13
0
livetrax/libs/evoral/src/ControlList.cpp

1555 lines
34 KiB
C++

/* This file is part of Evoral.
* Copyright (C) 2008 David Robillard <http://drobilla.net>
* Copyright (C) 2000-2008 Paul Davis
*
* Evoral is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* Evoral is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <cmath>
#include <cassert>
#include <utility>
#include <iostream>
#include "evoral/ControlList.hpp"
#include "evoral/Curve.hpp"
using namespace std;
namespace Evoral {
inline bool event_time_less_than (ControlEvent* a, ControlEvent* b)
{
return a->when < b->when;
}
ControlList::ControlList (const Parameter& id)
: _parameter(id)
, _interpolation(Linear)
, _curve(0)
{
_frozen = 0;
_changed_when_thawed = false;
_min_yval = id.min();
_max_yval = id.max();
_max_xval = 0; // means "no limit"
_default_value = 0;
_lookup_cache.left = -1;
_lookup_cache.range.first = _events.end();
_search_cache.left = -1;
_search_cache.first = _events.end();
_sort_pending = false;
}
ControlList::ControlList (const ControlList& other)
: _parameter(other._parameter)
, _interpolation(Linear)
, _curve(0)
{
_frozen = 0;
_changed_when_thawed = false;
_min_yval = other._min_yval;
_max_yval = other._max_yval;
_max_xval = other._max_xval;
_default_value = other._default_value;
_lookup_cache.range.first = _events.end();
_search_cache.first = _events.end();
_sort_pending = false;
for (const_iterator i = other._events.begin(); i != other._events.end(); ++i) {
_events.push_back (new ControlEvent (**i));
}
mark_dirty ();
}
ControlList::ControlList (const ControlList& other, double start, double end)
: _parameter(other._parameter)
, _interpolation(Linear)
, _curve(0)
{
_frozen = 0;
_changed_when_thawed = false;
_min_yval = other._min_yval;
_max_yval = other._max_yval;
_max_xval = other._max_xval;
_default_value = other._default_value;
_lookup_cache.range.first = _events.end();
_search_cache.first = _events.end();
_sort_pending = false;
/* now grab the relevant points, and shift them back if necessary */
boost::shared_ptr<ControlList> section = const_cast<ControlList*>(&other)->copy (start, end);
if (!section->empty()) {
for (iterator i = section->begin(); i != section->end(); ++i) {
_events.push_back (new ControlEvent ((*i)->when, (*i)->value));
}
}
mark_dirty ();
}
ControlList::~ControlList()
{
for (EventList::iterator x = _events.begin(); x != _events.end(); ++x) {
delete (*x);
}
for (list<NascentInfo*>::iterator n = nascent.begin(); n != nascent.end(); ++n) {
for (EventList::iterator x = (*n)->events.begin(); x != (*n)->events.end(); ++x) {
delete *x;
}
delete (*n);
}
delete _curve;
}
boost::shared_ptr<ControlList>
ControlList::create(Parameter id)
{
return boost::shared_ptr<ControlList>(new ControlList(id));
}
bool
ControlList::operator== (const ControlList& other)
{
return _events == other._events;
}
ControlList&
ControlList::operator= (const ControlList& other)
{
if (this != &other) {
_events.clear ();
for (const_iterator i = other._events.begin(); i != other._events.end(); ++i) {
_events.push_back (new ControlEvent (**i));
}
_min_yval = other._min_yval;
_max_yval = other._max_yval;
_max_xval = other._max_xval;
_default_value = other._default_value;
mark_dirty ();
maybe_signal_changed ();
}
return *this;
}
void
ControlList::create_curve()
{
_curve = new Curve(*this);
}
void
ControlList::destroy_curve()
{
delete _curve;
_curve = NULL;
}
void
ControlList::maybe_signal_changed ()
{
mark_dirty ();
if (_frozen) {
_changed_when_thawed = true;
}
}
void
ControlList::clear ()
{
{
Glib::Mutex::Lock lm (_lock);
_events.clear ();
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::x_scale (double factor)
{
Glib::Mutex::Lock lm (_lock);
_x_scale (factor);
}
bool
ControlList::extend_to (double when)
{
Glib::Mutex::Lock lm (_lock);
if (_events.empty() || _events.back()->when == when) {
return false;
}
double factor = when / _events.back()->when;
_x_scale (factor);
return true;
}
void
ControlList::_x_scale (double factor)
{
for (iterator i = _events.begin(); i != _events.end(); ++i) {
(*i)->when = floor ((*i)->when * factor);
}
mark_dirty ();
}
void
ControlList::write_pass_finished (double when)
{
merge_nascent (when);
}
struct ControlEventTimeComparator {
bool operator() (ControlEvent* a, ControlEvent* b) {
return a->when < b->when;
}
};
void
ControlList::merge_nascent (double when)
{
{
Glib::Mutex::Lock lm (_lock);
if (nascent.empty()) {
return;
}
for (list<NascentInfo*>::iterator n = nascent.begin(); n != nascent.end(); ++n) {
NascentInfo* ninfo = *n;
EventList& nascent_events (ninfo->events);
bool need_adjacent_start_clamp;
bool need_adjacent_end_clamp;
if (nascent_events.empty()) {
delete ninfo;
continue;
}
nascent_events.sort (ControlEventTimeComparator ());
if (ninfo->start_time < 0.0) {
ninfo->start_time = nascent_events.front()->when;
}
if (ninfo->end_time < 0.0) {
ninfo->end_time = when;
}
bool preexisting = !_events.empty();
if (!preexisting) {
_events = nascent_events;
} else if (ninfo->end_time < _events.front()->when) {
/* all points in nascent are before the first existing point */
_events.insert (_events.begin(), nascent_events.begin(), nascent_events.end());
} else if (ninfo->start_time > _events.back()->when) {
/* all points in nascent are after the last existing point */
_events.insert (_events.end(), nascent_events.begin(), nascent_events.end());
} else {
/* find the range that overlaps with nascent events,
and insert the contents of nascent events.
*/
iterator i;
iterator range_begin = _events.end();
iterator range_end = _events.end();
double end_value = unlocked_eval (ninfo->end_time);
double start_value = unlocked_eval (ninfo->start_time - 1);
need_adjacent_end_clamp = true;
need_adjacent_start_clamp = true;
for (i = _events.begin(); i != _events.end(); ++i) {
if ((*i)->when == ninfo->start_time) {
/* existing point at same time, remove it
and the consider the next point instead.
*/
i = _events.erase (i);
if (i == _events.end()) {
break;
}
if (range_begin == _events.end()) {
range_begin = i;
need_adjacent_start_clamp = false;
} else {
need_adjacent_end_clamp = false;
}
if ((*i)->when > ninfo->end_time) {
range_end = i;
break;
}
} else if ((*i)->when > ninfo->start_time) {
if (range_begin == _events.end()) {
range_begin = i;
}
if ((*i)->when > ninfo->end_time) {
range_end = i;
break;
}
}
}
/* Now:
range_begin is the first event on our list after the first nascent event
range_end is the first event on our list after the last nascent event
range_begin may be equal to _events.end() iff the last event on our list
was at the same time as the first nascent event.
*/
if (range_begin != _events.begin()) {
/* clamp point before */
if (need_adjacent_start_clamp) {
_events.insert (range_begin, new ControlEvent (ninfo->start_time, start_value));
}
}
_events.insert (range_begin, nascent_events.begin(), nascent_events.end());
if (range_end != _events.end()) {
/* clamp point after */
if (need_adjacent_end_clamp) {
_events.insert (range_begin, new ControlEvent (ninfo->end_time, end_value));
}
}
_events.erase (range_begin, range_end);
}
delete ninfo;
}
nascent.clear ();
if (writing()) {
nascent.push_back (new NascentInfo ());
}
}
maybe_signal_changed ();
}
void
ControlList::rt_add (double when, double value)
{
// this is for automation recording
if (touch_enabled() && !touching()) {
return;
}
//cerr << "RT: alist " << this << " add " << value << " @ " << when << endl;
Glib::Mutex::Lock lm (_lock, Glib::TRY_LOCK);
if (lm.locked()) {
assert (!nascent.empty());
/* we don't worry about adding events out of time order as we will
sort them in merge_nascent.
*/
EventList& el (nascent.back()->events);
if (el.size() > 1 && (when >= el.back()->when) && (value == el.back()->value)) {
/* same value, later timestamp, effective slope is
* zero, so just move the last point in nascent to our
* new time position. this avoids storing an unlimited
* number of points to represent a flat line.
*/
el.back()->when = when;
} else {
nascent.back()->events.push_back (new ControlEvent (when, value));
}
}
}
void
ControlList::thin ()
{
Glib::Mutex::Lock lm (_lock);
ControlEvent* prevprev;
ControlEvent* cur;
ControlEvent* prev;
iterator pprev;
int counter = 0;
for (iterator i = _events.begin(); i != _events.end(); ++i) {
cur = *i;
counter++;
if (counter > 2) {
double area = fabs (0.5 *
(prevprev->when * (prev->value - cur->value)) +
(prev->when * (cur->value - prevprev->value)) +
(cur->when * (prevprev->value - prev->value)));
/* the number 10.0 is an arbitrary value that needs to
* be controlled by some user-controllable
* configuration utility.
*/
if (area < 10.0) {
iterator tmp = pprev;
/* pprev will change to current
i is incremented to the next event
*/
pprev = i;
_events.erase (tmp);
continue;
}
}
prevprev = prev;
prev = cur;
pprev = i;
}
}
void
ControlList::fast_simple_add (double when, double value)
{
/* to be used only for loading pre-sorted data from saved state */
_events.insert (_events.end(), new ControlEvent (when, value));
assert(_events.back());
}
void
ControlList::add (double when, double value)
{
/* this is for making changes from some kind of user interface or
control surface (GUI, MIDI, OSC etc)
*/
if (!clamp_value (when, value)) {
return;
}
{
Glib::Mutex::Lock lm (_lock);
ControlEvent cp (when, 0.0f);
bool insert = true;
iterator insertion_point;
for (insertion_point = lower_bound (_events.begin(), _events.end(), &cp, time_comparator); insertion_point != _events.end(); ++insertion_point) {
/* only one point allowed per time point */
if ((*insertion_point)->when == when) {
(*insertion_point)->value = value;
insert = false;
break;
}
if ((*insertion_point)->when >= when) {
break;
}
}
if (insert) {
_events.insert (insertion_point, new ControlEvent (when, value));
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::erase (iterator i)
{
{
Glib::Mutex::Lock lm (_lock);
_events.erase (i);
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::erase (iterator start, iterator end)
{
{
Glib::Mutex::Lock lm (_lock);
_events.erase (start, end);
mark_dirty ();
}
maybe_signal_changed ();
}
/** Erase the first event which matches the given time and value */
void
ControlList::erase (double when, double value)
{
{
Glib::Mutex::Lock lm (_lock);
iterator i = begin ();
while (i != end() && ((*i)->when != when || (*i)->value != value)) {
++i;
}
if (i != end ()) {
_events.erase (i);
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::reset_range (double start, double endt)
{
bool reset = false;
{
Glib::Mutex::Lock lm (_lock);
ControlEvent cp (start, 0.0f);
iterator s;
iterator e;
if ((s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator)) != _events.end()) {
cp.when = endt;
e = upper_bound (_events.begin(), _events.end(), &cp, time_comparator);
for (iterator i = s; i != e; ++i) {
(*i)->value = _default_value;
}
reset = true;
mark_dirty ();
}
}
if (reset) {
maybe_signal_changed ();
}
}
void
ControlList::erase_range (double start, double endt)
{
bool erased = false;
{
Glib::Mutex::Lock lm (_lock);
erased = erase_range_internal (start, endt, _events);
if (erased) {
mark_dirty ();
}
}
if (erased) {
maybe_signal_changed ();
}
}
bool
ControlList::erase_range_internal (double start, double endt, EventList & events)
{
bool erased = false;
ControlEvent cp (start, 0.0f);
iterator s;
iterator e;
if ((s = lower_bound (events.begin(), events.end(), &cp, time_comparator)) != events.end()) {
cp.when = endt;
e = upper_bound (events.begin(), events.end(), &cp, time_comparator);
events.erase (s, e);
if (s != e) {
erased = true;
}
}
return erased;
}
void
ControlList::slide (iterator before, double distance)
{
{
Glib::Mutex::Lock lm (_lock);
if (before == _events.end()) {
return;
}
while (before != _events.end()) {
(*before)->when += distance;
++before;
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::shift (double pos, double frames)
{
{
Glib::Mutex::Lock lm (_lock);
for (iterator i = _events.begin(); i != _events.end(); ++i) {
if ((*i)->when >= pos) {
(*i)->when += frames;
}
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::modify (iterator iter, double when, double val)
{
/* note: we assume higher level logic is in place to avoid this
reordering the time-order of control events in the list. ie. all
points after *iter are later than when.
*/
{
Glib::Mutex::Lock lm (_lock);
(*iter)->when = when;
(*iter)->value = val;
if (isnan (val)) {
abort ();
}
if (!_frozen) {
_events.sort (event_time_less_than);
} else {
_sort_pending = true;
}
mark_dirty ();
}
maybe_signal_changed ();
}
std::pair<ControlList::iterator,ControlList::iterator>
ControlList::control_points_adjacent (double xval)
{
Glib::Mutex::Lock lm (_lock);
iterator i;
ControlEvent cp (xval, 0.0f);
std::pair<iterator,iterator> ret;
ret.first = _events.end();
ret.second = _events.end();
for (i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator); i != _events.end(); ++i) {
if (ret.first == _events.end()) {
if ((*i)->when >= xval) {
if (i != _events.begin()) {
ret.first = i;
--ret.first;
} else {
return ret;
}
}
}
if ((*i)->when > xval) {
ret.second = i;
break;
}
}
return ret;
}
void
ControlList::set_max_xval (double x)
{
_max_xval = x;
}
void
ControlList::freeze ()
{
_frozen++;
}
void
ControlList::thaw ()
{
assert(_frozen > 0);
if (--_frozen > 0) {
return;
}
{
Glib::Mutex::Lock lm (_lock);
if (_sort_pending) {
_events.sort (event_time_less_than);
_sort_pending = false;
}
}
}
void
ControlList::mark_dirty () const
{
_lookup_cache.left = -1;
_search_cache.left = -1;
if (_curve) {
_curve->mark_dirty();
}
Dirty (); /* EMIT SIGNAL */
}
void
ControlList::truncate_end (double last_coordinate)
{
{
Glib::Mutex::Lock lm (_lock);
ControlEvent cp (last_coordinate, 0);
ControlList::reverse_iterator i;
double last_val;
if (_events.empty()) {
return;
}
if (last_coordinate == _events.back()->when) {
return;
}
if (last_coordinate > _events.back()->when) {
/* extending end:
*/
iterator foo = _events.begin();
bool lessthantwo;
if (foo == _events.end()) {
lessthantwo = true;
} else if (++foo == _events.end()) {
lessthantwo = true;
} else {
lessthantwo = false;
}
if (lessthantwo) {
/* less than 2 points: add a new point */
_events.push_back (new ControlEvent (last_coordinate, _events.back()->value));
} else {
/* more than 2 points: check to see if the last 2 values
are equal. if so, just move the position of the
last point. otherwise, add a new point.
*/
iterator penultimate = _events.end();
--penultimate; /* points at last point */
--penultimate; /* points at the penultimate point */
if (_events.back()->value == (*penultimate)->value) {
_events.back()->when = last_coordinate;
} else {
_events.push_back (new ControlEvent (last_coordinate, _events.back()->value));
}
}
} else {
/* shortening end */
last_val = unlocked_eval (last_coordinate);
last_val = max ((double) _min_yval, last_val);
last_val = min ((double) _max_yval, last_val);
i = _events.rbegin();
/* make i point to the last control point */
++i;
/* now go backwards, removing control points that are
beyond the new last coordinate.
*/
// FIXME: SLOW! (size() == O(n))
uint32_t sz = _events.size();
while (i != _events.rend() && sz > 2) {
ControlList::reverse_iterator tmp;
tmp = i;
++tmp;
if ((*i)->when < last_coordinate) {
break;
}
_events.erase (i.base());
--sz;
i = tmp;
}
_events.back()->when = last_coordinate;
_events.back()->value = last_val;
}
mark_dirty();
}
maybe_signal_changed ();
}
void
ControlList::truncate_start (double overall_length)
{
{
Glib::Mutex::Lock lm (_lock);
iterator i;
double first_legal_value;
double first_legal_coordinate;
assert(!_events.empty());
if (overall_length == _events.back()->when) {
/* no change in overall length */
return;
}
if (overall_length > _events.back()->when) {
/* growing at front: duplicate first point. shift all others */
double shift = overall_length - _events.back()->when;
uint32_t np;
for (np = 0, i = _events.begin(); i != _events.end(); ++i, ++np) {
(*i)->when += shift;
}
if (np < 2) {
/* less than 2 points: add a new point */
_events.push_front (new ControlEvent (0, _events.front()->value));
} else {
/* more than 2 points: check to see if the first 2 values
are equal. if so, just move the position of the
first point. otherwise, add a new point.
*/
iterator second = _events.begin();
++second; /* points at the second point */
if (_events.front()->value == (*second)->value) {
/* first segment is flat, just move start point back to zero */
_events.front()->when = 0;
} else {
/* leave non-flat segment in place, add a new leading point. */
_events.push_front (new ControlEvent (0, _events.front()->value));
}
}
} else {
/* shrinking at front */
first_legal_coordinate = _events.back()->when - overall_length;
first_legal_value = unlocked_eval (first_legal_coordinate);
first_legal_value = max (_min_yval, first_legal_value);
first_legal_value = min (_max_yval, first_legal_value);
/* remove all events earlier than the new "front" */
i = _events.begin();
while (i != _events.end() && !_events.empty()) {
ControlList::iterator tmp;
tmp = i;
++tmp;
if ((*i)->when > first_legal_coordinate) {
break;
}
_events.erase (i);
i = tmp;
}
/* shift all remaining points left to keep their same
relative position
*/
for (i = _events.begin(); i != _events.end(); ++i) {
(*i)->when -= first_legal_coordinate;
}
/* add a new point for the interpolated new value */
_events.push_front (new ControlEvent (0, first_legal_value));
}
mark_dirty();
}
maybe_signal_changed ();
}
double
ControlList::unlocked_eval (double x) const
{
pair<EventList::iterator,EventList::iterator> range;
int32_t npoints;
double lpos, upos;
double lval, uval;
double fraction;
const_iterator length_check_iter = _events.begin();
for (npoints = 0; npoints < 4; ++npoints, ++length_check_iter) {
if (length_check_iter == _events.end()) {
break;
}
}
switch (npoints) {
case 0:
return _default_value;
case 1:
return _events.front()->value;
case 2:
if (x >= _events.back()->when) {
return _events.back()->value;
} else if (x <= _events.front()->when) {
return _events.front()->value;
}
lpos = _events.front()->when;
lval = _events.front()->value;
upos = _events.back()->when;
uval = _events.back()->value;
if (_interpolation == Discrete) {
return lval;
}
/* linear interpolation betweeen the two points */
fraction = (double) (x - lpos) / (double) (upos - lpos);
return lval + (fraction * (uval - lval));
default:
if (x >= _events.back()->when) {
return _events.back()->value;
} else if (x <= _events.front()->when) {
return _events.front()->value;
}
return multipoint_eval (x);
}
/*NOTREACHED*/ /* stupid gcc */
return _default_value;
}
double
ControlList::multipoint_eval (double x) const
{
double upos, lpos;
double uval, lval;
double fraction;
/* "Stepped" lookup (no interpolation) */
/* FIXME: no cache. significant? */
if (_interpolation == Discrete) {
const ControlEvent cp (x, 0);
EventList::const_iterator i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
// shouldn't have made it to multipoint_eval
assert(i != _events.end());
if (i == _events.begin() || (*i)->when == x)
return (*i)->value;
else
return (*(--i))->value;
}
/* Only do the range lookup if x is in a different range than last time
* this was called (or if the lookup cache has been marked "dirty" (left<0) */
if ((_lookup_cache.left < 0) ||
((_lookup_cache.left > x) ||
(_lookup_cache.range.first == _events.end()) ||
((*_lookup_cache.range.second)->when < x))) {
const ControlEvent cp (x, 0);
_lookup_cache.range = equal_range (_events.begin(), _events.end(), &cp, time_comparator);
}
pair<const_iterator,const_iterator> range = _lookup_cache.range;
if (range.first == range.second) {
/* x does not exist within the list as a control point */
_lookup_cache.left = x;
if (range.first != _events.begin()) {
--range.first;
lpos = (*range.first)->when;
lval = (*range.first)->value;
} else {
/* we're before the first point */
// return _default_value;
return _events.front()->value;
}
if (range.second == _events.end()) {
/* we're after the last point */
return _events.back()->value;
}
upos = (*range.second)->when;
uval = (*range.second)->value;
/* linear interpolation betweeen the two points
on either side of x
*/
fraction = (double) (x - lpos) / (double) (upos - lpos);
return lval + (fraction * (uval - lval));
}
/* x is a control point in the data */
_lookup_cache.left = -1;
return (*range.first)->value;
}
void
ControlList::build_search_cache_if_necessary (double start) const
{
/* Only do the range lookup if x is in a different range than last time
* this was called (or if the search cache has been marked "dirty" (left<0) */
if (!_events.empty() && ((_search_cache.left < 0) || (_search_cache.left > start))) {
const ControlEvent start_point (start, 0);
//cerr << "REBUILD: (" << _search_cache.left << ".." << _search_cache.right << ") := ("
// << start << ".." << end << ")" << endl;
_search_cache.first = lower_bound (_events.begin(), _events.end(), &start_point, time_comparator);
_search_cache.left = start;
}
}
/** Get the earliest event after \a start using the current interpolation style.
*
* If an event is found, \a x and \a y are set to its coordinates.
*
* \param inclusive Include events with timestamp exactly equal to \a start
* \return true if event is found (and \a x and \a y are valid).
*/
bool
ControlList::rt_safe_earliest_event (double start, double& x, double& y, bool inclusive) const
{
// FIXME: It would be nice if this was unnecessary..
Glib::Mutex::Lock lm(_lock, Glib::TRY_LOCK);
if (!lm.locked()) {
return false;
}
return rt_safe_earliest_event_unlocked (start, x, y, inclusive);
}
/** Get the earliest event after \a start using the current interpolation style.
*
* If an event is found, \a x and \a y are set to its coordinates.
*
* \param inclusive Include events with timestamp exactly equal to \a start
* \return true if event is found (and \a x and \a y are valid).
*/
bool
ControlList::rt_safe_earliest_event_unlocked (double start, double& x, double& y, bool inclusive) const
{
if (_interpolation == Discrete) {
return rt_safe_earliest_event_discrete_unlocked(start, x, y, inclusive);
} else {
return rt_safe_earliest_event_linear_unlocked(start, x, y, inclusive);
}
}
/** Get the earliest event after \a start without interpolation.
*
* If an event is found, \a x and \a y are set to its coordinates.
*
* \param inclusive Include events with timestamp exactly equal to \a start
* \return true if event is found (and \a x and \a y are valid).
*/
bool
ControlList::rt_safe_earliest_event_discrete_unlocked (double start, double& x, double& y, bool inclusive) const
{
build_search_cache_if_necessary (start);
if (_search_cache.first != _events.end()) {
const ControlEvent* const first = *_search_cache.first;
const bool past_start = (inclusive ? first->when >= start : first->when > start);
/* Earliest points is in range, return it */
if (past_start) {
x = first->when;
y = first->value;
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = x;
++_search_cache.first;
assert(x >= start);
return true;
} else {
return false;
}
/* No points in range */
} else {
return false;
}
}
/** Get the earliest time the line crosses an integer (Linear interpolation).
*
* If an event is found, \a x and \a y are set to its coordinates.
*
* \param inclusive Include events with timestamp exactly equal to \a start
* \return true if event is found (and \a x and \a y are valid).
*/
bool
ControlList::rt_safe_earliest_event_linear_unlocked (double start, double& x, double& y, bool inclusive) const
{
// cout << "earliest_event(start: " << start << ", x: " << x << ", y: " << y << ", inclusive: " << inclusive << ")" << endl;
const_iterator length_check_iter = _events.begin();
if (_events.empty()) { // 0 events
return false;
} else if (_events.end() == ++length_check_iter) { // 1 event
return rt_safe_earliest_event_discrete_unlocked (start, x, y, inclusive);
}
// Hack to avoid infinitely repeating the same event
build_search_cache_if_necessary (start);
if (_search_cache.first != _events.end()) {
const ControlEvent* first = NULL;
const ControlEvent* next = NULL;
/* Step is after first */
if (_search_cache.first == _events.begin() || (*_search_cache.first)->when <= start) {
first = *_search_cache.first;
++_search_cache.first;
if (_search_cache.first == _events.end()) {
return false;
}
next = *_search_cache.first;
/* Step is before first */
} else {
const_iterator prev = _search_cache.first;
--prev;
first = *prev;
next = *_search_cache.first;
}
if (inclusive && first->when == start) {
x = first->when;
y = first->value;
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = x;
//++_search_cache.range.first;
assert(x >= start);
return true;
}
if (fabs(first->value - next->value) <= 1) {
if (next->when > start) {
x = next->when;
y = next->value;
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = x;
//++_search_cache.range.first;
assert(inclusive ? x >= start : x > start);
return true;
} else {
return false;
}
}
const double slope = (next->value - first->value) / (double)(next->when - first->when);
//cerr << "start y: " << start_y << endl;
//y = first->value + (slope * fabs(start - first->when));
y = first->value;
if (first->value < next->value) // ramping up
y = ceil(y);
else // ramping down
y = floor(y);
x = first->when + (y - first->value) / (double)slope;
while ((inclusive && x < start) || (x <= start && y != next->value)) {
if (first->value < next->value) // ramping up
y += 1.0;
else // ramping down
y -= 1.0;
x = first->when + (y - first->value) / (double)slope;
}
/*cerr << first->value << " @ " << first->when << " ... "
<< next->value << " @ " << next->when
<< " = " << y << " @ " << x << endl;*/
assert( (y >= first->value && y <= next->value)
|| (y <= first->value && y >= next->value) );
const bool past_start = (inclusive ? x >= start : x > start);
if (past_start) {
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = x;
assert(inclusive ? x >= start : x > start);
return true;
} else {
return false;
}
/* No points in the future, so no steps (towards them) in the future */
} else {
return false;
}
}
/** @param start Start position in model coordinates.
* @param end End position in model coordinates.
* @param op 0 = cut, 1 = copy, 2 = clear.
*/
boost::shared_ptr<ControlList>
ControlList::cut_copy_clear (double start, double end, int op)
{
boost::shared_ptr<ControlList> nal = create (_parameter);
iterator s, e;
ControlEvent cp (start, 0.0);
{
Glib::Mutex::Lock lm (_lock);
/* first, determine s & e, two iterators that define the range of points
affected by this operation
*/
if ((s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator)) == _events.end()) {
return nal;
}
/* and the last that is at or after `end' */
cp.when = end;
e = upper_bound (_events.begin(), _events.end(), &cp, time_comparator);
/* if "start" isn't the location of an existing point,
evaluate the curve to get a value for the start. Add a point to
both the existing event list, and if its not a "clear" operation,
to the copy ("nal") as well.
Note that the time positions of the points in each list are different
because we want the copy ("nal") to have a zero time reference.
*/
/* before we begin any cut/clear operations, get the value of the curve
at "end".
*/
double end_value = unlocked_eval (end);
if ((*s)->when != start) {
double val = unlocked_eval (start);
if (op == 0) { // cut
if (start > _events.front()->when) {
_events.insert (s, (new ControlEvent (start, val)));
}
}
if (op != 2) { // ! clear
nal->_events.push_back (new ControlEvent (0, val));
}
}
for (iterator x = s; x != e; ) {
/* adjust new points to be relative to start, which
has been set to zero.
*/
if (op != 2) {
nal->_events.push_back (new ControlEvent ((*x)->when - start, (*x)->value));
}
if (op != 1) {
x = _events.erase (x);
} else {
++x;
}
}
if (e == _events.end() || (*e)->when != end) {
/* only add a boundary point if there is a point after "end"
*/
if (op == 0 && (e != _events.end() && end < (*e)->when)) { // cut
_events.insert (e, new ControlEvent (end, end_value));
}
if (op != 2 && (e != _events.end() && end < (*e)->when)) { // cut/copy
nal->_events.push_back (new ControlEvent (end - start, end_value));
}
}
mark_dirty ();
}
if (op != 1) {
maybe_signal_changed ();
}
return nal;
}
boost::shared_ptr<ControlList>
ControlList::cut (double start, double end)
{
return cut_copy_clear (start, end, 0);
}
boost::shared_ptr<ControlList>
ControlList::copy (double start, double end)
{
return cut_copy_clear (start, end, 1);
}
void
ControlList::clear (double start, double end)
{
cut_copy_clear (start, end, 2);
}
/** @param pos Position in model coordinates */
bool
ControlList::paste (ControlList& alist, double pos, float /*times*/)
{
if (alist._events.empty()) {
return false;
}
{
Glib::Mutex::Lock lm (_lock);
iterator where;
iterator prev;
double end = 0;
ControlEvent cp (pos, 0.0);
where = upper_bound (_events.begin(), _events.end(), &cp, time_comparator);
for (iterator i = alist.begin();i != alist.end(); ++i) {
_events.insert (where, new ControlEvent( (*i)->when+pos,( *i)->value));
end = (*i)->when + pos;
}
/* move all points after the insertion along the timeline by
the correct amount.
*/
while (where != _events.end()) {
iterator tmp;
if ((*where)->when <= end) {
tmp = where;
++tmp;
_events.erase(where);
where = tmp;
} else {
break;
}
}
mark_dirty ();
}
maybe_signal_changed ();
return true;
}
/** Move automation around according to a list of region movements.
* @param return true if anything was changed, otherwise false (ie nothing needed changing)
*/
bool
ControlList::move_ranges (const list< RangeMove<double> >& movements)
{
typedef list< RangeMove<double> > RangeMoveList;
{
Glib::Mutex::Lock lm (_lock);
/* a copy of the events list before we started moving stuff around */
EventList old_events = _events;
/* clear the source and destination ranges in the new list */
bool things_erased = false;
for (RangeMoveList::const_iterator i = movements.begin (); i != movements.end (); ++i) {
if (erase_range_internal (i->from, i->from + i->length, _events)) {
things_erased = true;
}
if (erase_range_internal (i->to, i->to + i->length, _events)) {
things_erased = true;
}
}
/* if nothing was erased, there is nothing to do */
if (!things_erased) {
return false;
}
/* copy the events into the new list */
for (RangeMoveList::const_iterator i = movements.begin (); i != movements.end (); ++i) {
iterator j = old_events.begin ();
const double limit = i->from + i->length;
const double dx = i->to - i->from;
while (j != old_events.end () && (*j)->when <= limit) {
if ((*j)->when >= i->from) {
ControlEvent* ev = new ControlEvent (**j);
ev->when += dx;
_events.push_back (ev);
}
++j;
}
}
if (!_frozen) {
_events.sort (event_time_less_than);
} else {
_sort_pending = true;
}
mark_dirty ();
}
maybe_signal_changed ();
return true;
}
void
ControlList::set_interpolation (InterpolationStyle s)
{
if (_interpolation == s) {
return;
}
_interpolation = s;
InterpolationChanged (s); /* EMIT SIGNAL */
}
} // namespace Evoral