13
0
livetrax/libs/ardour/amp.cc
Robin Gareus bfd50cdeb0 rework MIDI [processor|plugin] chain
* forward midi-data around plugins that have no MIDI-out
* allow to insert plugins with no MIDI-input at a point with one MIDI-channel

This works because excess ports (both plugin and route) remain
unconnected and use scratch-buffers.

Tested with LV2, LXVST and LADSPA.
(AU plugins with variable in/out retain the old behavior, no bypass)

fixes http://tracker.ardour.org/view.php?id=5630
2013-08-02 03:39:00 +02:00

490 lines
12 KiB
C++

/*
Copyright (C) 2006 Paul Davis
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include "evoral/Curve.hpp"
#include "ardour/amp.h"
#include "ardour/audio_buffer.h"
#include "ardour/buffer_set.h"
#include "ardour/midi_buffer.h"
#include "ardour/session.h"
#include "i18n.h"
using namespace ARDOUR;
using namespace PBD;
using std::min;
/* gain range of -inf to +6dB, default 0dB */
const float Amp::max_gain_coefficient = 1.99526231f;
Amp::Amp (Session& s)
: Processor(s, "Amp")
, _apply_gain(true)
, _apply_gain_automation(false)
, _current_gain(1.0)
, _gain_automation_buffer(0)
{
Evoral::Parameter p (GainAutomation);
p.set_range (0, max_gain_coefficient, 1, false);
boost::shared_ptr<AutomationList> gl (new AutomationList (p));
_gain_control = boost::shared_ptr<GainControl> (new GainControl (X_("gaincontrol"), s, this, p, gl));
_gain_control->set_flags (Controllable::GainLike);
add_control(_gain_control);
}
std::string
Amp::display_name() const
{
return _("Fader");
}
bool
Amp::can_support_io_configuration (const ChanCount& in, ChanCount& out)
{
out = in;
return true;
}
bool
Amp::configure_io (ChanCount in, ChanCount out)
{
if (out != in) { // always 1:1
return false;
}
return Processor::configure_io (in, out);
}
void
Amp::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool)
{
if (!_active && !_pending_active) {
return;
}
if (_apply_gain) {
if (_apply_gain_automation) {
gain_t* gab = _gain_automation_buffer;
assert (gab);
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
Sample* const sp = i->data();
for (pframes_t nx = 0; nx < nframes; ++nx) {
sp[nx] *= gab[nx];
}
}
_current_gain = gab[nframes-1];
} else { /* manual (scalar) gain */
gain_t const dg = _gain_control->user_double();
if (_current_gain != dg) {
Amp::apply_gain (bufs, nframes, _current_gain, dg);
_current_gain = dg;
} else if (_current_gain != 1.0f) {
/* gain has not changed, but its non-unity
*/
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) {
Evoral::MIDIEvent<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on()) {
ev.scale_velocity (_current_gain);
}
}
}
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
apply_gain_to_buffer (i->data(), nframes, _current_gain);
}
}
}
}
_active = _pending_active;
}
void
Amp::apply_gain (BufferSet& bufs, framecnt_t nframes, gain_t initial, gain_t target)
{
/** Apply a (potentially) declicked gain to the buffers of @a bufs
*/
if (nframes == 0 || bufs.count().n_total() == 0) {
return;
}
// if we don't need to declick, defer to apply_simple_gain
if (initial == target) {
apply_simple_gain (bufs, nframes, target);
return;
}
const framecnt_t declick = std::min ((framecnt_t) 128, nframes);
gain_t delta;
double fractional_shift = -1.0/declick;
double fractional_pos;
if (target < initial) {
/* fade out: remove more and more of delta from initial */
delta = -(initial - target);
} else {
/* fade in: add more and more of delta from initial */
delta = target - initial;
}
/* MIDI Gain */
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) {
Evoral::MIDIEvent<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on()) {
const gain_t scale = delta * (ev.time()/(double) nframes);
ev.scale_velocity (initial+scale);
}
}
}
/* Audio Gain */
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
Sample* const buffer = i->data();
fractional_pos = 1.0;
for (pframes_t nx = 0; nx < declick; ++nx) {
buffer[nx] *= (initial + (delta * (0.5 + 0.5 * cos (M_PI * fractional_pos))));
fractional_pos += fractional_shift;
}
/* now ensure the rest of the buffer has the target value applied, if necessary. */
if (declick != nframes) {
if (target == 0.0) {
memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick));
} else if (target != 1.0) {
apply_gain_to_buffer (&buffer[declick], nframes - declick, target);
}
}
}
}
void
Amp::declick (BufferSet& bufs, framecnt_t nframes, int dir)
{
/* Almost exactly like ::apply_gain() but skips MIDI buffers and has fixed initial+target
values.
*/
if (nframes == 0 || bufs.count().n_total() == 0) {
return;
}
const framecnt_t declick = std::min ((framecnt_t) 128, nframes);
gain_t delta, initial, target;
double fractional_shift = -1.0/(declick-1);
double fractional_pos;
if (dir < 0) {
/* fade out: remove more and more of delta from initial */
delta = -1.0;
initial = 1.0;
target = 0.0;
} else {
/* fade in: add more and more of delta from initial */
delta = 1.0;
initial = 0.0;
target = 1.0;
}
/* Audio Gain */
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
Sample* const buffer = i->data();
fractional_pos = 1.0;
for (pframes_t nx = 0; nx < declick; ++nx) {
buffer[nx] *= (initial + (delta * (0.5 + 0.5 * cos (M_PI * fractional_pos))));
fractional_pos += fractional_shift;
}
/* now ensure the rest of the buffer has the target value applied, if necessary. */
if (declick != nframes) {
if (target == 0.0) {
memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick));
} else if (target != 1.0) {
apply_gain_to_buffer (&buffer[declick], nframes - declick, target);
}
}
}
}
void
Amp::apply_gain (AudioBuffer& buf, framecnt_t nframes, gain_t initial, gain_t target)
{
/** Apply a (potentially) declicked gain to the contents of @a buf
*/
if (nframes == 0) {
return;
}
// if we don't need to declick, defer to apply_simple_gain
if (initial == target) {
apply_simple_gain (buf, nframes, target);
return;
}
const framecnt_t declick = std::min ((framecnt_t) 128, nframes);
gain_t delta;
double fractional_shift = -1.0/declick;
double fractional_pos;
if (target < initial) {
/* fade out: remove more and more of delta from initial */
delta = -(initial - target);
} else {
/* fade in: add more and more of delta from initial */
delta = target - initial;
}
Sample* const buffer = buf.data();
fractional_pos = 1.0;
for (pframes_t nx = 0; nx < declick; ++nx) {
buffer[nx] *= (initial + (delta * (0.5 + 0.5 * cos (M_PI * fractional_pos))));
fractional_pos += fractional_shift;
}
/* now ensure the rest of the buffer has the target value applied, if necessary. */
if (declick != nframes) {
if (target == 0.0) {
memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick));
} else if (target != 1.0) {
apply_gain_to_buffer (&buffer[declick], nframes - declick, target);
}
}
}
void
Amp::apply_simple_gain (BufferSet& bufs, framecnt_t nframes, gain_t target)
{
if (target == 0.0) {
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) {
Evoral::MIDIEvent<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on()) {
ev.set_velocity (0);
}
}
}
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
memset (i->data(), 0, sizeof (Sample) * nframes);
}
} else if (target != 1.0) {
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) {
Evoral::MIDIEvent<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on()) {
ev.scale_velocity (target);
}
}
}
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
apply_gain_to_buffer (i->data(), nframes, target);
}
}
}
void
Amp::apply_simple_gain (AudioBuffer& buf, framecnt_t nframes, gain_t target)
{
if (target == 0.0) {
memset (buf.data(), 0, sizeof (Sample) * nframes);
} else if (target != 1.0) {
apply_gain_to_buffer (buf.data(), nframes, target);
}
}
void
Amp::inc_gain (gain_t factor, void *src)
{
float desired_gain = _gain_control->user_double();
if (desired_gain == 0.0f) {
set_gain (0.000001f + (0.000001f * factor), src);
} else {
set_gain (desired_gain + (desired_gain * factor), src);
}
}
void
Amp::set_gain (gain_t val, void *src)
{
val = min (val, max_gain_coefficient);
if (src != _gain_control.get()) {
_gain_control->set_value (val);
// bit twisty, this will come back and call us again
// (this keeps control in sync with reality)
return;
}
_gain_control->set_double (val);
_session.set_dirty();
}
XMLNode&
Amp::state (bool full_state)
{
XMLNode& node (Processor::state (full_state));
node.add_property("type", "amp");
node.add_child_nocopy (_gain_control->get_state());
return node;
}
int
Amp::set_state (const XMLNode& node, int version)
{
XMLNode* gain_node;
Processor::set_state (node, version);
if ((gain_node = node.child (Controllable::xml_node_name.c_str())) != 0) {
_gain_control->set_state (*gain_node, version);
}
return 0;
}
void
Amp::GainControl::set_value (double val)
{
if (val > max_gain_coefficient) {
val = max_gain_coefficient;
}
_amp->set_gain (val, this);
AutomationControl::set_value(val);
}
double
Amp::GainControl::internal_to_interface (double v) const
{
return gain_to_slider_position (v);
}
double
Amp::GainControl::interface_to_internal (double v) const
{
return slider_position_to_gain (v);
}
double
Amp::GainControl::internal_to_user (double v) const
{
return accurate_coefficient_to_dB (v);
}
/** Write gain automation for this cycle into the buffer previously passed in to
* set_gain_automation_buffer (if we are in automation playback mode and the
* transport is rolling).
*/
void
Amp::setup_gain_automation (framepos_t start_frame, framepos_t end_frame, framecnt_t nframes)
{
Glib::Threads::Mutex::Lock am (control_lock(), Glib::Threads::TRY_LOCK);
if (am.locked() && _session.transport_rolling() && _gain_control->automation_playback()) {
assert (_gain_automation_buffer);
_apply_gain_automation = _gain_control->list()->curve().rt_safe_get_vector (
start_frame, end_frame, _gain_automation_buffer, nframes);
} else {
_apply_gain_automation = false;
}
}
bool
Amp::visible() const
{
return true;
}
std::string
Amp::value_as_string (boost::shared_ptr<AutomationControl> ac) const
{
if (ac == _gain_control) {
char buffer[32];
snprintf (buffer, sizeof (buffer), "%.2fdB", ac->internal_to_user (ac->get_value ()));
return buffer;
}
return Automatable::value_as_string (ac);
}
/** Sets up the buffer that setup_gain_automation and ::run will use for
* gain automationc curves. Must be called before setup_gain_automation,
* and must be called with process lock held.
*/
void
Amp::set_gain_automation_buffer (gain_t* g)
{
_gain_automation_buffer = g;
}