13
0
livetrax/libs/ardour/lv2_evbuf.c
David Robillard 7219d0d651 Fix atom sequence ports.
git-svn-id: svn://localhost/ardour2/branches/3.0@11623 d708f5d6-7413-0410-9779-e7cbd77b26cf
2012-03-08 19:40:41 +00:00

277 lines
6.9 KiB
C

/*
Copyright 2008-2012 David Robillard <http://drobilla.net>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include "lv2/lv2plug.in/ns/ext/atom/atom.h"
#include "lv2/lv2plug.in/ns/ext/event/event.h"
#include "lv2_evbuf.h"
struct LV2_Evbuf_Impl {
LV2_Evbuf_Type type;
uint32_t capacity;
uint32_t atom_Chunk;
uint32_t atom_Sequence;
union {
LV2_Event_Buffer event;
LV2_Atom_Sequence atom;
} buf;
};
static inline uint32_t
lv2_evbuf_pad_size(uint32_t size)
{
return (size + 7) & (~7);
}
LV2_Evbuf*
lv2_evbuf_new(uint32_t capacity,
LV2_Evbuf_Type type,
uint32_t atom_Chunk,
uint32_t atom_Sequence)
{
// FIXME: memory must be 64-bit aligned
LV2_Evbuf* evbuf = (LV2_Evbuf*)malloc(
sizeof(LV2_Evbuf) + sizeof(LV2_Atom_Sequence) + capacity);
evbuf->capacity = capacity;
evbuf->atom_Chunk = atom_Chunk;
evbuf->atom_Sequence = atom_Sequence;
lv2_evbuf_set_type(evbuf, type);
lv2_evbuf_reset(evbuf, true);
return evbuf;
}
void
lv2_evbuf_free(LV2_Evbuf* evbuf)
{
free(evbuf);
}
void
lv2_evbuf_set_type(LV2_Evbuf* evbuf, LV2_Evbuf_Type type)
{
evbuf->type = type;
switch (type) {
case LV2_EVBUF_EVENT:
evbuf->buf.event.data = (uint8_t*)(evbuf + 1);
evbuf->buf.event.capacity = evbuf->capacity;
break;
case LV2_EVBUF_ATOM:
break;
}
lv2_evbuf_reset(evbuf, true);
}
void
lv2_evbuf_reset(LV2_Evbuf* evbuf, bool input)
{
switch (evbuf->type) {
case LV2_EVBUF_EVENT:
evbuf->buf.event.header_size = sizeof(LV2_Event_Buffer);
evbuf->buf.event.stamp_type = LV2_EVENT_AUDIO_STAMP;
evbuf->buf.event.event_count = 0;
evbuf->buf.event.size = 0;
break;
case LV2_EVBUF_ATOM:
if (input) {
evbuf->buf.atom.atom.size = sizeof(LV2_Atom_Sequence_Body);
evbuf->buf.atom.atom.type = evbuf->atom_Sequence;
} else {
evbuf->buf.atom.atom.size = evbuf->capacity;
evbuf->buf.atom.atom.type = evbuf->atom_Chunk;
}
}
}
uint32_t
lv2_evbuf_get_size(LV2_Evbuf* evbuf)
{
switch (evbuf->type) {
case LV2_EVBUF_EVENT:
return evbuf->buf.event.size;
case LV2_EVBUF_ATOM:
assert(evbuf->buf.atom.atom.type != evbuf->atom_Sequence
|| evbuf->buf.atom.atom.size >= sizeof(LV2_Atom_Sequence_Body));
return evbuf->buf.atom.atom.type == evbuf->atom_Sequence
? evbuf->buf.atom.atom.size - sizeof(LV2_Atom_Sequence_Body)
: 0;
}
return 0;
}
void*
lv2_evbuf_get_buffer(LV2_Evbuf* evbuf)
{
switch (evbuf->type) {
case LV2_EVBUF_EVENT:
return &evbuf->buf.event;
case LV2_EVBUF_ATOM:
return &evbuf->buf.atom;
}
return NULL;
}
LV2_Evbuf_Iterator
lv2_evbuf_begin(LV2_Evbuf* evbuf)
{
LV2_Evbuf_Iterator iter = { evbuf, 0 };
return iter;
}
LV2_Evbuf_Iterator
lv2_evbuf_end(LV2_Evbuf* evbuf)
{
const uint32_t size = lv2_evbuf_get_size(evbuf);
const LV2_Evbuf_Iterator iter = { evbuf, lv2_evbuf_pad_size(size) };
return iter;
}
bool
lv2_evbuf_is_valid(LV2_Evbuf_Iterator iter)
{
return iter.offset < lv2_evbuf_get_size(iter.evbuf);
}
LV2_Evbuf_Iterator
lv2_evbuf_next(LV2_Evbuf_Iterator iter)
{
if (!lv2_evbuf_is_valid(iter)) {
return iter;
}
LV2_Evbuf* evbuf = iter.evbuf;
uint32_t offset = iter.offset;
uint32_t size;
switch (evbuf->type) {
case LV2_EVBUF_EVENT:
size = ((LV2_Event*)(evbuf->buf.event.data + offset))->size;
offset += lv2_evbuf_pad_size(sizeof(LV2_Event) + size);
break;
case LV2_EVBUF_ATOM:
size = ((LV2_Atom_Event*)
((char*)LV2_ATOM_CONTENTS(LV2_Atom_Sequence, &evbuf->buf.atom)
+ offset))->body.size;
offset += lv2_evbuf_pad_size(sizeof(LV2_Atom_Event) + size);
break;
}
LV2_Evbuf_Iterator next = { evbuf, offset };
return next;
}
bool
lv2_evbuf_get(LV2_Evbuf_Iterator iter,
uint32_t* frames,
uint32_t* subframes,
uint32_t* type,
uint32_t* size,
uint8_t** data)
{
*frames = *subframes = *type = *size = 0;
*data = NULL;
if (!lv2_evbuf_is_valid(iter)) {
return false;
}
LV2_Event_Buffer* ebuf;
LV2_Event* ev;
LV2_Atom_Sequence* aseq;
LV2_Atom_Event* aev;
switch (iter.evbuf->type) {
case LV2_EVBUF_EVENT:
ebuf = &iter.evbuf->buf.event;
ev = (LV2_Event*)ebuf->data + iter.offset;
*frames = ev->frames;
*subframes = ev->subframes;
*type = ev->type;
*size = ev->size;
*data = (uint8_t*)ev + sizeof(LV2_Event);
break;
case LV2_EVBUF_ATOM:
aseq = (LV2_Atom_Sequence*)&iter.evbuf->buf.atom;
aev = (LV2_Atom_Event*)(
(char*)LV2_ATOM_CONTENTS(LV2_Atom_Sequence, aseq)
+ iter.offset);
*frames = aev->time.frames;
*subframes = 0;
*type = aev->body.type;
*size = aev->body.size;
*data = LV2_ATOM_BODY(&aev->body);
break;
}
return true;
}
bool
lv2_evbuf_write(LV2_Evbuf_Iterator* iter,
uint32_t frames,
uint32_t subframes,
uint32_t type,
uint32_t size,
const uint8_t* data)
{
LV2_Event_Buffer* ebuf;
LV2_Event* ev;
LV2_Atom_Sequence* aseq;
LV2_Atom_Event* aev;
switch (iter->evbuf->type) {
case LV2_EVBUF_EVENT:
ebuf = &iter->evbuf->buf.event;
if (ebuf->capacity - ebuf->size < sizeof(LV2_Event) + size) {
return false;
}
ev = (LV2_Event*)(ebuf->data + iter->offset);
ev->frames = frames;
ev->subframes = subframes;
ev->type = type;
ev->size = size;
memcpy((uint8_t*)ev + sizeof(LV2_Event), data, size);
size = lv2_evbuf_pad_size(sizeof(LV2_Event) + size);
ebuf->size += size;
ebuf->event_count += 1;
iter->offset += size;
break;
case LV2_EVBUF_ATOM:
aseq = (LV2_Atom_Sequence*)&iter->evbuf->buf.atom;
if (iter->evbuf->capacity - sizeof(LV2_Atom) - aseq->atom.size
< sizeof(LV2_Atom_Event) + size) {
return false;
}
aev = (LV2_Atom_Event*)(
(char*)LV2_ATOM_CONTENTS(LV2_Atom_Sequence, aseq)
+ iter->offset);
aev->time.frames = frames;
aev->body.type = type;
aev->body.size = size;
memcpy(LV2_ATOM_BODY(&aev->body), data, size);
size = lv2_evbuf_pad_size(sizeof(LV2_Atom_Event) + size);
aseq->atom.size += size;
iter->offset += size;
break;
}
return true;
}