13
0
livetrax/gtk2_ardour/plugin_eq_gui.cc

946 lines
25 KiB
C++

/*
* Copyright (C) 2008-2009 Sampo Savolainen <v2@iki.fi>
* Copyright (C) 2008-2011 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2008-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2009-2011 David Robillard <d@drobilla.net>
* Copyright (C) 2014-2019 Robin Gareus <robin@gareus.org>
* Copyright (C) 2016 Julien "_FrnchFrgg_" RIVAUD <frnchfrgg@free.fr>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <algorithm>
#include <math.h>
#include <iomanip>
#include <iostream>
#include <sstream>
#ifdef COMPILER_MSVC
# include <float.h>
/* isinf() & isnan() are C99 standards, which older MSVC doesn't provide */
# define ISINF(val) !((bool)_finite((double)val))
# define ISNAN(val) (bool)_isnan((double)val)
#else
# define ISINF(val) std::isinf((val))
# define ISNAN(val) std::isnan((val))
#endif
#include <gtkmm/box.h>
#include <gtkmm/button.h>
#include <gtkmm/checkbutton.h>
#include "gtkmm2ext/utils.h"
#include "ardour/audio_buffer.h"
#include "ardour/data_type.h"
#include "ardour/chan_mapping.h"
#include "ardour/plugin_insert.h"
#include "ardour/session.h"
#include "plugin_eq_gui.h"
#include "fft.h"
#include "ardour_ui.h"
#include "gui_thread.h"
#include "ui_config.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
PluginEqGui::PluginEqGui (std::shared_ptr<ARDOUR::PluginInsert> pluginInsert)
: _min_dB (-12.0)
, _max_dB (+12.0)
, _step_dB (3.0)
, _block_size (0)
, _buffer_size (0)
, _signal_buffer_size (0)
, _impulse_fft (0)
, _signal_input_fft (0)
, _signal_output_fft (0)
, _plugin_insert (pluginInsert)
, _pointer_in_area_xpos (-1)
{
_signal_analysis_running = false;
_samplerate = ARDOUR_UI::instance()->the_session()->sample_rate();
_log_coeff = (1.0 - 2.0 * (1000.0 / (_samplerate / 2.0))) / powf (1000.0 / (_samplerate / 2.0), 2.0);
_log_max = log10f (1 + _log_coeff);
// Setup analysis drawing area
_analysis_scale_surface = 0;
_analysis_area = new Gtk::DrawingArea();
_analysis_width = 256.0;
_analysis_height = std::max<float> (256.0, 256.0 * UIConfiguration::instance().get_ui_scale ());
_analysis_area->set_size_request (_analysis_width, _analysis_height);
_analysis_area->add_events (Gdk::POINTER_MOTION_MASK | Gdk::LEAVE_NOTIFY_MASK | Gdk::BUTTON_PRESS_MASK);
_analysis_area->signal_expose_event().connect (sigc::mem_fun (*this, &PluginEqGui::expose_analysis_area));
_analysis_area->signal_size_allocate().connect (sigc::mem_fun (*this, &PluginEqGui::resize_analysis_area));
_analysis_area->signal_motion_notify_event().connect (sigc::mem_fun (*this, &PluginEqGui::analysis_area_mouseover));
_analysis_area->signal_leave_notify_event().connect (sigc::mem_fun (*this, &PluginEqGui::analysis_area_mouseexit));
// dB selection
dBScaleModel = Gtk::ListStore::create (dBColumns);
dBScaleCombo = new Gtk::ComboBox (dBScaleModel, false);
#define ADD_DB_ROW(MIN,MAX,STEP,NAME) \
{ \
Gtk::TreeModel::Row row = *(dBScaleModel->append()); \
row[dBColumns.dBMin] = (MIN); \
row[dBColumns.dBMax] = (MAX); \
row[dBColumns.dBStep] = (STEP); \
row[dBColumns.name] = NAME; \
}
ADD_DB_ROW( -6, +6, 1, "-6dB .. +6dB");
ADD_DB_ROW(-12, +12, 3, "-12dB .. +12dB");
ADD_DB_ROW(-15, +15, 3, "-15dB .. +15dB");
ADD_DB_ROW(-24, +24, 5, "-24dB .. +24dB");
ADD_DB_ROW(-36, +36, 6, "-36dB .. +36dB");
ADD_DB_ROW(-64, +64,12, "-64dB .. +64dB");
#undef ADD_DB_ROW
dBScaleCombo -> pack_start(dBColumns.name);
dBScaleCombo -> set_active(1);
dBScaleCombo -> signal_changed().connect (sigc::mem_fun(*this, &PluginEqGui::change_dB_scale));
Gtk::Label *dBComboLabel = new Gtk::Label (_("Range:"));
Gtk::HBox *dBSelectBin = new Gtk::HBox (false, 4);
dBSelectBin->add (*manage(dBComboLabel));
dBSelectBin->add (*manage(dBScaleCombo));
_live_signal_combo = new Gtk::ComboBoxText ();
_live_signal_combo->append (_("Off"));
_live_signal_combo->append (_("Output / Input"));
_live_signal_combo->append (_("Input"));
_live_signal_combo->append (_("Output"));
_live_signal_combo->append (_("Input +40dB"));
_live_signal_combo->append (_("Output +40dB"));
_live_signal_combo->set_active (0);
Gtk::Label *live_signal_label = new Gtk::Label (_("Live signal:"));
Gtk::HBox *liveSelectBin = new Gtk::HBox (false, 4);
liveSelectBin->add (*manage(live_signal_label));
liveSelectBin->add (*manage(_live_signal_combo));
// Phase checkbutton
_phase_button = new Gtk::CheckButton (_("Show phase"));
_phase_button->set_active (true);
_phase_button->signal_toggled().connect (sigc::mem_fun(*this, &PluginEqGui::redraw_scales));
// Freq/dB info for mouse over
_pointer_info = new Gtk::Label ("", 1, 0.5);
_pointer_info->set_name ("PluginAnalysisInfoLabel");
Gtkmm2ext::set_size_request_to_display_given_text (*_pointer_info, u8"10.0kHz_000.0dB_180.0\u00B0", 0, 0);
// populate table
attach (*manage(_analysis_area), 0, 4, 0, 1);
attach (*manage(dBSelectBin), 0, 1, 1, 2, Gtk::SHRINK, Gtk::SHRINK);
attach (*manage(liveSelectBin), 1, 2, 1, 2, Gtk::SHRINK, Gtk::SHRINK, 4, 0);
attach (*manage(_phase_button), 2, 3, 1, 2, Gtk::SHRINK, Gtk::SHRINK, 4, 0);
attach (*manage(_pointer_info), 3, 4, 1, 2, Gtk::FILL, Gtk::SHRINK);
}
PluginEqGui::~PluginEqGui ()
{
stop_updating ();
stop_listening ();
if (_analysis_scale_surface) {
cairo_surface_destroy (_analysis_scale_surface);
}
delete _impulse_fft;
_impulse_fft = 0;
delete _signal_input_fft;
_signal_input_fft = 0;
delete _signal_output_fft;
_signal_output_fft = 0;
// all gui objects are *manage'd by the inherited Table object
}
static inline float
power_to_dB (float a)
{
return 10.0 * log10f (a);
}
void
PluginEqGui::start_listening ()
{
if (!_plugin) {
_plugin = _plugin_insert->get_impulse_analysis_plugin ();
}
_plugin->activate ();
set_buffer_size (8192, 16384);
_block_size = 0; // re-initialize the plugin next time.
/* Connect the realtime signal collection callback */
_plugin_insert->AnalysisDataGathered.connect (analysis_connection, invalidator (*this), boost::bind (&PluginEqGui::signal_collect_callback, this, _1, _2), gui_context());
}
void
PluginEqGui::stop_listening ()
{
analysis_connection.disconnect ();
if (_plugin) {
_plugin->deactivate ();
_plugin->drop_references ();
_plugin.reset ();
}
}
void
PluginEqGui::on_hide ()
{
stop_updating ();
stop_listening ();
Gtk::Table::on_hide ();
}
void
PluginEqGui::stop_updating ()
{
if (_update_connection.connected ()) {
_update_connection.disconnect ();
}
_signal_analysis_running = false;
}
void
PluginEqGui::start_updating ()
{
if (!_update_connection.connected() && get_visible()) {
_update_connection = Glib::signal_timeout().connect (sigc::mem_fun (this, &PluginEqGui::timeout_callback), 250, Glib::PRIORITY_DEFAULT_IDLE);
}
}
void
PluginEqGui::on_show ()
{
Gtk::Table::on_show ();
start_updating ();
start_listening ();
Gtk::Widget *toplevel = get_toplevel ();
if (toplevel) {
if (!_window_unmap_connection.connected ()) {
_window_unmap_connection = toplevel->signal_unmap().connect (sigc::mem_fun (this, &PluginEqGui::stop_updating));
}
if (!_window_map_connection.connected ()) {
_window_map_connection = toplevel->signal_map().connect (sigc::mem_fun (this, &PluginEqGui::start_updating));
}
}
}
void
PluginEqGui::change_dB_scale ()
{
Gtk::TreeModel::iterator iter = dBScaleCombo -> get_active ();
Gtk::TreeModel::Row row;
if (iter && (row = *iter)) {
_min_dB = row[dBColumns.dBMin];
_max_dB = row[dBColumns.dBMax];
_step_dB = row[dBColumns.dBStep];
redraw_scales ();
}
}
void
PluginEqGui::redraw_scales ()
{
if (_analysis_scale_surface) {
cairo_surface_destroy (_analysis_scale_surface);
_analysis_scale_surface = 0;
}
_analysis_area->queue_draw ();
// TODO: Add graph legend!
}
void
PluginEqGui::set_buffer_size (uint32_t size, uint32_t signal_size)
{
if (_buffer_size == size && _signal_buffer_size == signal_size) {
return;
}
GTKArdour::FFT *tmp1 = _impulse_fft;
GTKArdour::FFT *tmp2 = _signal_input_fft;
GTKArdour::FFT *tmp3 = _signal_output_fft;
try {
_impulse_fft = new GTKArdour::FFT (size);
_signal_input_fft = new GTKArdour::FFT (signal_size);
_signal_output_fft = new GTKArdour::FFT (signal_size);
} catch (...) {
// Don't care about lost memory, we're screwed anyhow
_impulse_fft = tmp1;
_signal_input_fft = tmp2;
_signal_output_fft = tmp3;
throw;
}
delete tmp1;
delete tmp2;
delete tmp3;
_buffer_size = size;
_signal_buffer_size = signal_size;
/* allocate separate in+out buffers, VST cannot process in-place */
ARDOUR::ChanCount acount (_plugin->get_info()->n_inputs + _plugin->get_info()->n_outputs);
ARDOUR::ChanCount ccount = ARDOUR::ChanCount::max (_plugin->get_info()->n_inputs, _plugin->get_info()->n_outputs);
for (ARDOUR::DataType::iterator i = ARDOUR::DataType::begin(); i != ARDOUR::DataType::end(); ++i) {
_bufferset.ensure_buffers (*i, acount.get (*i), _buffer_size);
_collect_bufferset.ensure_buffers (*i, ccount.get (*i), _buffer_size);
}
_bufferset.set_count (acount);
_collect_bufferset.set_count (ccount);
}
void
PluginEqGui::resize_analysis_area (Gtk::Allocation& size)
{
_analysis_width = (float)size.get_width();
_analysis_height = (float)size.get_height();
if (_analysis_scale_surface) {
cairo_surface_destroy (_analysis_scale_surface);
_analysis_scale_surface = 0;
}
}
bool
PluginEqGui::timeout_callback ()
{
if (!_signal_analysis_running) {
_signal_analysis_running = true;
_plugin_insert -> collect_signal_for_analysis (_signal_buffer_size);
}
run_impulse_analysis ();
return true;
}
void
PluginEqGui::signal_collect_callback (ARDOUR::BufferSet* in, ARDOUR::BufferSet* out)
{
ENSURE_GUI_THREAD (*this, &PluginEqGui::signal_collect_callback, in, out);
_signal_input_fft ->reset ();
_signal_output_fft->reset ();
for (uint32_t i = 0; i < _plugin_insert->input_streams().n_audio(); ++i) {
_signal_input_fft ->analyze (in ->get_audio (i).data(), GTKArdour::FFT::HANN);
}
for (uint32_t i = 0; i < _plugin_insert->output_streams().n_audio(); ++i) {
_signal_output_fft->analyze (out->get_audio (i).data(), GTKArdour::FFT::HANN);
}
_signal_input_fft ->calculate ();
_signal_output_fft->calculate ();
_signal_analysis_running = false;
_analysis_area->queue_draw ();
}
void
PluginEqGui::run_impulse_analysis ()
{
/* Allocate some thread-local buffers so that Plugin::connect_and_run can use them */
ARDOUR_UI::instance()->get_process_buffers ();
uint32_t inputs = _plugin->get_info()->n_inputs.n_audio();
uint32_t outputs = _plugin->get_info()->n_outputs.n_audio();
/* Create the impulse, can't use silence() because consecutive calls won't work */
for (uint32_t i = 0; i < inputs; ++i) {
ARDOUR::AudioBuffer& buf = _bufferset.get_audio (i);
ARDOUR::Sample* d = buf.data ();
memset (d, 0, sizeof (ARDOUR::Sample) * _buffer_size);
*d = 1.0;
}
/* Silence collect buffers to copy data to */
for (uint32_t i = 0; i < outputs; ++i) {
ARDOUR::AudioBuffer &buf = _collect_bufferset.get_audio (i);
ARDOUR::Sample *d = buf.data ();
memset (d, 0, sizeof (ARDOUR::Sample) * _buffer_size);
}
/* create default linear I/O maps */
ARDOUR::ChanMapping in_map (_plugin->get_info()->n_inputs);
ARDOUR::ChanMapping out_map (_plugin->get_info()->n_outputs);
/* map output buffers after input buffers (no inplace for VST) */
out_map.offset_to (DataType::AUDIO, inputs);
/* run at most at session's block size chunks.
*
* This is important since VSTs may call audioMasterGetBlockSize
* or access various other /real/ session parameters using the
* audioMasterCallback
*/
samplecnt_t block_size = ARDOUR_UI::instance()->the_session()->get_block_size();
if (_block_size != block_size) {
_block_size = block_size;
_plugin->set_block_size (block_size);
}
samplepos_t sample_pos = 0;
samplecnt_t latency = _plugin_insert->effective_latency ();
samplecnt_t samples_remain = _buffer_size + latency;
/* Note: https://discourse.ardour.org/t/plugins-ladspa-questions/101292/15
* Capture the complete response from the beginning, and more than "latency" samples,
* Then unwrap the phase-response corresponding to reported latency, leaving the
* magnitude unchanged.
*/
_impulse_fft->reset ();
while (samples_remain > 0) {
samplecnt_t n_samples = std::min (samples_remain, block_size);
_plugin->connect_and_run (_bufferset, sample_pos, sample_pos + n_samples, 1.0, in_map, out_map, n_samples, 0);
samples_remain -= n_samples;
/* zero input buffers */
if (sample_pos == 0 && samples_remain > 0) {
for (uint32_t i = 0; i < inputs; ++i) {
_bufferset.get_audio (i).data()[0] = 0.f;
}
}
#ifndef NDEBUG
if (samples_remain > 0) {
for (uint32_t i = 0; i < inputs; ++i) {
pframes_t unused;
assert (_bufferset.get_audio (i).check_silence (block_size, unused));
}
}
#endif
if (sample_pos + n_samples > latency) {
samplecnt_t dst_off = sample_pos >= latency ? sample_pos - latency : 0;
samplecnt_t src_off = sample_pos >= latency ? 0 : latency - sample_pos;
samplecnt_t n_copy = std::min (n_samples, sample_pos + n_samples - latency);
assert (dst_off + n_copy <= _buffer_size);
assert (src_off + n_copy <= _block_size);
for (uint32_t i = 0; i < outputs; ++i) {
memcpy (
&(_collect_bufferset.get_audio (i).data()[dst_off]),
&(_bufferset.get_audio (inputs + i).data()[src_off]),
n_copy * sizeof (float));
}
}
sample_pos += n_samples;
}
for (uint32_t i = 0; i < outputs; ++i) {
_impulse_fft->analyze (_collect_bufferset.get_audio (i).data());
}
_impulse_fft->calculate ();
_analysis_area->queue_draw ();
ARDOUR_UI::instance ()->drop_process_buffers ();
}
void
PluginEqGui::update_pointer_info (float x)
{
/* find the bin corresponding to x (see plot_impulse_amplitude) */
int i = roundf ((powf (10, _log_max * x / _analysis_width) - 1.0) * _impulse_fft->bins() / _log_coeff);
float dB = power_to_dB (_impulse_fft->power_at_bin (i));
/* calc freq corresponding to bin */
const int freq = std::max (1, (int) roundf ((float)i / (float)_impulse_fft->bins() * _samplerate / 2.f));
_pointer_in_area_freq = round (_analysis_width * log10f (1.0 + (float)i / (float)_impulse_fft->bins() * _log_coeff) / _log_max);
std::stringstream ss;
ss << std::fixed;
if (freq >= 10000) {
ss << std::setprecision (1) << freq / 1000.0 << "kHz";
} else if (freq >= 1000) {
ss << std::setprecision (2) << freq / 1000.0 << "kHz";
} else {
ss << std::setprecision (0) << freq << "Hz";
}
ss << " " << std::setw (6) << std::setprecision (1) << std::showpos << dB;
ss << std::setw (0) << "dB";
if (_phase_button->get_active ()) {
float phase = 180. * _impulse_fft->phase_at_bin (i) / M_PI;
ss << " " << std::setw (6) << std::setprecision (1) << std::showpos << phase;
ss << std::setw (0) << u8"\u00B0";
}
_pointer_info->set_text (ss.str());
}
bool
PluginEqGui::analysis_area_mouseover (GdkEventMotion *event)
{
update_pointer_info (event->x);
_pointer_in_area_xpos = event->x;
_analysis_area->queue_draw ();
return true;
}
bool
PluginEqGui::analysis_area_mouseexit (GdkEventCrossing *)
{
_pointer_info->set_text ("");
_pointer_in_area_xpos = -1;
_analysis_area->queue_draw ();
return true;
}
bool
PluginEqGui::expose_analysis_area (GdkEventExpose *)
{
redraw_analysis_area ();
return true;
}
void
PluginEqGui::draw_analysis_scales (cairo_t *ref_cr)
{
// TODO: check whether we need rounding
_analysis_scale_surface = cairo_surface_create_similar (cairo_get_target (ref_cr),
CAIRO_CONTENT_COLOR,
_analysis_width,
_analysis_height);
cairo_t *cr = cairo_create (_analysis_scale_surface);
cairo_set_source_rgb (cr, 0.0, 0.0, 0.0);
cairo_rectangle (cr, 0.0, 0.0, _analysis_width, _analysis_height);
cairo_fill (cr);
draw_scales_power (_analysis_area, cr);
if (_phase_button->get_active ()) {
draw_scales_phase (_analysis_area, cr);
}
cairo_destroy (cr);
}
void
PluginEqGui::redraw_analysis_area ()
{
cairo_t *cr;
cr = gdk_cairo_create (GDK_DRAWABLE(_analysis_area->get_window()->gobj()));
if (_analysis_scale_surface == 0) {
draw_analysis_scales (cr);
}
cairo_copy_page (cr);
cairo_set_source_surface (cr, _analysis_scale_surface, 0.0, 0.0);
cairo_paint (cr);
cairo_set_line_join (cr, CAIRO_LINE_JOIN_ROUND);
if (_phase_button->get_active()) {
plot_impulse_phase (_analysis_area, cr);
}
plot_impulse_amplitude (_analysis_area, cr);
if (_pointer_in_area_xpos >= 0) {
update_pointer_info (_pointer_in_area_xpos);
}
if (_live_signal_combo->get_active_row_number() > 0) {
plot_signal_amplitude_difference (_analysis_area, cr);
}
if (_pointer_in_area_xpos >= 0 && _pointer_in_area_freq > 0) {
const double dashed[] = {0.0, 2.0};
cairo_set_dash (cr, dashed, 2, 0);
cairo_set_line_cap (cr, CAIRO_LINE_CAP_ROUND);
cairo_set_source_rgb (cr, 1.0, 1.0, 1.0);
cairo_set_line_width (cr, 1.0);
cairo_move_to (cr, _pointer_in_area_freq + .5, .5);
cairo_line_to (cr, _pointer_in_area_freq + .5, _analysis_height + .5);
cairo_stroke (cr);
}
cairo_destroy (cr);
}
#define PHASE_PROPORTION 0.5
void
PluginEqGui::draw_scales_phase (Gtk::Widget*, cairo_t *cr)
{
float y;
cairo_font_extents_t extents;
cairo_font_extents (cr, &extents);
char buf[256];
cairo_text_extents_t t_ext;
for (uint32_t i = 0; i < 5; i++) {
y = _analysis_height / 2.0 - (float)i * (_analysis_height / 8.0) * PHASE_PROPORTION;
cairo_set_source_rgb (cr, .8, .9, 0.2);
if (i == 0) {
snprintf (buf,256, u8"0\u00b0");
} else {
snprintf (buf,256, u8"%d\u00b0", (i * 45));
}
cairo_text_extents (cr, buf, &t_ext);
cairo_move_to (cr, _analysis_width - t_ext.width - t_ext.x_bearing - 2.0, y - extents.descent);
cairo_show_text (cr, buf);
if (i == 0) {
continue;
}
y = roundf (y) + .5;
cairo_set_source_rgba (cr, .8, .9, .2, 0.4);
cairo_move_to (cr, 0.0, y);
cairo_line_to (cr, _analysis_width, y);
cairo_set_line_width (cr, 1);
cairo_stroke (cr);
y = _analysis_height / 2.0 + (float)i * (_analysis_height / 8.0) * PHASE_PROPORTION;
y = roundf (y);
// label
snprintf (buf,256, u8"-%d\u00b0", (i * 45));
cairo_set_source_rgb (cr, .8, .9, 0.2);
cairo_text_extents (cr, buf, &t_ext);
cairo_move_to (cr, _analysis_width - t_ext.width - t_ext.x_bearing - 2.0, y - extents.descent);
cairo_show_text (cr, buf);
// line
y += .5;
cairo_set_source_rgba (cr, .8, .9, .2, 0.4);
cairo_move_to (cr, 0.0, y);
cairo_line_to (cr, _analysis_width, y);
cairo_set_line_width (cr, 1);
cairo_stroke (cr);
}
}
void
PluginEqGui::plot_impulse_phase (Gtk::Widget *w, cairo_t *cr)
{
float x,y;
int prevX = 0;
float avgY = 0.0;
int avgNum = 0;
// float width = w->get_width();
float height = w->get_height ();
float analysis_height_2 = _analysis_height / 2.f;
cairo_set_source_rgba (cr, 0.95, 0.3, 0.2, 1.0);
for (uint32_t i = 0; i < _impulse_fft->bins() - 1; ++i) {
// x coordinate of bin i
x = log10f (1.0 + (float)i / (float)_impulse_fft->bins() * _log_coeff) / _log_max;
x *= _analysis_width;
x = roundf (x);
y = analysis_height_2 - (_impulse_fft->phase_at_bin (i) / M_PI) * analysis_height_2 * PHASE_PROPORTION;
if (i == 0) {
cairo_move_to (cr, x + .5, y);
avgY = 0;
avgNum = 0;
} else if (x > prevX || i == _impulse_fft->bins() - 1) {
avgY = avgY / (float)avgNum;
if (avgY > (height * 10.0)) {
avgY = height * 10.0;
}
if (avgY < (-height * 10.0)) {
avgY = -height * 10.0;
}
cairo_line_to (cr, prevX + .5, avgY);
avgY = 0;
avgNum = 0;
}
prevX = x;
avgY += y;
avgNum++;
}
cairo_set_line_width (cr, 2.0);
cairo_stroke (cr);
}
void
PluginEqGui::draw_scales_power (Gtk::Widget */*w*/, cairo_t *cr)
{
if (_impulse_fft == 0) {
return;
}
static float scales[] = { 30.0, 70.0, 125.0, 250.0, 500.0, 1000.0, 2000.0, 5000.0, 10000.0, 15000.0, 20000.0, -1.0 };
float divisor = _samplerate / 2.0 / _impulse_fft->bins();
float x;
cairo_set_line_width (cr, 1.5);
cairo_set_font_size (cr, ceil (10.0 * UIConfiguration::instance().get_ui_scale ()));
cairo_font_extents_t extents;
cairo_font_extents (cr, &extents);
// float fontXOffset = extents.descent + 1.0;
char buf[256];
for (uint32_t i = 0; scales[i] != -1.0; ++i) {
float bin = scales[i] / divisor;
x = log10f (1.0 + bin / (float)_impulse_fft->bins() * _log_coeff) / _log_max;
x *= _analysis_width;
if (scales[i] < 1000.0) {
snprintf (buf, 256, "%0.0f", scales[i]);
} else {
snprintf (buf, 256, "%0.0fk", scales[i]/1000.0);
}
x = round (x);
cairo_set_source_rgb (cr, 0.4, 0.4, 0.4);
cairo_move_to (cr, x - extents.height, 3.0);
cairo_rotate (cr, M_PI / 2.0);
cairo_show_text (cr, buf);
cairo_rotate (cr, -M_PI / 2.0);
cairo_stroke (cr);
x += .5;
cairo_set_source_rgb (cr, 0.3, 0.3, 0.3);
cairo_move_to (cr, x, _analysis_height);
cairo_line_to (cr, x, 0.0);
cairo_stroke (cr);
}
//double dashes[] = { 1.0, 3.0, 4.5, 3.0 };
double dashes[] = { 3.0, 5.0 };
for (float dB = 0.0; dB < _max_dB; dB += _step_dB) {
float y;
snprintf (buf, 256, "+%0.0f", dB);
y = (_max_dB - dB) / (_max_dB - _min_dB);
//std::cerr << " y = " << y << std::endl;
y *= _analysis_height;
y = roundf (y);
if (dB != 0.0) {
cairo_set_source_rgb (cr, 0.4, 0.4, 0.4);
cairo_move_to (cr, 1.0, y + extents.height + 1.0);
cairo_show_text (cr, buf);
cairo_stroke (cr);
}
y += .5;
cairo_set_source_rgb (cr, 0.2, 0.2, 0.2);
cairo_move_to (cr, 0, y);
cairo_line_to (cr, _analysis_width, y);
cairo_stroke (cr);
if (dB == 0.0) {
cairo_set_dash (cr, dashes, 2, 0.0);
}
}
for (float dB = - _step_dB; dB > _min_dB; dB -= _step_dB) {
float y;
snprintf (buf, 256, "%0.0f", dB);
y = (_max_dB - dB) / (_max_dB - _min_dB);
y *= _analysis_height;
y = roundf (y);
cairo_set_source_rgb (cr, 0.4, 0.4, 0.4);
cairo_move_to (cr, 1.0, y - extents.descent - 1.0);
cairo_show_text (cr, buf);
cairo_stroke (cr);
y += .5;
cairo_set_source_rgb (cr, 0.2, 0.2, 0.2);
cairo_move_to (cr, 0, y);
cairo_line_to (cr, _analysis_width, y);
cairo_stroke (cr);
}
cairo_set_dash (cr, 0, 0, 0.0);
}
void
PluginEqGui::plot_impulse_amplitude (Gtk::Widget *w, cairo_t *cr)
{
float x,y;
int prevX = 0;
float avgY = 0.0;
int avgNum = 0;
// float width = w->get_width();
float height = w->get_height ();
cairo_set_source_rgb (cr, 1.0, 1.0, 1.0);
cairo_set_line_width (cr, 2.5);
for (uint32_t i = 0; i < _impulse_fft->bins() - 1; ++i) {
// x coordinate of bin i
x = log10f (1.0 + (float)i / (float)_impulse_fft->bins() * _log_coeff) / _log_max;
x *= _analysis_width;
x = roundf (x);
float yCoeff = (power_to_dB (_impulse_fft->power_at_bin (i)) - _min_dB) / (_max_dB - _min_dB);
y = _analysis_height - _analysis_height * yCoeff;
if (i == 0) {
cairo_move_to (cr, x + .5, y);
avgY = 0;
avgNum = 0;
} else if (x > prevX || i == _impulse_fft->bins() - 1) {
avgY = avgY / (float)avgNum;
if (avgY > (height * 10.0)) {
avgY = height * 10.0;
}
if (avgY < (-height * 10.0)) {
avgY = -height * 10.0;
}
cairo_line_to (cr, prevX + .5, avgY);
avgY = 0;
avgNum = 0;
}
prevX = x;
avgY += y;
avgNum++;
}
cairo_stroke (cr);
}
void
PluginEqGui::plot_signal_amplitude_difference (Gtk::Widget *w, cairo_t *cr)
{
float x,y;
int prevX = 0;
float avgY = 0.0;
int avgNum = 0;
float height = w->get_height();
cairo_set_source_rgb (cr, 0.0, 1.0, 0.0);
cairo_set_line_width (cr, 1.5);
for (uint32_t i = 0; i < _signal_input_fft->bins() - 1; ++i) {
// x coordinate of bin i
x = log10f (1.0 + (float)i / (float)_signal_input_fft->bins() * _log_coeff) / _log_max;
x *= _analysis_width;
x = roundf (x);
float power_out = _signal_output_fft->power_at_bin (i) + 1e-30;
float power_in = _signal_input_fft ->power_at_bin (i) + 1e-30;
float power;
switch (_live_signal_combo->get_active_row_number()) {
case 2:
power = power_to_dB (power_in);
break;
case 3:
power = power_to_dB (power_out);
break;
case 4:
power = power_to_dB (power_in) + 40;
break;
case 5:
power = power_to_dB (power_out) + 40;
break;
default:
power = power_to_dB (power_out / power_in);
break;
}
assert (!ISINF(power));
assert (!ISNAN(power));
float yCoeff = (power - _min_dB) / (_max_dB - _min_dB);
y = _analysis_height - _analysis_height*yCoeff;
if (i == 0) {
cairo_move_to (cr, x + .5, y);
avgY = 0;
avgNum = 0;
} else if (x > prevX || i == _impulse_fft->bins() - 1) {
avgY = avgY / (float)avgNum;
if (avgY > (height * 10.0)) {
avgY = height * 10.0;
}
if (avgY < (-height * 10.0)) {
avgY = -height * 10.0;
}
cairo_line_to (cr, prevX + .5, avgY);
avgY = 0;
avgNum = 0;
}
prevX = x;
avgY += y;
avgNum++;
}
cairo_stroke (cr);
}