13
0
livetrax/libs/midi++2/channel.cc

461 lines
11 KiB
C++

/*
* Copyright (C) 1998-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2009-2010 Carl Hetherington <carl@carlh.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <cstring>
#include "midi++/types.h"
#include "midi++/port.h"
#include "midi++/channel.h"
using namespace MIDI;
Channel::Channel (MIDI::byte channelnum, Port &p)
: _port (p)
, _channel_number (channelnum)
, _rpn_msb (0)
, _rpn_lsb (0)
, _nrpn_msb (0)
, _nrpn_lsb (0)
, _rpn_state (RPNState (0))
, _nrpn_state (RPNState (0))
{
reset (0, 1, false);
}
void
Channel::connect_signals ()
{
_port.parser()->channel_pressure[_channel_number].connect_same_thread (*this, boost::bind (&Channel::process_chanpress, this, _1, _2));
_port.parser()->channel_note_on[_channel_number].connect_same_thread (*this, boost::bind (&Channel::process_note_on, this, _1, _2));
_port.parser()->channel_note_off[_channel_number].connect_same_thread (*this, boost::bind (&Channel::process_note_off, this, _1, _2));
_port.parser()->channel_poly_pressure[_channel_number].connect_same_thread (*this, boost::bind (&Channel::process_polypress, this, _1, _2));
_port.parser()->channel_program_change[_channel_number].connect_same_thread (*this, boost::bind (&Channel::process_program_change, this, _1, _2));
_port.parser()->channel_controller[_channel_number].connect_same_thread (*this, boost::bind (&Channel::process_controller, this, _1, _2));
_port.parser()->channel_pitchbend[_channel_number].connect_same_thread (*this, boost::bind (&Channel::process_pitchbend, this, _1, _2));
_port.parser()->reset.connect_same_thread (*this, boost::bind (&Channel::process_reset, this, _1));
}
void
Channel::reset (timestamp_t timestamp, samplecnt_t /*nframes*/, bool notes_off)
{
_program_number = _channel_number;
_bank_number = 0;
_pitch_bend = 0;
_last_note_on = 0;
_last_note_off = 0;
_last_on_velocity = 0;
_last_off_velocity = 0;
if (notes_off) {
all_notes_off (timestamp);
}
memset (_polypress, 0, sizeof (_polypress));
memset (_controller_msb, 0, sizeof (_controller_msb));
memset (_controller_lsb, 0, sizeof (_controller_lsb));
/* zero all controllers XXX not necessarily the right thing */
memset (_controller_val, 0, sizeof (_controller_val));
for (int n = 0; n < 128; n++) {
_controller_14bit[n] = false;
}
rpn_reset ();
nrpn_reset ();
_omni = true;
_poly = false;
_mono = true;
_notes_on = 0;
}
void
Channel::rpn_reset ()
{
_rpn_msb = 0;
_rpn_lsb = 0;
_rpn_val_msb = 0;
_rpn_val_lsb = 0;
_rpn_state = RPNState (0);
}
void
Channel::nrpn_reset ()
{
_nrpn_msb = 0;
_nrpn_lsb = 0;
_nrpn_val_msb = 0;
_nrpn_val_lsb = 0;
_nrpn_state = RPNState (0);
}
void
Channel::process_note_off (Parser & /*parser*/, EventTwoBytes *tb)
{
_last_note_off = tb->note_number;
_last_off_velocity = tb->velocity;
if (_notes_on) {
_notes_on--;
}
}
void
Channel::process_note_on (Parser & /*parser*/, EventTwoBytes *tb)
{
_last_note_on = tb->note_number;
_last_on_velocity = tb->velocity;
_notes_on++;
}
const Channel::RPNState Channel::RPN_READY_FOR_VALUE = RPNState (HaveLSB|HaveMSB);
const Channel::RPNState Channel::RPN_VALUE_READY = RPNState (HaveLSB|HaveMSB|HaveValue);
bool
Channel::maybe_process_rpns (Parser& parser, EventTwoBytes *tb)
{
switch (tb->controller_number) {
case 0x62:
_rpn_state = RPNState (_rpn_state|HaveMSB);
_rpn_lsb = tb->value;
if (_rpn_msb == 0x7f && _rpn_lsb == 0x7f) {
rpn_reset ();
}
return true;
case 0x63:
_rpn_state = RPNState (_rpn_state|HaveLSB);
_rpn_msb = tb->value;
if (_rpn_msb == 0x7f && _rpn_lsb == 0x7f) {
rpn_reset ();
}
return true;
case 0x64:
_nrpn_state = RPNState (_rpn_state|HaveMSB);
_rpn_lsb = tb->value;
if (_nrpn_msb == 0x7f && _nrpn_lsb == 0x7f) {
nrpn_reset ();
}
return true;
case 0x65:
_nrpn_state = RPNState (_rpn_state|HaveLSB);
_rpn_msb = tb->value;
if (_rpn_msb == 0x7f && _rpn_lsb == 0x7f) {
nrpn_reset ();
}
return true;
}
if ((_nrpn_state & RPN_READY_FOR_VALUE) == RPN_READY_FOR_VALUE) {
uint16_t rpn_id = (_rpn_msb << 7)|_rpn_lsb;
switch (tb->controller_number) {
case 0x60:
/* data increment */
_nrpn_state = RPNState (_nrpn_state|HaveValue);
parser.channel_nrpn_change[_channel_number] (parser, rpn_id, 1); /* EMIT SIGNAL */
return true;
case 0x61:
/* data decrement */
_nrpn_state = RPNState (_nrpn_state|HaveValue);
parser.channel_nrpn_change[_channel_number] (parser, rpn_id, -1); /* EMIT SIGNAL */
return true;
case 0x06:
/* data entry MSB */
_nrpn_state = RPNState (_nrpn_state|HaveValue);
_nrpn_val_msb = tb->value;
break;
case 0x26:
/* data entry LSB */
_nrpn_state = RPNState (_nrpn_state|HaveValue);
_nrpn_val_lsb = tb->value;
}
if (_nrpn_state == RPN_VALUE_READY) {
float rpn_val = ((_rpn_val_msb << 7)|_rpn_val_lsb)/16384.0;
std::pair<RPNList::iterator,bool> result = nrpns.insert (std::make_pair (rpn_id, rpn_val));
if (!result.second) {
result.first->second = rpn_val;
}
parser.channel_nrpn[_channel_number] (parser, rpn_id, rpn_val); /* EMIT SIGNAL */
return true;
}
} else if ((_rpn_state & RPN_READY_FOR_VALUE) == RPN_READY_FOR_VALUE) {
uint16_t rpn_id = (_rpn_msb << 7)|_rpn_lsb;
switch (tb->controller_number) {
case 0x60:
/* data increment */
_rpn_state = RPNState (_rpn_state|HaveValue);
parser.channel_rpn_change[_channel_number] (parser, rpn_id, 1); /* EMIT SIGNAL */
return true;
case 0x61:
/* data decrement */
_rpn_state = RPNState (_rpn_state|HaveValue);
parser.channel_rpn_change[_channel_number] (parser, rpn_id, -1); /* EMIT SIGNAL */
return true;
case 0x06:
/* data entry MSB */
_rpn_state = RPNState (_rpn_state|HaveValue);
_rpn_val_msb = tb->value;
break;
case 0x26:
/* data entry LSB */
_rpn_state = RPNState (_rpn_state|HaveValue);
_rpn_val_lsb = tb->value;
}
if (_rpn_state == RPN_VALUE_READY) {
float rpn_val = ((_rpn_val_msb << 7)|_rpn_val_lsb)/16384.0;
std::pair<RPNList::iterator,bool> result = rpns.insert (std::make_pair (rpn_id, rpn_val));
if (!result.second) {
result.first->second = rpn_val;
}
parser.channel_rpn[_channel_number] (parser, rpn_id, rpn_val); /* EMIT SIGNAL */
return true;
}
}
return false;
}
void
Channel::process_controller (Parser & parser, EventTwoBytes *tb)
{
unsigned short cv;
/* XXX arguably need a lock here to protect non-atomic changes
to controller_val[...]. or rather, need to make sure that
all changes *are* atomic.
*/
if (maybe_process_rpns (parser, tb)) {
return;
}
/* Note: if RPN data controllers (0x60, 0x61, 0x6, 0x26) are received
* without a previous RPN parameter ID message, or after the RPN ID
* has been reset, they will be treated like ordinary CC messages.
*/
if (tb->controller_number < 32) { /* unsigned: no test for >= 0 */
/* if this controller is already known to use 14 bits,
then treat this value as the MSB, and combine it
with the existing LSB.
otherwise, just treat it as a 7 bit value, and set
it directly.
*/
cv = (unsigned short) _controller_val[tb->controller_number];
if (_controller_14bit[tb->controller_number]) {
cv = ((tb->value & 0x7f) << 7) | (cv & 0x7f);
} else {
cv = tb->value;
}
_controller_val[tb->controller_number] = (controller_value_t)cv;
} else if ((tb->controller_number >= 32 &&
tb->controller_number <= 63)) {
int cn = tb->controller_number - 32;
cv = (unsigned short) _controller_val[cn];
/* LSB for CC 0-31 arrived.
If this is the first time (i.e. its currently
flagged as a 7 bit controller), mark the
controller as 14 bit, adjust the existing value
to be the MSB, and OR-in the new LSB value.
otherwise, OR-in the new low 7bits with the old
high 7.
*/
if (_controller_14bit[cn] == false) {
_controller_14bit[cn] = true;
cv = (cv << 7) | (tb->value & 0x7f);
} else {
cv = (cv & 0x3f80) | (tb->value & 0x7f);
}
/* update the 14 bit value */
_controller_val[cn] = (controller_value_t) cv;
/* also store the "raw" 7 bit value in the incoming controller
value store
*/
_controller_val[tb->controller_number] = (controller_value_t) tb->value;
} else {
/* controller can only take 7 bit values */
_controller_val[tb->controller_number] =
(controller_value_t) tb->value;
}
/* bank numbers are special, in that they have their own signal
*/
if (tb->controller_number == 0 || tb->controller_number == 0x20) {
_bank_number = _controller_val[0];
_port.parser()->bank_change (*_port.parser(), _bank_number);
_port.parser()->channel_bank_change[_channel_number] (*_port.parser(), _bank_number);
}
}
void
Channel::process_program_change (Parser & /*parser*/, MIDI::byte val)
{
_program_number = val;
}
void
Channel::process_chanpress (Parser & /*parser*/, MIDI::byte val)
{
_chanpress = val;
}
void
Channel::process_polypress (Parser & /*parser*/, EventTwoBytes *tb)
{
_polypress[tb->note_number] = tb->value;
}
void
Channel::process_pitchbend (Parser & /*parser*/, pitchbend_t val)
{
_pitch_bend = val;
}
void
Channel::process_reset (Parser & /*parser*/)
{
reset (0, 1);
}
/** Write a message to a channel.
* \return true if success
*/
bool
Channel::channel_msg (MIDI::byte id, MIDI::byte val1, MIDI::byte val2, timestamp_t timestamp)
{
unsigned char msg[3];
int len = 0;
msg[0] = id | (_channel_number & 0xf);
switch (id) {
case off:
msg[1] = val1 & 0x7F;
msg[2] = val2 & 0x7F;
len = 3;
break;
case on:
msg[1] = val1 & 0x7F;
msg[2] = val2 & 0x7F;
len = 3;
break;
case MIDI::polypress:
msg[1] = val1 & 0x7F;
msg[2] = val2 & 0x7F;
len = 3;
break;
case controller:
msg[1] = val1 & 0x7F;
msg[2] = val2 & 0x7F;
len = 3;
break;
case MIDI::program:
msg[1] = val1 & 0x7F;
len = 2;
break;
case MIDI::chanpress:
msg[1] = val1 & 0x7F;
len = 2;
break;
case MIDI::pitchbend:
msg[1] = val1 & 0x7F;
msg[2] = val2 & 0x7F;
len = 3;
break;
}
return _port.midimsg (msg, len, timestamp);
}
float
Channel::rpn_value (uint16_t rpn) const
{
return rpn_value_absolute (rpn) / 16384.0f;
}
float
Channel::rpn_value_absolute (uint16_t rpn) const
{
RPNList::const_iterator r = rpns.find (rpn);
if (r == rpns.end()) {
return 0.0;
}
return r->second;
}
float
Channel::nrpn_value (uint16_t nrpn) const
{
return nrpn_value_absolute (nrpn) / 16384.0f;
}
float
Channel::nrpn_value_absolute (uint16_t nrpn) const
{
RPNList::const_iterator r = nrpns.find (nrpn);
if (r == nrpns.end()) {
return 0.0;
}
return r->second;
}