13
0
livetrax/gtk2_ardour/pianokeyboard.cc

913 lines
18 KiB
C++

/* Piano-keyboard based on jack-keyboard
*
* Copyright (C) 2019 Robin Gareus <robin@gareus.org>
* Copyright (c) 2007, 2008 Edward Tomasz Napierała <trasz@FreeBSD.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <assert.h>
#include <math.h>
#include <stdint.h>
#include <string.h>
#include <cairo/cairo.h>
#include <pango/pango.h>
#include <pango/pangocairo.h>
#include <gdk/gdkkeysyms.h>
#include <gtk/gtk.h>
#include "gtkmm2ext/keyboard.h"
#include "pianokeyboard.h"
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
#ifndef MIN
# define MIN(A, B) ((A) < (B)) ? (A) : (B)
#endif
#ifndef MAX
# define MAX(A, B) ((A) > (B)) ? (A) : (B)
#endif
#define PIANO_KEYBOARD_DEFAULT_WIDTH 730
#define PIANO_KEYBOARD_DEFAULT_HEIGHT 70
#define PIANO_MIN_NOTE 21
#define PIANO_MAX_NOTE 108
#define OCTAVE_MIN (-1)
#define OCTAVE_MAX (7)
void
APianoKeyboard::annotate_layout (cairo_t* cr, int note) const
{
int nkey = note - _octave * 12;
if (nkey < 0 || nkey >= NNOTES) {
return;
}
const char* key_name = _keyboard_layout.note_binding (nkey);
if (!key_name) {
return;
}
int x = _notes[note].x;
int w = _notes[note].w;
int h = _notes[note].h;
int tw, th;
char buf[32];
snprintf (buf, 16, "%lc",
gdk_keyval_to_unicode (gdk_keyval_to_upper (gdk_keyval_from_name (key_name))));
PangoLayout* pl = pango_cairo_create_layout (cr);
pango_layout_set_font_description (pl, _font_cue);
pango_layout_set_text (pl, buf, -1);
pango_layout_set_alignment (pl, PANGO_ALIGN_LEFT);
pango_layout_get_pixel_size (pl, &tw, &th);
if (_notes[note].white) {
cairo_set_source_rgba (cr, 0.0, 0.0, 0.5, 1.0);
} else {
cairo_set_source_rgba (cr, 1.0, 1.0, 0.5, 1.0);
}
if (tw < w) {
cairo_save (cr);
if (_notes[note].white) {
cairo_move_to (cr, x + (w - tw) / 2, h * 2 / 3 + 3);
} else {
cairo_move_to (cr, x + (w - tw) / 2, h - th - 3);
}
pango_cairo_show_layout (cr, pl);
cairo_restore (cr);
}
g_object_unref (pl);
}
void
APianoKeyboard::annotate_note (cairo_t* cr, int note) const
{
assert ((note % 12) == 0);
int x = _notes[note].x;
int w = _notes[note].w;
int h = _notes[note].h;
int tw, th;
char buf[32];
sprintf (buf, "C%d", (note / 12) - 1);
PangoLayout* pl = pango_cairo_create_layout (cr);
pango_layout_set_font_description (pl, _font_octave);
pango_layout_set_text (pl, buf, -1);
pango_layout_set_alignment (pl, PANGO_ALIGN_LEFT);
pango_layout_get_pixel_size (pl, &tw, &th);
if (th < w && tw < h * .3) {
cairo_save (cr);
cairo_move_to (cr, x + (w - th) / 2, h - 3);
cairo_rotate (cr, M_PI / -2.0);
cairo_set_line_width (cr, 1.0);
cairo_set_source_rgba (cr, 0, 0, 0, 1.0);
pango_cairo_show_layout (cr, pl);
#if 0
cairo_rel_move_to (cr, -.5, -.5);
pango_cairo_update_layout (cr, pl);
cairo_set_source_rgba (cr, 1, 1, 1, 0.3);
pango_cairo_layout_path (cr, pl);
cairo_set_line_width (cr, 1.5);
cairo_stroke (cr);
#endif
cairo_restore (cr);
}
g_object_unref (pl);
}
void
APianoKeyboard::draw_note (cairo_t* cr, int note) const
{
if (note < _min_note || note > _max_note) {
return;
}
int is_white = _notes[note].white;
int x = _notes[note].x;
int w = _notes[note].w;
int h = _notes[note].h;
if (_notes[note].pressed || _notes[note].sustained) {
if (is_white) {
cairo_set_source_rgb (cr, 0.7, 0.5, 0.5);
} else {
cairo_set_source_rgb (cr, 0.6, 0.4, 0.4);
}
} else if (_highlight_grand_piano_range && (note < PIANO_MIN_NOTE || note > PIANO_MAX_NOTE)) {
if (is_white) {
cairo_set_source_rgb (cr, 0.7, 0.7, 0.7);
} else {
cairo_set_source_rgb (cr, 0.3, 0.3, 0.3);
}
} else {
if (is_white) {
cairo_set_source_rgb (cr, 1.0, 1.0, 1.0);
} else {
cairo_set_source_rgb (cr, 0.0, 0.0, 0.0);
}
}
cairo_set_line_width (cr, 1.0);
cairo_rectangle (cr, x, 0, w, h);
cairo_fill (cr);
cairo_set_source_rgb (cr, 0.0f, 0.0f, 0.0f); /* black outline */
cairo_rectangle (cr, x, 0, w, h);
cairo_stroke (cr);
if (_annotate_octave && (note % 12) == 0) {
annotate_note (cr, note);
}
if (_annotate_layout) {
annotate_layout (cr, note);
}
/* We need to redraw black keys that partially obscure the white one. */
if (note < NNOTES - 2 && !_notes[note + 1].white) {
draw_note (cr, note + 1);
}
if (note > 0 && !_notes[note - 1].white) {
draw_note (cr, note - 1);
}
}
void
APianoKeyboard::queue_note_draw (int note)
{
queue_draw_area (_notes[note].x, 0, _notes[note].w, _notes[note].h);
}
void
APianoKeyboard::press_key (int key, int vel)
{
assert (key >= 0);
assert (key < NNOTES);
/* This is for keyboard autorepeat protection. */
if (_notes[key].pressed) {
return;
}
if (_sustain_new_notes) {
_notes[key].sustained = true;
} else {
_notes[key].sustained = false;
}
if (_monophonic && _last_key != key) {
bool signal_off = _notes[_last_key].pressed || _notes[_last_key].sustained;
_notes[_last_key].pressed = false;
_notes[_last_key].sustained = false;
if (signal_off) {
NoteOff (_last_key); /* EMIT SIGNAL */
}
queue_note_draw (_last_key);
}
_last_key = key;
_notes[key].pressed = true;
NoteOn (key, vel); /* EMIT SIGNAL */
queue_note_draw (key);
}
void
APianoKeyboard::release_key (int key)
{
assert (key >= 0);
assert (key < NNOTES);
if (!_notes[key].pressed) {
return;
}
if (_sustain_new_notes) {
_notes[key].sustained = true;
}
_notes[key].pressed = false;
if (_notes[key].sustained) {
return;
}
NoteOff (key); /* EMIT SIGNAL */
queue_note_draw (key);
}
void
APianoKeyboard::stop_unsustained_notes ()
{
for (int i = 0; i < NNOTES; ++i) {
if (_notes[i].pressed && !_notes[i].sustained) {
_notes[i].pressed = false;
NoteOff (i); /* EMIT SIGNAL */
queue_note_draw (i);
}
}
}
void
APianoKeyboard::stop_sustained_notes ()
{
for (int i = 0; i < NNOTES; ++i) {
if (_notes[i].sustained) {
_notes[i].sustained = false;
if (_notes[i].pressed) {
continue;
}
NoteOff (i); /* EMIT SIGNAL */
queue_note_draw (i);
}
}
}
bool
APianoKeyboard::handle_fixed_keys (GdkEventKey* ev)
{
if (ev->type == GDK_KEY_PRESS) {
switch (ev->keyval) {
case GDK_KEY_Left:
SwitchOctave (false);
return true;
case GDK_KEY_Right:
SwitchOctave (true);
return true;
case GDK_KEY_F1:
PitchBend (0, false);
return true;
case GDK_KEY_F2:
PitchBend (4096, false);
return true;
case GDK_KEY_F3:
PitchBend (12288, false);
return true;
case GDK_KEY_F4:
PitchBend (16383, false);
return true;
case GDK_KEY_F5:
SetVelocity (32);
return true;
case GDK_KEY_F6:
SetVelocity (64);
return true;
case GDK_KEY_F7:
SetVelocity (96);
return true;
case GDK_KEY_F8:
SetVelocity (127);
return true;
case GDK_KEY_Down:
PitchBend (0, true);
return true;
case GDK_KEY_Up:
PitchBend (16383, true);
return true;
default:
break;
}
} else if (ev->type == GDK_KEY_RELEASE) {
switch (ev->keyval) {
case GDK_KEY_F1:
/* fallthrough */
case GDK_KEY_F2:
/* fallthrough */
case GDK_KEY_F3:
/* fallthrough */
case GDK_KEY_F4:
PitchBend (8192, false);
break;
case GDK_KEY_Up:
/* fallthrough */
case GDK_KEY_Down:
PitchBend (8192, true);
return true;
default:
break;
}
}
return false;
}
bool
APianoKeyboard::on_key_press_event (GdkEventKey* event)
{
if (Gtkmm2ext::Keyboard::modifier_state_contains (event->state, Gtkmm2ext::Keyboard::PrimaryModifier)) {
return false;
}
if (handle_fixed_keys (event)) {
return true;
}
char const* key = PianoKeyBindings::get_keycode (event);
int note = _keyboard_layout.key_binding (key);
if (note < -1) {
return true;
}
else if (note < 0) {
return false;
}
if (note == 128) {
/* Rest is used on release */
return false;
}
if (note == 129) {
sustain_press ();
return true;
}
std::map<std::string, int>::const_iterator kv = _note_stack.find (key);
if (kv != _note_stack.end ()) {
/* key is already pressed, ignore event.
* this can happen when changing the octave with the mouse
* while playing.
*/
return true;
}
note += _octave * 12;
assert (key);
assert (note >= 0);
assert (note < NNOTES);
_note_stack[key] = note;
press_key (note, _key_velocity);
return true;
}
bool
APianoKeyboard::on_key_release_event (GdkEventKey* event)
{
if (Gtkmm2ext::Keyboard::modifier_state_contains (event->state, Gtkmm2ext::Keyboard::PrimaryModifier)) {
return false;
}
if (handle_fixed_keys (event)) {
return true;
}
char const* key = PianoKeyBindings::get_keycode (event);
if (!key) {
return false;
}
int note = _keyboard_layout.key_binding (key);
if (note == 128) {
Rest (); /* EMIT SIGNAL */
return true;
}
if (note == 129) {
sustain_release ();
return true;
}
if (note < -1) {
return true;
}
std::map<std::string, int>::const_iterator kv = _note_stack.find (key);
if (kv == _note_stack.end ()) {
return note != -1;
}
release_key (kv->second);
_note_stack.erase (key);
return true;
}
int
APianoKeyboard::get_note_for_xy (int x, int y) const
{
int height = get_height ();
int note;
if (y <= ((height * 2) / 3)) { /* might be a black key */
for (note = 0; note <= _max_note; ++note) {
if (_notes[note].white) {
continue;
}
if (x >= _notes[note].x && x <= _notes[note].x + _notes[note].w) {
return note;
}
}
}
for (note = 0; note <= _max_note; ++note) {
if (!_notes[note].white) {
continue;
}
if (x >= _notes[note].x && x <= _notes[note].x + _notes[note].w) {
return note;
}
}
return -1;
}
int
APianoKeyboard::get_velocity_for_note_at_y (int note, int y) const
{
if (note < 0) {
return 0;
}
int vel = _min_velocity + (_max_velocity - _min_velocity) * y / _notes[note].h;
if (vel < 1) {
return 1;
} else if (vel > 127) {
return 127;
}
return vel;
}
bool
APianoKeyboard::on_button_press_event (GdkEventButton* event)
{
int x = event->x;
int y = event->y;
int note = get_note_for_xy (x, y);
if (event->button != 1)
return true;
if (event->type == GDK_BUTTON_PRESS) {
if (note < 0) {
return true;
}
if (_note_being_pressed_using_mouse >= 0) {
release_key (_note_being_pressed_using_mouse);
}
press_key (note, get_velocity_for_note_at_y (note, y));
_note_being_pressed_using_mouse = note;
} else if (event->type == GDK_BUTTON_RELEASE) {
if (note >= 0) {
release_key (note);
} else {
if (_note_being_pressed_using_mouse >= 0) {
release_key (_note_being_pressed_using_mouse);
}
}
_note_being_pressed_using_mouse = -1;
}
return true;
}
bool
APianoKeyboard::on_button_release_event (GdkEventButton* event)
{
return on_button_press_event (event);
}
bool
APianoKeyboard::on_motion_notify_event (GdkEventMotion* event)
{
int note;
if ((event->state & GDK_BUTTON1_MASK) == 0)
return true;
int x = event->x;
int y = event->y;
note = get_note_for_xy (x, y);
if (note != _note_being_pressed_using_mouse && note >= 0) {
if (_note_being_pressed_using_mouse >= 0) {
release_key (_note_being_pressed_using_mouse);
}
press_key (note, get_velocity_for_note_at_y (note, y));
_note_being_pressed_using_mouse = note;
}
return true;
}
bool
APianoKeyboard::on_expose_event (GdkEventExpose* event)
{
cairo_t* cr = gdk_cairo_create (GDK_DRAWABLE (get_window ()->gobj ()));
cairo_rectangle (cr, event->area.x, event->area.y, event->area.width, event->area.height);
cairo_clip (cr);
char buf[32];
sprintf (buf, "ArdourMono %dpx", MAX (8, MIN (20, _notes[1].w / 2 + 3)));
_font_cue = pango_font_description_from_string (buf);
sprintf (buf, "ArdourMono %dpx", MAX (8, MIN (20, MIN (_notes[0].w * 11 / 15 , _notes[0].h / 7))));
_font_octave = pango_font_description_from_string (buf);
for (int i = 0; i < NNOTES; ++i) {
GdkRectangle r;
r.x = _notes[i].x;
r.y = 0;
r.width = _notes[i].w;
r.height = _notes[i].h;
switch (gdk_region_rect_in (event->region, &r)) {
case GDK_OVERLAP_RECTANGLE_PART:
case GDK_OVERLAP_RECTANGLE_IN:
draw_note (cr, i);
break;
default:
break;
}
}
pango_font_description_free (_font_cue);
pango_font_description_free (_font_octave);
cairo_destroy (cr);
return true;
}
void
APianoKeyboard::on_size_request (Gtk::Requisition* requisition)
{
requisition->width = PIANO_KEYBOARD_DEFAULT_WIDTH;
requisition->height = PIANO_KEYBOARD_DEFAULT_HEIGHT;
if (_annotate_layout) {
requisition->height += 16;
}
if (_annotate_octave) {
requisition->height += 24;
}
}
int
APianoKeyboard::is_black (int key) const
{
int note_in_octave = key % 12;
switch (note_in_octave) {
case 1:
case 3:
case 6:
case 8:
case 10:
return 1;
default:
return 0;
}
return 0;
}
double
APianoKeyboard::black_key_left_shift (int key) const
{
int note_in_octave = key % 12;
switch (note_in_octave) {
case 1:
return 2.0 / 3.0;
case 3:
return 1.0 / 3.0;
case 6:
return 2.0 / 3.0;
case 8:
return 0.5;
case 10:
return 1.0 / 3.0;
default:
return 0;
}
return 0;
}
void
APianoKeyboard::recompute_dimensions ()
{
int note;
int number_of_white_keys = 0;
int skipped_white_keys = 0;
for (note = _min_note; note <= _max_note; ++note) {
if (!is_black (note)) {
++number_of_white_keys;
}
}
for (note = 0; note < _min_note; ++note) {
if (!is_black (note)) {
++skipped_white_keys;
}
}
assert (number_of_white_keys > 0);
int width = get_width ();
int height = get_height ();
int key_width = width / number_of_white_keys;
int black_key_width = key_width * 0.8;
int useful_width = number_of_white_keys * key_width;
int widget_margin = (width - useful_width) / 2;
int white_key;
for (note = 0, white_key = -skipped_white_keys; note < NNOTES; ++note) {
if (is_black (note)) {
/* This note is black key. */
_notes[note].x = widget_margin +
(white_key * key_width) -
(black_key_width * black_key_left_shift (note));
_notes[note].w = black_key_width;
_notes[note].h = (height * 2) / 3;
_notes[note].white = 0;
continue;
}
/* This note is white key. */
_notes[note].x = widget_margin + white_key * key_width;
_notes[note].w = key_width;
_notes[note].h = height;
_notes[note].white = 1;
white_key++;
}
}
void
APianoKeyboard::on_size_allocate (Gtk::Allocation& allocation)
{
DrawingArea::on_size_allocate (allocation);
recompute_dimensions ();
}
APianoKeyboard::APianoKeyboard ()
{
using namespace Gdk;
add_events (KEY_PRESS_MASK | KEY_RELEASE_MASK | BUTTON_PRESS_MASK | BUTTON_RELEASE_MASK | POINTER_MOTION_MASK | POINTER_MOTION_HINT_MASK);
_sustain_new_notes = false;
_highlight_grand_piano_range = true;
_annotate_layout = false;
_annotate_octave = false;
_octave = 4;
_octave_range = 7;
_note_being_pressed_using_mouse = -1;
_min_note = 0;
_max_note = 127;
_last_key = 0;
_monophonic = false;
_min_velocity = 1;
_max_velocity = 127;
_key_velocity = 100;
}
APianoKeyboard::~APianoKeyboard ()
{
}
void
APianoKeyboard::set_grand_piano_highlight (bool enabled)
{
_highlight_grand_piano_range = enabled;
queue_draw ();
}
void
APianoKeyboard::set_annotate_layout (bool enabled)
{
_annotate_layout = enabled;
queue_draw ();
}
void
APianoKeyboard::set_annotate_octave (bool enabled)
{
_annotate_octave = enabled;
queue_draw ();
}
void
APianoKeyboard::set_monophonic (bool monophonic)
{
_monophonic = monophonic;
}
void
APianoKeyboard::set_velocities (int min_vel, int max_vel, int key_vel)
{
if (min_vel <= max_vel && min_vel > 0 && max_vel < 128) {
_min_velocity = min_vel;
_max_velocity = max_vel;
}
if (key_vel > 0 && key_vel < 128) {
_key_velocity = key_vel;
}
}
void
APianoKeyboard::sustain_press ()
{
if (_sustain_new_notes) {
return;
}
_sustain_new_notes = true;
SustainChanged (true); /* EMIT SIGNAL */
}
void
APianoKeyboard::sustain_release ()
{
stop_sustained_notes ();
if (_sustain_new_notes) {
_sustain_new_notes = false;
SustainChanged (false); /* EMIT SIGNAL */
}
}
void
APianoKeyboard::reset ()
{
sustain_release ();
stop_unsustained_notes ();
}
void
APianoKeyboard::set_note_on (int note)
{
if (!_notes[note].pressed) {
_notes[note].pressed = true;
queue_note_draw (note);
}
}
void
APianoKeyboard::set_note_off (int note)
{
if (_notes[note].pressed || _notes[note].sustained) {
_notes[note].pressed = false;
_notes[note].sustained = false;
queue_note_draw (note);
}
}
void
APianoKeyboard::set_octave (int octave)
{
if (octave < -1) {
octave = -1;
} else if (octave > 7) {
octave = 7;
}
_octave = octave;
set_octave_range (_octave_range);
}
void
APianoKeyboard::set_octave_range (int octave_range)
{
if (octave_range < 2) {
octave_range = 2;
}
if (octave_range > 11) {
octave_range = 11;
}
_octave_range = octave_range;
/* -1 <= _octave <= 7
* key-bindings are at offset 12 .. 40
* default piano range: _octave = 4, range = 7 -> note 21..108
*/
switch (_octave_range) {
default:
assert (0);
break;
case 2:
case 3:
_min_note = (_octave + 1) * 12;
break;
case 4:
case 5:
_min_note = (_octave + 0) * 12;
break;
case 6:
_min_note = (_octave - 1) * 12;
break;
case 7:
case 8:
_min_note = (_octave - 2) * 12;
break;
case 9:
case 10:
_min_note = (_octave - 3) * 12;
break;
case 11:
_min_note = (_octave - 4) * 12;
break;
}
int upper_offset = 0;
if (_min_note < 3) {
upper_offset = 0;
_min_note = 0;
} else if (_octave_range > 5) {
/* extend down to A */
upper_offset = 3;
_min_note -= 3;
}
_max_note = MIN (127, upper_offset + _min_note + _octave_range * 12);
if (_max_note == 127) {
_min_note = MAX (0, _max_note - _octave_range * 12);
}
recompute_dimensions ();
queue_draw ();
}
void
APianoKeyboard::set_keyboard_layout (PianoKeyBindings::Layout layout)
{
_keyboard_layout.set_layout (layout);
queue_draw ();
}