) == 0x80) { // note off
|
|
v = .3f - d[2] / 640.f;
|
|
}
|
|
else if ((d[0] & 0xf0) == 0xb0) { // CC
|
|
v = -.1f - d[2] / 256.f;
|
|
}
|
|
}
|
|
_wavetable[t] += v;
|
|
}
|
|
}
|
|
|
|
float DummyAudioPort::grandf ()
|
|
{
|
|
// Gaussian White Noise
|
|
// http://www.musicdsp.org/archive.php?classid=0#109
|
|
float x1, x2, r;
|
|
|
|
if (_pass) {
|
|
_pass = false;
|
|
return _rn1;
|
|
}
|
|
|
|
do {
|
|
x1 = randf ();
|
|
x2 = randf ();
|
|
r = x1 * x1 + x2 * x2;
|
|
} while ((r >= 1.0f) || (r < 1e-22f));
|
|
|
|
r = sqrtf (-2.f * logf (r) / r);
|
|
|
|
_pass = true;
|
|
_rn1 = r * x2;
|
|
return r * x1;
|
|
}
|
|
|
|
/* inspired by jack-demolition by Steve Harris */
|
|
static const float _demolition[] = {
|
|
0.0f, /* special case - 0dbFS white noise */
|
|
0.0f, /* zero, may cause denomrals following a signal */
|
|
0.73 / 1e45, /* very small - should be denormal when floated */
|
|
3.7f, /* arbitrary number > 0dBFS */
|
|
-4.3f, /* arbitrary negative number > 0dBFS */
|
|
4294967395.0f, /* 2^16 + 100 */
|
|
-4294967395.0f,
|
|
3.402823466e+38F, /* HUGE, HUGEVALF, non-inf number */
|
|
INFINITY, /* +inf */
|
|
-INFINITY, /* -inf */
|
|
-NAN, /* -nan */
|
|
NAN, /* nan */
|
|
0.0f, /* some silence to check for recovery */
|
|
};
|
|
|
|
void DummyAudioPort::generate (const pframes_t n_samples)
|
|
{
|
|
Glib::Threads::Mutex::Lock lm (generator_lock);
|
|
if (_gen_cycle) {
|
|
return;
|
|
}
|
|
|
|
switch (_gen_type) {
|
|
case Silence:
|
|
memset (_buffer, 0, n_samples * sizeof (Sample));
|
|
break;
|
|
case DC05:
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
_buffer[i] = 0.5f;
|
|
}
|
|
break;
|
|
case Demolition:
|
|
switch (_gen_count2) {
|
|
case 0: // noise
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
_buffer[i] = randf();
|
|
}
|
|
break;
|
|
default:
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
_buffer[i] = _demolition [_gen_count2];
|
|
}
|
|
break;
|
|
}
|
|
_gen_offset += n_samples;
|
|
if (_gen_offset > _gen_period) {
|
|
_gen_offset = 0;
|
|
_gen_count2 = (_gen_count2 + 1) % (sizeof (_demolition) / sizeof (float));
|
|
}
|
|
break;
|
|
case SquareWave:
|
|
assert(_gen_period > 0);
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
if (_gen_offset < _gen_period * .5f) {
|
|
_buffer[i] = .40709f; // -6dBFS
|
|
} else {
|
|
_buffer[i] = -.40709f;
|
|
}
|
|
_gen_offset = (_gen_offset + 1) % _gen_period;
|
|
}
|
|
break;
|
|
case KronekerDelta:
|
|
assert(_gen_period > 0);
|
|
memset (_buffer, 0, n_samples * sizeof (Sample));
|
|
for (pframes_t i = 0; i < n_samples; ++i) {
|
|
if (_gen_offset == 0) {
|
|
_buffer[i] = 1.0f;
|
|
}
|
|
_gen_offset = (_gen_offset + 1) % _gen_period;
|
|
}
|
|
break;
|
|
case OneHz:
|
|
memset (_buffer, 0, n_samples * sizeof (Sample));
|
|
{
|
|
pframes_t pp = pulse_position ();
|
|
/* MIDI Pulse needs 2 samples: Note on + off */
|
|
if (pp < n_samples - 1) {
|
|
_buffer[pp] = 1.0f;
|
|
_buffer[pp + 1] = -1.0f;
|
|
}
|
|
}
|
|
break;
|
|
case SineSweepSwell:
|
|
case SquareSweepSwell:
|
|
assert(_wavetable && _gen_period > 0);
|
|
{
|
|
const float vols = 2.f / (float)_gen_perio2;
|
|
for (pframes_t i = 0; i < n_samples; ++i) {
|
|
const float g = fabsf (_gen_count2 * vols - 1.f);
|
|
_buffer[i] = g * _wavetable[_gen_offset];
|
|
_gen_offset = (_gen_offset + 1) % _gen_period;
|
|
_gen_count2 = (_gen_count2 + 1) % _gen_perio2;
|
|
}
|
|
}
|
|
break;
|
|
case Loopback:
|
|
memcpy((void*)_buffer, (void*)_wavetable, n_samples * sizeof(Sample));
|
|
break;
|
|
case SineWave:
|
|
case SineWaveOctaves:
|
|
case SineSweep:
|
|
case SquareSweep:
|
|
assert(_wavetable && _gen_period > 0);
|
|
{
|
|
pframes_t written = 0;
|
|
while (written < n_samples) {
|
|
const uint32_t remain = n_samples - written;
|
|
const uint32_t to_copy = std::min(remain, _gen_period - _gen_offset);
|
|
memcpy((void*)&_buffer[written],
|
|
(void*)&_wavetable[_gen_offset],
|
|
to_copy * sizeof(Sample));
|
|
written += to_copy;
|
|
_gen_offset = (_gen_offset + to_copy) % _gen_period;
|
|
}
|
|
}
|
|
break;
|
|
case UniformWhiteNoise:
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
_buffer[i] = .158489f * randf();
|
|
}
|
|
break;
|
|
case GaussianWhiteNoise:
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
_buffer[i] = .089125f * grandf();
|
|
}
|
|
break;
|
|
case PinkNoise:
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
// Paul Kellet's refined method
|
|
// http://www.musicdsp.org/files/pink.txt
|
|
// NB. If 'white' consists of uniform random numbers,
|
|
// the pink noise will have an almost gaussian distribution.
|
|
const float white = .0498f * randf ();
|
|
_b0 = .99886f * _b0 + white * .0555179f;
|
|
_b1 = .99332f * _b1 + white * .0750759f;
|
|
_b2 = .96900f * _b2 + white * .1538520f;
|
|
_b3 = .86650f * _b3 + white * .3104856f;
|
|
_b4 = .55000f * _b4 + white * .5329522f;
|
|
_b5 = -.7616f * _b5 - white * .0168980f;
|
|
_buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362f;
|
|
_b6 = white * 0.115926f;
|
|
}
|
|
break;
|
|
case PonyNoise:
|
|
for (pframes_t i = 0 ; i < n_samples; ++i) {
|
|
const float white = 0.0498f * randf ();
|
|
// Paul Kellet's economy method
|
|
// http://www.musicdsp.org/files/pink.txt
|
|
_b0 = 0.99765f * _b0 + white * 0.0990460f;
|
|
_b1 = 0.96300f * _b1 + white * 0.2965164f;
|
|
_b2 = 0.57000f * _b2 + white * 1.0526913f;
|
|
_buffer[i] = _b0 + _b1 + _b2 + white * 0.1848f;
|
|
}
|
|
break;
|
|
case LTC:
|
|
while (_ltcbuf->read_space () < n_samples) {
|
|
// we should pre-allocate (or add a zero-copy libltc API), whatever.
|
|
ltcsnd_sample_t* enc_buf = (ltcsnd_sample_t*) malloc (ltc_encoder_get_buffersize (_ltc) * sizeof (ltcsnd_sample_t));
|
|
for (int byteCnt = 0; byteCnt < 10; byteCnt++) {
|
|
if (_ltc_rand != 0.f) {
|
|
_ltc_spd += randf () * _ltc_rand;
|
|
_ltc_spd = std::min (1.5f, std::max (0.5f, _ltc_spd));
|
|
}
|
|
ltc_encoder_encode_byte (_ltc, byteCnt, _ltc_spd);
|
|
const int len = ltc_encoder_get_buffer (_ltc, enc_buf);
|
|
for (int i = 0; i < len; ++i) {
|
|
const float v1 = enc_buf[i] - 128;
|
|
Sample v = v1 * 0.002;
|
|
_ltcbuf->write (&v, 1);
|
|
}
|
|
}
|
|
ltc_encoder_inc_timecode (_ltc);
|
|
free (enc_buf);
|
|
}
|
|
_ltcbuf->read (_buffer, n_samples);
|
|
break;
|
|
}
|
|
_gen_cycle = true;
|
|
}
|
|
|
|
void*
|
|
DummyAudioPort::get_buffer (pframes_t n_samples)
|
|
{
|
|
if (is_input ()) {
|
|
const std::set<BackendPortPtr>& connections = get_connections ();
|
|
std::set<BackendPortPtr>::const_iterator it = connections.begin ();
|
|
if (it == connections.end ()) {
|
|
memset (_buffer, 0, n_samples * sizeof (Sample));
|
|
} else {
|
|
boost::shared_ptr<DummyAudioPort> source = boost::dynamic_pointer_cast<DummyAudioPort>(*it);
|
|
assert (source && source->is_output ());
|
|
if (source->is_physical() && source->is_terminal()) {
|
|
source->get_buffer(n_samples); // generate signal.
|
|
}
|
|
memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
|
|
while (++it != connections.end ()) {
|
|
source = boost::dynamic_pointer_cast<DummyAudioPort>(*it);
|
|
assert (source && source->is_output ());
|
|
Sample* dst = buffer ();
|
|
if (source->is_physical() && source->is_terminal()) {
|
|
source->get_buffer(n_samples); // generate signal.
|
|
}
|
|
const Sample* src = source->const_buffer ();
|
|
for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
|
|
*dst += *src;
|
|
}
|
|
}
|
|
}
|
|
} else if (is_output () && is_physical () && is_terminal()) {
|
|
if (!_gen_cycle) {
|
|
generate(n_samples);
|
|
}
|
|
}
|
|
return _buffer;
|
|
}
|
|
|
|
|
|
DummyMidiPort::DummyMidiPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
|
|
: DummyPort (b, name, flags)
|
|
, _midi_seq_spb (0)
|
|
, _midi_seq_time (0)
|
|
, _midi_seq_pos (0)
|
|
, _midi_seq_dat (0)
|
|
{
|
|
_buffer.clear ();
|
|
_loopback.clear ();
|
|
}
|
|
|
|
DummyMidiPort::~DummyMidiPort () {
|
|
_buffer.clear ();
|
|
_loopback.clear ();
|
|
}
|
|
|
|
struct MidiEventSorter {
|
|
bool operator() (const boost::shared_ptr<DummyMidiEvent>& a, const boost::shared_ptr<DummyMidiEvent>& b) {
|
|
return *a < *b;
|
|
}
|
|
};
|
|
|
|
void DummyMidiPort::set_loopback (DummyMidiBuffer const * const src)
|
|
{
|
|
_loopback.clear ();
|
|
for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
|
|
_loopback.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
|
|
}
|
|
}
|
|
|
|
std::string
|
|
DummyMidiPort::setup_generator (int seq_id, const float sr)
|
|
{
|
|
DummyPort::setup_random_number_generator();
|
|
if (seq_id < 0) {
|
|
_midi_seq_spb = sr;
|
|
return "One Hz";
|
|
}
|
|
_midi_seq_dat = DummyMidiData::sequences[seq_id % NUM_MIDI_EVENT_GENERATORS];
|
|
_midi_seq_spb = sr * .5f; // 120 BPM, beat_time 1.0 per beat.
|
|
_midi_seq_pos = 0;
|
|
_midi_seq_time = 0;
|
|
|
|
if (_midi_seq_dat && _midi_seq_dat[0].beat_time < -1) {
|
|
_midi_seq_spb = sr / 25; // 25fps MTC
|
|
} else if (_midi_seq_dat && _midi_seq_dat[0].beat_time < 0) {
|
|
/* MIDI Clock 120 BPM */
|
|
const double bpm = 120;
|
|
double quarter_notes_per_beat = 1.0;
|
|
|
|
const double samples_per_beat = sr * 60.0 / bpm;
|
|
const double samples_per_quarter_note = samples_per_beat / quarter_notes_per_beat;
|
|
const double clock_tick_interval = samples_per_quarter_note / 24.0;
|
|
|
|
_midi_seq_spb = clock_tick_interval;
|
|
}
|
|
|
|
return DummyMidiData::sequence_names[seq_id];
|
|
}
|
|
|
|
void DummyMidiPort::midi_generate (const pframes_t n_samples)
|
|
{
|
|
Glib::Threads::Mutex::Lock lm (generator_lock);
|
|
if (_gen_cycle) {
|
|
return;
|
|
}
|
|
|
|
_buffer.clear ();
|
|
_gen_cycle = true;
|
|
|
|
if (_midi_seq_spb != 0 && !_midi_seq_dat) {
|
|
/* 1 Hz Note Events */
|
|
pframes_t pp = pulse_position ();
|
|
if (pp < n_samples - 1) {
|
|
uint8_t md[3] = {0x90, 0x3c, 0x7f};
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (pp, md, 3)));
|
|
md[0] = 0x80;
|
|
md[2] = 0;
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (pp + 1, md, 3)));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (_midi_seq_spb == 0 || !_midi_seq_dat) {
|
|
for (DummyMidiBuffer::const_iterator it = _loopback.begin (); it != _loopback.end (); ++it) {
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (_midi_seq_dat[0].beat_time < -1) {
|
|
/* MTC generator */
|
|
const int audio_samples_per_video_frame = _midi_seq_spb; // sample-rate / 25
|
|
const int audio_samples_per_qf = audio_samples_per_video_frame / 4;
|
|
|
|
samplepos_t tc_frame = _midi_seq_time / audio_samples_per_video_frame;
|
|
samplepos_t tc_sample = tc_frame * audio_samples_per_video_frame;
|
|
int qf = (tc_frame & 1) ? 4 : 0;
|
|
while (tc_sample < _midi_seq_time + n_samples) {
|
|
if (tc_sample >= _midi_seq_time) {
|
|
uint8_t buf[2];
|
|
buf[0] = 0xf1;
|
|
|
|
int frame = tc_frame % 25;
|
|
int second = (tc_frame / 25) % 60;
|
|
int minute = ((tc_frame / 25) / 60) % 60;
|
|
int hour = (((tc_frame / 25) / 60) / 60);
|
|
|
|
switch(qf & 7) {
|
|
case 0: buf[1] = 0x00 | (frame & 0x0f); break;
|
|
case 1: buf[1] = 0x10 | ((frame & 0xf0) >> 4); break;
|
|
case 2: buf[1] = 0x20 | (second & 0x0f); break;
|
|
case 3: buf[1] = 0x30 | ((second & 0xf0) >> 4); break;
|
|
case 4: buf[1] = 0x40 | (minute & 0x0f); break;
|
|
case 5: buf[1] = 0x50 | ((minute & 0xf0) >> 4); break;
|
|
case 6: buf[1] = 0x60 | ((/* 25fps*/ 0x20 | hour) & 0x0f); break;
|
|
case 7: buf[1] = 0x70 | (((/* 25fps*/ 0x20 | hour) & 0xf0)>>4); break;
|
|
}
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (tc_sample - _midi_seq_time, buf, 2)));
|
|
}
|
|
tc_sample += audio_samples_per_qf;
|
|
if (++qf == 8) {
|
|
++tc_frame;
|
|
qf = 0;
|
|
}
|
|
}
|
|
|
|
_midi_seq_time += n_samples;
|
|
if (_midi_seq_time >= /* 24 * 3600 * 25 */ 2160000LL * audio_samples_per_video_frame) {
|
|
_midi_seq_time -= 2160000LL * audio_samples_per_video_frame; // 24h @ 25fps
|
|
}
|
|
|
|
return;
|
|
|
|
} else if (_midi_seq_dat[0].beat_time < 0) {
|
|
/* MClk generator */
|
|
uint8_t buf[3];
|
|
|
|
if (_midi_seq_time == 0) {
|
|
/* Position Message */
|
|
int64_t bcnt = 0; // beat count
|
|
buf[0] = 0xf2;
|
|
buf[1] = bcnt & 0x7f; // LSB
|
|
buf[2] = (bcnt >> 7) & 0x7f; // MSB
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (0, buf, 3)));
|
|
}
|
|
|
|
/* MIDI System Real-Time Messages */
|
|
#define MIDI_RT_CLOCK (0xF8)
|
|
#define MIDI_RT_START (0xFA)
|
|
#define MIDI_RT_CONTINUE (0xFB)
|
|
#define MIDI_RT_STOP (0xFC)
|
|
|
|
if (_midi_seq_time == 0) {
|
|
/* start */
|
|
buf[0] = MIDI_RT_START;
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (0, buf, 1)));
|
|
}
|
|
|
|
const int clock_tick_interval = _midi_seq_spb; // samples per clock-tick
|
|
samplepos_t clk_tick = _midi_seq_time / clock_tick_interval;
|
|
samplepos_t clk_sample = clk_tick * clock_tick_interval;
|
|
|
|
while (clk_sample < _midi_seq_time + n_samples) {
|
|
if (clk_sample >= _midi_seq_time) {
|
|
buf[0] = MIDI_RT_CLOCK;
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (clk_sample - _midi_seq_time, buf, 1)));
|
|
}
|
|
clk_sample += clock_tick_interval;
|
|
}
|
|
|
|
_midi_seq_time += n_samples;
|
|
|
|
if (_midi_seq_time >= 16384 * 24 * clock_tick_interval) {
|
|
_midi_seq_time -= 16384 * 24 * clock_tick_interval;
|
|
}
|
|
return;
|
|
}
|
|
|
|
while (1) {
|
|
const int32_t ev_beat_time = _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb - _midi_seq_time;
|
|
if (ev_beat_time < 0) {
|
|
break;
|
|
}
|
|
if ((pframes_t) ev_beat_time >= n_samples) {
|
|
break;
|
|
}
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (
|
|
ev_beat_time,
|
|
_midi_seq_dat[_midi_seq_pos].event,
|
|
_midi_seq_dat[_midi_seq_pos].size
|
|
)));
|
|
++_midi_seq_pos;
|
|
|
|
if (_midi_seq_dat[_midi_seq_pos].event[0] == 0xff && _midi_seq_dat[_midi_seq_pos].event[1] == 0xff) {
|
|
_midi_seq_time -= _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb;
|
|
_midi_seq_pos = 0;
|
|
}
|
|
}
|
|
_midi_seq_time += n_samples;
|
|
}
|
|
|
|
|
|
void* DummyMidiPort::get_buffer (pframes_t n_samples)
|
|
{
|
|
if (is_input ()) {
|
|
_buffer.clear ();
|
|
const std::set<BackendPortPtr>& connections = get_connections ();
|
|
for (std::set<BackendPortPtr>::const_iterator i = connections.begin ();
|
|
i != connections.end ();
|
|
++i) {
|
|
boost::shared_ptr<DummyMidiPort> source = boost::dynamic_pointer_cast<DummyMidiPort>(*i);
|
|
if (source->is_physical() && source->is_terminal()) {
|
|
source->get_buffer(n_samples); // generate signal.
|
|
}
|
|
const DummyMidiBuffer *src = source->const_buffer ();
|
|
for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
|
|
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
|
|
}
|
|
}
|
|
std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter());
|
|
} else if (is_output () && is_physical () && is_terminal()) {
|
|
if (!_gen_cycle) {
|
|
midi_generate(n_samples);
|
|
}
|
|
}
|
|
return &_buffer;
|
|
}
|
|
|
|
DummyMidiEvent::DummyMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
|
|
: _size (size)
|
|
, _timestamp (timestamp)
|
|
, _data (0)
|
|
{
|
|
if (size > 0) {
|
|
_data = (uint8_t*) malloc (size);
|
|
memcpy (_data, data, size);
|
|
}
|
|
}
|
|
|
|
DummyMidiEvent::DummyMidiEvent (const DummyMidiEvent& other)
|
|
: _size (other.size ())
|
|
, _timestamp (other.timestamp ())
|
|
, _data (0)
|
|
{
|
|
if (other.size () && other.const_data ()) {
|
|
_data = (uint8_t*) malloc (other.size ());
|
|
memcpy (_data, other.const_data (), other.size ());
|
|
}
|
|
};
|
|
|
|
DummyMidiEvent::~DummyMidiEvent () {
|
|
free (_data);
|
|
};
|