13
0
livetrax/libs/gtkmm2/gtk/gtkmm/socket.h
Taybin Rutkin 76450f35b1 Upgraded gtkmm to gtkmm-2.10.7.
git-svn-id: svn://localhost/ardour2/branches/2.1-staging@1416 d708f5d6-7413-0410-9779-e7cbd77b26cf
2007-02-03 04:14:20 +00:00

220 lines
6.6 KiB
C++

// -*- c++ -*-
// Generated by gtkmmproc -- DO NOT MODIFY!
#ifndef _GTKMM_SOCKET_H
#define _GTKMM_SOCKET_H
#include <glibmm.h>
/* $Id$ */
/* Copyright (C) 1998-2002 The gtkmm Development Team
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <gtkmm/container.h>
#include <gdkmm/types.h>
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef struct _GtkSocket GtkSocket;
typedef struct _GtkSocketClass GtkSocketClass;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
namespace Gtk
{ class Socket_Class; } // namespace Gtk
namespace Gtk
{
/** Container for widgets from other processes.
* Together with Gtk::Plug, Gtk::Socket provides the ability to embed
* widgets from one process into another process in a fashion that is
* transparent to the user. One process creates a Gtk::Socket widget and,
* passes the that widget's window ID to the other process, which then
* creates a Gtk::Plug with that window ID. Any widgets contained in the
* Gtk::Plug then will appear inside the first applications window.
*
* The socket's window ID is obtained by using get_id(). Before using this
* function, the socket must have been realized, and for hence, have been
* added to its parent.
*
* @code
* Gtk::Socket socket;
* parent.add(socket);
*
* // The following call is only necessary if one of the ancestors of the
* // socket is not yet visible
* socket.realize();
*
* cout << "The ID of the sockets window is: " << socket.get_id() << endl;
*
* @endcode
*
* Note that if you pass the window ID of the socket to another process that
* will create a plug in the socket, you must make sure that the socket
* widget is not destroyed until that plug is created. Violating this rule
* will cause unpredictable consequences, the most likely consequence being
* that the plug will appear as a separate toplevel window. You can check if
* the plug has been created by examining the plug_window member of the
* GtkSocket structure returned by gobj(). If this field is non-NULL, then
* the plug has been successfully created inside of the socket.
*
* When gtkmm is notified that the embedded window has been destroyed, then
* it will destroy the socket as well. You should always, therefore, be
* prepared for your sockets to be destroyed at any time when the main event
* loop is running.
*
* The communication between a Gtk::Socket and a Gtk::Plug follows the
* XEmbed protocol. This protocol has also been implemented in other
* toolkits, e.g. Qt, allowing the same level of integration when embedding
* a Qt widget in gtkmm or vice versa.
*
* @ingroup Widgets
* @ingroup Containers
*/
class Socket : public Container
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef Socket CppObjectType;
typedef Socket_Class CppClassType;
typedef GtkSocket BaseObjectType;
typedef GtkSocketClass BaseClassType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
virtual ~Socket();
#ifndef DOXYGEN_SHOULD_SKIP_THIS
private:
friend class Socket_Class;
static CppClassType socket_class_;
// noncopyable
Socket(const Socket&);
Socket& operator=(const Socket&);
protected:
explicit Socket(const Glib::ConstructParams& construct_params);
explicit Socket(GtkSocket* castitem);
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
static GType get_type() G_GNUC_CONST;
static GType get_base_type() G_GNUC_CONST;
#endif
///Provides access to the underlying C GtkObject.
GtkSocket* gobj() { return reinterpret_cast<GtkSocket*>(gobject_); }
///Provides access to the underlying C GtkObject.
const GtkSocket* gobj() const { return reinterpret_cast<GtkSocket*>(gobject_); }
public:
//C++ methods used to invoke GTK+ virtual functions:
#ifdef GLIBMM_VFUNCS_ENABLED
#endif //GLIBMM_VFUNCS_ENABLED
protected:
//GTK+ Virtual Functions (override these to change behaviour):
#ifdef GLIBMM_VFUNCS_ENABLED
#endif //GLIBMM_VFUNCS_ENABLED
//Default Signal Handlers::
#ifdef GLIBMM_DEFAULT_SIGNAL_HANDLERS_ENABLED
virtual void on_plug_added();
virtual bool on_plug_removed();
#endif //GLIBMM_DEFAULT_SIGNAL_HANDLERS_ENABLED
private:
//This is not available in on Win32.
//This source file will not be compiled,
//and the class will not be registered in wrap_init.h or wrap_init.cc
public:
Socket();
/** Adds an XEMBED client, such as a Gtk::Plug, to the Gtk::Socket. The
* client may be in the same process or in a different process.
*
* To embed a Gtk::Plug in a Gtk::Socket, you can either create the
* Gtk::Plug with <tt>gtk_plug_new (0)</tt>, call
* Gtk::Plug::get_id() to get the window ID of the plug, and then pass that to the
* add_id(), or you can call get_id() to get the
* window ID for the socket, and call Gtk::Plug::new() passing in that
* ID.
*
* The Gtk::Socket must have already be added into a toplevel window
* before you can make this call.
* @param window_id The window ID of a client participating in the XEMBED protocol.
*/
void add_id(Gdk::NativeWindow window_id);
/** Gets the window ID of a Gtk::Socket widget, which can then
* be used to create a client embedded inside the socket, for
* instance with Gtk::Plug::new().
*
* The Gtk::Socket must have already be added into a toplevel window
* before you can make this call.
* @return The window ID for the socket.
*/
Gdk::NativeWindow get_id() const;
/**
* @par Prototype:
* <tt>void %plug_added()</tt>
*/
Glib::SignalProxy0< void > signal_plug_added();
/**
* @par Prototype:
* <tt>bool %plug_removed()</tt>
*/
Glib::SignalProxy0< bool > signal_plug_removed();
};
} // namespace Gtk
namespace Glib
{
/** @relates Gtk::Socket
* @param object The C instance
* @param take_copy False if the result should take ownership of the C instance. True if it should take a new copy or ref.
* @result A C++ instance that wraps this C instance.
*/
Gtk::Socket* wrap(GtkSocket* object, bool take_copy = false);
} //namespace Glib
#endif /* _GTKMM_SOCKET_H */