13
0
livetrax/libs/backends/wavesaudio/wavesapi/threads/WCThreadSafe.cpp
John Emmas 18245b06d0 'atomic_ops' to use glib, rather than Waves's inbuilt atomic operations
Note that the following source files can be removed once we know this works on all platforms:-
backends/wavesaudio/wavesapi/akupara/threading/atomic_ops.hpp
backends/wavesaudio/wavesapi/akupara/threading/atomic_ops_gcc_x96.hpp
backends/wavesaudio/wavesapi/akupara/basics.hpp
backends/wavesaudio/wavesapi/akupara/compiletime_functions.hpp
2014-05-06 09:41:40 +01:00

827 lines
28 KiB
C++

#include "Threads/WCThreadSafe.h"
#include <glib.h>
#if XPLATFORMTHREADS_WINDOWS
#define _WIN32_WINNT 0x0500 // need at least Windows2000 (for TryEnterCriticalSection() and SignalObjectAndWait()
#include "IncludeWindows.h"
#include <process.h>
#endif // XPLATFORMTHREADS_WINDOWS
#if defined(__APPLE__)
#include <CoreServices/CoreServices.h>
#include <stdio.h>
#endif // __APPLE__
#if XPLATFORMTHREADS_POSIX
#include </usr/include/unistd.h> // avoid the framework version and use the /usr/include version
#include <pthread.h>
#include <sched.h>
#include <sys/time.h>
#include <errno.h>
#include <signal.h>
// We do this externs because <stdio.h> comes from MSL
extern "C" FILE *popen(const char *command, const char *type);
extern "C" int pclose(FILE *stream);
static int (*BSDfread)( void *, size_t, size_t, FILE * ) = 0;
#include <string.h>
#endif //XPLATFORMTHREADS_POSIX
namespace wvNS {
static const unsigned int knMicrosecondsPerSecond = 1000*1000;
static const unsigned int knNanosecondsPerMicrosecond = 1000;
static const unsigned int knNanosecondsPerSecond = knMicrosecondsPerSecond*knNanosecondsPerMicrosecond;
namespace wvThread
{
//--------------------------------------------------------------------------------
static inline bool EnsureThreadingInitialized()
{
bool bRetval = true;
return bRetval;
}
//--------------------------------------------------------------------------------
//--------------------------------------------------------------------------------
static uint32_t CalculateTicksPerMicrosecond();
static uint32_t CalculateTicksPerMicrosecond()
{
uint32_t nTicksPerMicrosecond=0;
#if defined(_WIN32)
LARGE_INTEGER TSC;
::QueryPerformanceFrequency(&TSC);
nTicksPerMicrosecond = uint32_t (TSC.QuadPart / knMicrosecondsPerSecond);
#elif defined(__linux__) && defined(__i386__)
static const timediff sktd_TSC_MeasurementPeriod = 40*1000; // delay for CalculateTicksPerMicrosecond() to measure the TSC frequency
uint64_t Tstart, Tend;
timeval tvtmp, tvstart, tvend;
//--------------------- begin measurement code
// poll to align to a tick of gettimeofday
::gettimeofday(&tvtmp,0);
do {
::gettimeofday(&tvstart,0);
__asm__ __volatile__ (".byte 0x0f, 0x31" : "=A" (Tstart)); // RDTSC
} while (tvtmp.tv_usec!=tvstart.tv_usec);
// delay some
::usleep(sktd_TSC_MeasurementPeriod);
//
::gettimeofday(&tvtmp,0);
do {
::gettimeofday(&tvend,0);
__asm__ __volatile__ (".byte 0x0f, 0x31" : "=A" (Tend)); // RDTSC
} while (tvtmp.tv_usec!=tvend.tv_usec);
//--------------------- end measurement code
suseconds_t elapsed_usec = (tvend.tv_sec-tvstart.tv_sec)*knMicrosecondsPerSecond + (tvend.tv_usec-tvstart.tv_usec);
uint64_t elapsed_ticks = Tend-Tstart;
nTicksPerMicrosecond = uint32_t (elapsed_ticks/elapsed_usec);
#endif
return nTicksPerMicrosecond;
}
#if defined(__APPLE__) //&& !defined(__MACH__)
bool FindNetInterfaceByIPAddress(const char *sIP, char *sInterface) // sIP and sInterface are both char[16]
{
FILE *fProcess , *pSubcall;
char sLine[256]="", *pToken, sCommand[150];
bool res = false;
int iret;
fProcess = popen("ifconfig -l inet", "r");
if (fProcess)
{
memset(sInterface, '\0', 16);
iret = BSDfread(sLine, sizeof(char), sizeof(sLine), fProcess);
pToken = strtok(sLine, " ");
while (pToken)
{
sprintf(sCommand, "ifconfig %s | grep \"inet %s \"", pToken, sIP);
pSubcall = popen(sCommand, "r");
if (pSubcall)
{
char sSubline[100]="";
if (BSDfread(sSubline, sizeof(char), sizeof(sSubline), pSubcall))
{
// found
strcpy(sInterface, pToken);
res = true;
pclose(pSubcall);
break;
}
}
pclose(pSubcall);
pToken = strtok(NULL, " ");
}
}
pclose(fProcess);
return res;
}
#endif // MACOS
timestamp now(void)
{
EnsureThreadingInitialized();
static const uint32_t nTicksPerMicrosecond = CalculateTicksPerMicrosecond();
#if defined(_WIN32)
if (nTicksPerMicrosecond)
{
LARGE_INTEGER TSC;
::QueryPerformanceCounter(&TSC);
return timestamp(uint32_t(TSC.QuadPart/nTicksPerMicrosecond));
}
else return timestamp(0);
#elif defined(__APPLE__)
if (nTicksPerMicrosecond) {} // prevent 'unused' warnings
UnsignedWide usecs;
::Microseconds(&usecs);
return timestamp(usecs.lo);
#elif defined(__linux__) && defined(__i386__) && defined(__gnu_linux__)
uint64_t TSC;
__asm__ __volatile__ (".byte 0x0f, 0x31" : "=A" (TSC)); // RDTSC
return timestamp(TSC/nTicksPerMicrosecond);
#elif defined(__linux__) && defined(__PPC__) && defined(__gnu_linux__)
#warning need to implement maybe
#else
#error Dont know how to get microseconds timer !
#endif // defined(_WIN32)
}
void sleep_milliseconds(unsigned int nMillisecs)
{
EnsureThreadingInitialized();
#if XPLATFORMTHREADS_WINDOWS
::Sleep(nMillisecs);
#elif XPLATFORMTHREADS_POSIX
::usleep(nMillisecs*1000);
#else
#error Not implemented for your OS
#endif
}
#if XPLATFORMTHREADS_WINDOWS
inline DWORD win32_milliseconds(timediff td) { return (td+499)/1000; }
#endif
void sleep(timediff _td)
{
if (_td>0)
{
EnsureThreadingInitialized();
#if XPLATFORMTHREADS_WINDOWS
::Sleep(win32_milliseconds(_td)); // This is the best we can do in windows
#elif XPLATFORMTHREADS_POSIX
::usleep(_td);
#else
#error Not implemented for your OS
#endif
}
}
#if XPLATFORMTHREADS_WINDOWS
void yield() { ::Sleep(0); }
#elif XPLATFORMTHREADS_POSIX
void yield() { ::sched_yield(); }
#endif
class ThreadMutexInited::OSDependentMutex : public noncopyableobject
{
#if defined (XPLATFORMTHREADS_WINDOWS)
protected:
CRITICAL_SECTION m_critsec;
public:
inline OSDependentMutex() { EnsureThreadingInitialized(); ::InitializeCriticalSection(&m_critsec); }
inline ~OSDependentMutex() { EnsureThreadingInitialized(); ::DeleteCriticalSection (&m_critsec); }
inline void obtain() { EnsureThreadingInitialized(); ::EnterCriticalSection (&m_critsec); }
inline void release() { EnsureThreadingInitialized(); ::LeaveCriticalSection (&m_critsec); }
inline bool tryobtain() { EnsureThreadingInitialized(); return TryEnterCriticalSection(&m_critsec)!=FALSE; }
#elif defined (XPLATFORMTHREADS_POSIX)
protected:
pthread_mutex_t m_ptmutex;
public:
inline OSDependentMutex()
{
EnsureThreadingInitialized();
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
::pthread_mutex_init (&m_ptmutex, &attr);
}
inline ~OSDependentMutex() { EnsureThreadingInitialized(); ::pthread_mutex_destroy(&m_ptmutex); }
inline void obtain() { EnsureThreadingInitialized(); ::pthread_mutex_lock (&m_ptmutex); }
inline void release() { EnsureThreadingInitialized(); ::pthread_mutex_unlock (&m_ptmutex); }
inline bool tryobtain() { EnsureThreadingInitialized(); return ::pthread_mutex_trylock(&m_ptmutex)!=EBUSY; }
#endif
};
ThreadMutexInited::ThreadMutexInited() :
m_osdmutex(0) {}
void ThreadMutexInited::init()
{
if (! is_init())
{
m_osdmutex = new OSDependentMutex;
}
}
void ThreadMutexInited::uninit()
{
if (is_init())
{
delete m_osdmutex;
m_osdmutex = 0;
}
}
ThreadMutexInited::~ThreadMutexInited()
{
uninit();
}
void ThreadMutexInited::obtain()
{
if (is_init())
{
m_osdmutex->obtain();
}
}
void ThreadMutexInited::release()
{
if (is_init())
{
m_osdmutex->release();
}
}
bool ThreadMutexInited::tryobtain()
{
bool retVal = true;
if (is_init())
{
retVal = m_osdmutex->tryobtain();
}
return retVal;
}
class ThreadConditionSignal::OSDependentObject : public noncopyableobject
{
#if defined (XPLATFORMTHREADS_POSIX)
protected:
pthread_cond_t m_ptcond;
pthread_mutex_t m_ptmutex;
public:
inline OSDependentObject()
{
EnsureThreadingInitialized();
::pthread_mutex_init(&m_ptmutex,0);
::pthread_cond_init(&m_ptcond, 0);
}
inline ~OSDependentObject() { ::pthread_cond_destroy(&m_ptcond), ::pthread_mutex_destroy(&m_ptmutex); }
inline void signal_unicast() { ::pthread_cond_signal(&m_ptcond); }
inline void signal_broadcast() { ::pthread_cond_broadcast(&m_ptcond); }
inline void await_signal() { ::pthread_cond_wait(&m_ptcond, &m_ptmutex); }
inline bool await_signal(timediff td)
{
timespec tspecDeadline;
timeval tvNow;
::gettimeofday(&tvNow,0);
tspecDeadline.tv_nsec = (tvNow.tv_usec + td%knMicrosecondsPerSecond)*knNanosecondsPerMicrosecond;
tspecDeadline.tv_sec = tvNow.tv_sec + td/knMicrosecondsPerSecond;
if (!(tspecDeadline.tv_nsec < suseconds_t(knNanosecondsPerSecond)))
++tspecDeadline.tv_sec, tspecDeadline.tv_nsec-=knNanosecondsPerSecond;
return ::pthread_cond_timedwait(&m_ptcond, &m_ptmutex, &tspecDeadline) != ETIMEDOUT;
}
void obtain_mutex() { ::pthread_mutex_lock(&m_ptmutex); }
bool tryobtain_mutex() { return ::pthread_mutex_trylock(&m_ptmutex)!=EBUSY; }
void release_mutex() { ::pthread_mutex_unlock(&m_ptmutex); }
#elif XPLATFORMTHREADS_WINDOWS
protected:
unsigned int m_nWaiterCount;
CRITICAL_SECTION m_csectWaiterCount;
HANDLE m_hndSemaphoreSignaller; // We keep this semaphore always at 0 count (non-signalled). We use it to release a controlled number of threads.
HANDLE m_hndEventAllWaitersReleased; // auto-reset
HANDLE m_hndMutex; // the mutex associated with the condition
bool m_bBroadcastSignalled; // means that the last waiter must signal m_hndEventAllWaitersReleased when done waiting
protected:
// - - - - - - - - - - - - - - - - - - - - - - - -
bool await_signal_win32(DWORD dwTimeout)
{
::EnterCriticalSection(&m_csectWaiterCount);
++m_nWaiterCount;
::LeaveCriticalSection(&m_csectWaiterCount);
// This is the actual wait for the signal
bool bWaitSucceeded = ::SignalObjectAndWait(m_hndMutex, m_hndSemaphoreSignaller, dwTimeout, FALSE) == WAIT_OBJECT_0;
//
::EnterCriticalSection(&m_csectWaiterCount);
bool bLastWaiter = --m_nWaiterCount==0 && m_bBroadcastSignalled;
::LeaveCriticalSection(&m_csectWaiterCount);
// re-acquire the mutex
if (bLastWaiter)
::SignalObjectAndWait(m_hndEventAllWaitersReleased, m_hndMutex, INFINITE, FALSE);
else
::WaitForSingleObject(m_hndMutex, INFINITE);
return bWaitSucceeded;
}
public:
inline bool await_signal(timediff td) { return await_signal_win32((win32_milliseconds(td))); }
inline void await_signal() { await_signal_win32(INFINITE); }
OSDependentObject() : m_nWaiterCount(0), m_bBroadcastSignalled(false)
{
EnsureThreadingInitialized();
::InitializeCriticalSection(&m_csectWaiterCount);
m_hndEventAllWaitersReleased = ::CreateEvent(
0, // security
FALSE, // auto-reset
FALSE, // initial state non-sognalled
0); // name
m_hndSemaphoreSignaller = ::CreateSemaphore(
0, // security
0, // initial count (and will stay this way)
0x100000, // maximum count (should be as large as the maximum number of waiting threads)
0); // name
m_hndMutex = ::CreateMutex(
0, // security
FALSE, // not owned initially
0); // name
//if (m_hndEventAllWaitersReleased==INVALID_HANDLE_VALUE || m_hndSemaphoreSignaller==INVALID_HANDLE_VALUE)
// throw something();
}
~OSDependentObject()
{
::CloseHandle(m_hndMutex);
::CloseHandle(m_hndSemaphoreSignaller);
::CloseHandle(m_hndEventAllWaitersReleased);
::DeleteCriticalSection(&m_csectWaiterCount);
}
inline void signal_unicast()
{
::EnterCriticalSection(&m_csectWaiterCount);
unsigned int nWaiters = m_nWaiterCount;
::LeaveCriticalSection(&m_csectWaiterCount);
if (nWaiters)
::ReleaseSemaphore(m_hndSemaphoreSignaller, 1, 0); // release 1 semaphore credit to release one waiting thread
}
void signal_broadcast()
{
::EnterCriticalSection(&m_csectWaiterCount);
unsigned int nWaiters = m_nWaiterCount;
if (nWaiters)
{
m_bBroadcastSignalled = true;
::ReleaseSemaphore(m_hndSemaphoreSignaller, nWaiters, 0); // release as many credits as there are waiting threads
::LeaveCriticalSection(&m_csectWaiterCount);
::WaitForSingleObject(m_hndEventAllWaitersReleased, INFINITE);
// at this point all threads are waiting on m_hndMutex, which would be released outside this function call
m_bBroadcastSignalled = false;
}
else
// no one is waiting
::LeaveCriticalSection(&m_csectWaiterCount);
}
//------------------------------------------------
inline void obtain_mutex() { ::WaitForSingleObject(m_hndMutex, INFINITE); }
inline bool tryobtain_mutex() { return ::WaitForSingleObject(m_hndMutex,0) == WAIT_OBJECT_0; }
inline void release_mutex() { ::ReleaseMutex(m_hndMutex); }
//------------------------------------------------
#endif // OS switch
};
void ThreadConditionSignal::obtain_mutex()
{
m_osdepobj.obtain_mutex();
}
bool ThreadConditionSignal::tryobtain_mutex() { return m_osdepobj.tryobtain_mutex(); }
void ThreadConditionSignal::release_mutex()
{
m_osdepobj.release_mutex();
}
void ThreadConditionSignal::await_condition() { m_osdepobj.await_signal(); }
bool ThreadConditionSignal::await_condition(timediff tdTimeout) { return m_osdepobj.await_signal(tdTimeout); }
void ThreadConditionSignal::signal_condition_single() { m_osdepobj.signal_unicast(); }
void ThreadConditionSignal::signal_condition_broadcast() { m_osdepobj.signal_broadcast(); }
ThreadConditionSignal::ThreadConditionSignal() : m_osdepobj(*new OSDependentObject) {}
ThreadConditionSignal::~ThreadConditionSignal() { delete &m_osdepobj; }
#if XPLATFORMTHREADS_POSIX
namespace // anon
{
inline int max_FIFO_schedparam()
{
static const int max_priority = ::sched_get_priority_max(SCHED_FIFO);
return max_priority;
}
inline int schedparam_by_percentage(unsigned short percentage)
{
return (max_FIFO_schedparam()*10*percentage+500)/1000;
}
class POSIXThreadPriority
{
public:
int m_SchedPolicy;
int m_SchedPriority;
POSIXThreadPriority(ThreadPriority pri)
{
switch (pri)
{
case ThreadPriority::TimeCritical: m_SchedPolicy=SCHED_FIFO, m_SchedPriority=schedparam_by_percentage(80); break;
case ThreadPriority::AboveNormal: m_SchedPolicy=SCHED_FIFO, m_SchedPriority=schedparam_by_percentage(20); break;
case ThreadPriority::BelowNormal: // fall through to normal; nothing is below normal in POSIX
case ThreadPriority::Normal: // fall through to default
default: m_SchedPolicy=SCHED_OTHER, m_SchedPriority=0; break;
}
}
};
} // namespace anonymous
#endif // XPLATFORMTHREADS_POSIX
#if XPLATFORMTHREADS_WINDOWS
namespace // anon
{
inline int WinThreadPriority(ThreadPriority pri)
{
switch (pri)
{
case ThreadPriority::BelowNormal: return THREAD_PRIORITY_BELOW_NORMAL;
case ThreadPriority::AboveNormal: return THREAD_PRIORITY_ABOVE_NORMAL;
case ThreadPriority::TimeCritical: return THREAD_PRIORITY_TIME_CRITICAL;
case ThreadPriority::Normal: // fall through to default
default: return THREAD_PRIORITY_NORMAL;
}
}
} // namespace anon
#endif // XPLATFORMTHREADS_WINDOWS
void SetMyThreadPriority(ThreadPriority pri)
{
#if XPLATFORMTHREADS_WINDOWS
::SetThreadPriority(::GetCurrentThread(), WinThreadPriority(pri));
#endif // XPLATFORMTHREADS_WINDOWS
#if XPLATFORMTHREADS_POSIX
const POSIXThreadPriority posixpri(pri);
sched_param sparam;
::memset(&sparam, 0, sizeof(sparam));
sparam.sched_priority = posixpri.m_SchedPriority;
#if defined(__linux__)
::sched_setscheduler(0, posixpri.m_SchedPolicy, &sparam); // linux uses this function instead of pthread_
#else
pthread_setschedparam(pthread_self(), posixpri.m_SchedPolicy, &sparam);
#endif
#endif // XPLATFORMTHREADS_POSIX
}
struct ThreadWrapperData
{
ThreadFunction *func;
ThreadFunctionArgument arg;
};
#if XPLATFORMTHREADS_WINDOWS
static unsigned int __stdcall ThreadWrapper(void * arg)
{
register ThreadWrapperData *twd = reinterpret_cast<ThreadWrapperData*>(arg);
ThreadFunction *func=twd->func;
ThreadFunctionArgument farg=twd->arg;
delete twd;
return DWORD(func(farg));
}
#elif XPLATFORMTHREADS_POSIX
static void * ThreadWrapper(void *arg)
{
register ThreadWrapperData *twd = reinterpret_cast<ThreadWrapperData*>(arg);
ThreadFunction *func=twd->func;
ThreadFunctionArgument farg=twd->arg;
delete twd;
return reinterpret_cast<void*>(func(farg));
}
typedef void*(ThreadWrapperFunction)(void*);
static ThreadWrapperFunction *ThunkedThreadWrapper = ThreadWrapper;
#endif // OS switch
class ThreadHandle::OSDependent
{
public:
static void StartThread(ThreadWrapperData *, ThreadHandle &, ThreadPriority);
static bool KillThread(ThreadHandle);
static bool JoinThread(ThreadHandle, ThreadFunctionReturnType*);
static void Close(ThreadHandle);
#if XPLATFORMTHREADS_WINDOWS
static inline uintptr_t from_oshandle(HANDLE h) { return reinterpret_cast<uintptr_t>(h); }
static inline HANDLE to_oshandle(uintptr_t h) { return reinterpret_cast<HANDLE>(h); }
#elif XPLATFORMTHREADS_POSIX
static inline uintptr_t from_oshandle(pthread_t pt) { return uintptr_t(pt); }
static inline pthread_t to_oshandle(uintptr_t h) { return pthread_t(h); }
#endif // OS switch
};
#if XPLATFORMTHREADS_WINDOWS
const ThreadHandle ThreadHandle::Invalid(OSDependent::from_oshandle(INVALID_HANDLE_VALUE));
#elif XPLATFORMTHREADS_POSIX
const ThreadHandle ThreadHandle::Invalid(OSDependent::from_oshandle(0));
#endif // OS switch
inline void ThreadHandle::OSDependent::StartThread(ThreadWrapperData *ptwdata, ThreadHandle &th, ThreadPriority pri)
{
#if XPLATFORMTHREADS_WINDOWS
uintptr_t h = ::_beginthreadex(
0, // no security attributes, not inheritable
0, // default stack size
ThreadWrapper, // function to call
(void*)(ptwdata), // argument for function
0, // creation flags
0 // where to store thread ID
);
if (h)
{
th.m_oshandle = h;
if (pri!=ThreadPriority::Normal)
::SetThreadPriority(to_oshandle(h), WinThreadPriority(pri));
}
else
th=Invalid;
#elif XPLATFORMTHREADS_POSIX
pthread_attr_t my_thread_attr, *pmy_thread_attr = 0;
sched_param my_schedparam;
if (pri!=ThreadPriority::Normal)
{
pmy_thread_attr = &my_thread_attr;
const POSIXThreadPriority posixpriority(pri);
int result;
result = pthread_attr_init (pmy_thread_attr);
result = pthread_attr_setschedpolicy(pmy_thread_attr, posixpriority.m_SchedPolicy);
memset(&my_schedparam, 0, sizeof(my_schedparam));
my_schedparam.sched_priority = posixpriority.m_SchedPriority;
result = pthread_attr_setschedparam(pmy_thread_attr, &my_schedparam);
}
pthread_t pt;
int anyerr = pthread_create(
&pt, // variable for thread handle
pmy_thread_attr, // default attributes
ThunkedThreadWrapper,
ptwdata
);
if (anyerr)
th=Invalid;
else
th.m_oshandle = OSDependent::from_oshandle(pt);
#endif
}
inline bool ThreadHandle::OSDependent::KillThread(ThreadHandle h)
{
#if XPLATFORMTHREADS_WINDOWS
return ::TerminateThread(to_oshandle(h.m_oshandle), (DWORD)-1) != 0;
#elif XPLATFORMTHREADS_POSIX
return pthread_cancel(to_oshandle(h.m_oshandle)) == 0;
#endif
}
bool ThreadHandle::OSDependent::JoinThread(ThreadHandle h, ThreadFunctionReturnType *pretval)
{
#if XPLATFORMTHREADS_WINDOWS
const bool kbReturnedOk = (WAIT_OBJECT_0 == ::WaitForSingleObject(OSDependent::to_oshandle(h.m_oshandle), INFINITE));
if (kbReturnedOk && pretval)
{
DWORD dwExitCode;
::GetExitCodeThread(to_oshandle(h.m_oshandle), &dwExitCode);
*pretval = (ThreadFunctionReturnType)(dwExitCode);
}
return kbReturnedOk;
#endif
#if XPLATFORMTHREADS_POSIX
ThreadFunctionReturnType ptrExitCode = 0;
int join_return_code = pthread_join(to_oshandle(h.m_oshandle), (void**)ptrExitCode);
const bool kbReturnedOk = (0 == join_return_code);
if (0 != pretval)
{
*pretval = ptrExitCode;
}
return kbReturnedOk;
#endif
}
#if XPLATFORMTHREADS_WINDOWS
inline void ThreadHandle::OSDependent::Close(ThreadHandle h)
{
::CloseHandle(OSDependent::to_oshandle(h.m_oshandle));
}
#endif // XPLATFORMTHREADS_WINDOWS
#if XPLATFORMTHREADS_POSIX
inline void ThreadHandle::OSDependent::Close(ThreadHandle) {}
#endif // XPLATFORMTHREADS_POSIX
//**********************************************************************************************
class WCThreadRef::OSDependent
{
public:
static void GetCurrentThreadRef(WCThreadRef& tid);
#if XPLATFORMTHREADS_WINDOWS
static inline uintptr_t from_os(DWORD thread_id) { return (uintptr_t)(thread_id); }
static inline DWORD to_os(uintptr_t thread_id) { return (DWORD)(thread_id); }
#elif XPLATFORMTHREADS_POSIX
static inline uintptr_t from_os(pthread_t thread_id) { return (uintptr_t)(thread_id); }
static inline pthread_t to_os(uintptr_t thread_id) { return pthread_t(thread_id); }
#endif // OS switch
};
//**********************************************************************************************
inline void WCThreadRef::OSDependent::GetCurrentThreadRef(WCThreadRef& tid)
{
#if XPLATFORMTHREADS_WINDOWS
DWORD thread_id = ::GetCurrentThreadId();
tid.m_osThreadRef = OSDependent::from_os(thread_id);
#elif XPLATFORMTHREADS_POSIX
pthread_t thread_id = ::pthread_self();
tid.m_osThreadRef = OSDependent::from_os(thread_id);
#endif // OS switch
}
//**********************************************************************************************
ThreadHandle StartThread(ThreadFunction func, ThreadFunctionArgument arg, ThreadPriority thpri)
{
EnsureThreadingInitialized();
ThreadWrapperData *ptwdata = new ThreadWrapperData;
ptwdata->func = func;
ptwdata->arg = arg;
ThreadHandle thToReturn;
ThreadHandle::OSDependent::StartThread(ptwdata, thToReturn, thpri);
return thToReturn;
}
bool KillThread(ThreadHandle h)
{
EnsureThreadingInitialized();
return ThreadHandle::OSDependent::KillThread(h);
}
bool JoinThread(ThreadHandle h, ThreadFunctionReturnType *pretval)
{
EnsureThreadingInitialized();
return ThreadHandle::OSDependent::JoinThread(h, pretval);
}
void Close(ThreadHandle h)
{
EnsureThreadingInitialized();
return ThreadHandle::OSDependent::Close(h);
}
//*******************************************************************************************
WCThreadRef GetCurrentThreadRef()
{
EnsureThreadingInitialized(); // Is it necessary?
WCThreadRef tRefToReturn;
WCThreadRef::OSDependent::GetCurrentThreadRef(tRefToReturn);
return tRefToReturn;
}
//*******************************************************************************************
bool IsThreadExists(const WCThreadRef& threadRef)
{
#if XPLATFORMTHREADS_WINDOWS
DWORD dwThreadId = WCThreadRef::OSDependent::to_os((uintptr_t)threadRef);
HANDLE handle = ::OpenThread(SYNCHRONIZE, // dwDesiredAccess - use of the thread handle in any of the wait functions
FALSE, // bInheritHandle - processes do not inherit this handle
dwThreadId);
// Now we have the handle, check if the associated thread exists:
DWORD retVal = WaitForSingleObject(handle, 0);
if (retVal == WAIT_FAILED)
return false; // the thread does not exists
else
return true; // the thread exists
#elif XPLATFORMTHREADS_POSIX
pthread_t pthreadRef = WCThreadRef::OSDependent::to_os((uintptr_t)threadRef);
int retVal = pthread_kill(pthreadRef, 0); // send a signal to the thread, but do nothing
if (retVal == ESRCH)
return false; // the thread does not exists
else
return true; // the thread exists
#endif // OS switch
}
//*******************************************************************************************
bool operator==(const WCThreadRef& first, const WCThreadRef& second)
{
return (first.m_osThreadRef == second.m_osThreadRef);
}
bool operator!=(const WCThreadRef& first, const WCThreadRef& second)
{
return (first.m_osThreadRef != second.m_osThreadRef);
}
bool operator<(const WCThreadRef& first, const WCThreadRef& second)
{
return (first.m_osThreadRef < second.m_osThreadRef);
}
bool operator>(const WCThreadRef& first, const WCThreadRef& second)
{
return (first.m_osThreadRef > second.m_osThreadRef);
}
bool WCAtomicLock::obtain(const uint32_t in_num_trys)
{
bool retVal = false;
uint32_t timeOut = in_num_trys;
while (true)
{
retVal = g_atomic_int_compare_and_exchange(&m_the_lock, gint(0), gint(1));
if (retVal)
{
break;
}
else
{
if (--timeOut == 0)
{
break;
}
sleep_milliseconds(1000);
}
}
return retVal;
}
void WCAtomicLock::release()
{
m_the_lock = 0;
}
} // namespace wvThread
} // namespace wvNS {