13
0
livetrax/libs/ardour/meter.cc
Robin Gareus ee97942165 use accurate log10 for meter (fast_log2 is unsuitable inaccurate)
fast_coefficient_to_dB() returns a lower bound value, unsuitable
to catch audio peaks. The difference to 20*log10 is as large as 0.4 dB!

The effective speedup of fast_log10 compared to log10f is marginal
(sweep of all 24bit values)

  i686 (1.6GHz Intel core):  2.36 [times faster]
  x86_64 (core2 2.4GHz):     1.63
  x86_64 (I3 2.80GHz):       2.03

the execution time of one log10f() averaged over a
sweep of all 24 bit values

  i686 (1.6GHz Intel core):  0.131 usec
  x86_64 (core2 2.4GHz):     0.033 usec
  x86_64 (I3 2.80GHz):       0.044 usec

PeakMeter::run() is called from dedicated non-rt, no harm done.
2013-07-10 15:27:15 +02:00

335 lines
8.0 KiB
C++

/*
Copyright (C) 2006 Paul Davis
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <algorithm>
#include <cmath>
#include "pbd/compose.h"
#include "ardour/audio_buffer.h"
#include "ardour/buffer_set.h"
#include "ardour/dB.h"
#include "ardour/meter.h"
#include "ardour/midi_buffer.h"
#include "ardour/session.h"
#include "ardour/rc_configuration.h"
#include "ardour/runtime_functions.h"
using namespace std;
using namespace ARDOUR;
PBD::Signal0<void> Metering::Meter;
PeakMeter::PeakMeter (Session& s, const std::string& name)
: Processor (s, string_compose ("meter-%1", name))
{
Kmeterdsp::init(s.nominal_frame_rate());
}
PeakMeter::~PeakMeter ()
{
while (_kmeter.size() > 0) {
delete (_kmeter.back());
_kmeter.pop_back();
}
}
/** Get peaks from @a bufs
* Input acceptance is lenient - the first n buffers from @a bufs will
* be metered, where n was set by the last call to setup(), excess meters will
* be set to 0.
*
* (runs in jack realtime context)
*/
void
PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool)
{
if (!_active && !_pending_active) {
return;
}
// cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n";
const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio());
const uint32_t n_midi = min (current_meters.n_midi(), bufs.count().n_midi());
uint32_t n = 0;
// Meter MIDI in to the first n_midi peaks
for (uint32_t i = 0; i < n_midi; ++i, ++n) {
float val = 0.0f;
MidiBuffer& buf (bufs.get_midi(i));
for (MidiBuffer::iterator e = buf.begin(); e != buf.end(); ++e) {
const Evoral::MIDIEvent<framepos_t> ev(*e, false);
if (ev.is_note_on()) {
const float this_vel = ev.buffer()[2] / 127.0;
if (this_vel > val) {
val = this_vel;
}
} else {
val += 1.0 / bufs.get_midi(n).capacity();
if (val > 1.0) {
val = 1.0;
}
}
}
_peak_signal[n] = max (val, _peak_signal[n]);
}
// Meter audio in to the rest of the peaks
for (uint32_t i = 0; i < n_audio; ++i, ++n) {
_peak_signal[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_signal[n]);
if (_meter_type & MeterKrms) {
_kmeter[i]->process(bufs.get_audio(i).data(), nframes);
}
}
// Zero any excess peaks
for (uint32_t i = n; i < _peak_signal.size(); ++i) {
_peak_signal[i] = 0.0f;
}
_active = _pending_active;
}
void
PeakMeter::reset ()
{
for (size_t i = 0; i < _peak_signal.size(); ++i) {
_peak_signal[i] = 0.0f;
}
}
void
PeakMeter::reset_max ()
{
for (size_t i = 0; i < _max_peak_power.size(); ++i) {
_max_peak_power[i] = -INFINITY;
_max_peak_signal[i] = 0;
}
}
bool
PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
{
out = in;
return true;
}
bool
PeakMeter::configure_io (ChanCount in, ChanCount out)
{
if (out != in) { // always 1:1
return false;
}
current_meters = in;
reset_max_channels (in);
return Processor::configure_io (in, out);
}
void
PeakMeter::reflect_inputs (const ChanCount& in)
{
current_meters = in;
const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ());
const size_t n_midi = min (_peak_signal.size(), (size_t) current_meters.n_midi());
const size_t n_audio = current_meters.n_audio();
for (size_t n = 0; n < limit; ++n) {
if (n < n_midi) {
_visible_peak_power[n] = 0;
} else {
_visible_peak_power[n] = -INFINITY;
}
}
for (size_t n = 0; n < n_audio; ++n) {
_kmeter[n]->reset();
}
reset_max();
ConfigurationChanged (in, in); /* EMIT SIGNAL */
}
void
PeakMeter::reset_max_channels (const ChanCount& chn)
{
uint32_t const limit = chn.n_total();
const size_t n_audio = chn.n_audio();
while (_peak_signal.size() > limit) {
_peak_signal.pop_back();
_visible_peak_power.pop_back();
_max_peak_signal.pop_back();
_max_peak_power.pop_back();
}
while (_peak_signal.size() < limit) {
_peak_signal.push_back(0);
_visible_peak_power.push_back(minus_infinity());
_max_peak_signal.push_back(0);
_max_peak_power.push_back(minus_infinity());
}
assert(_peak_signal.size() == limit);
assert(_visible_peak_power.size() == limit);
assert(_max_peak_signal.size() == limit);
assert(_max_peak_power.size() == limit);
/* alloc/free other audio-only meter types. */
while (_kmeter.size() > n_audio) {
delete (_kmeter.back());
_kmeter.pop_back();
}
while (_kmeter.size() < n_audio) {
_kmeter.push_back(new Kmeterdsp());
}
assert(_kmeter.size() == n_audio);
}
/** To be driven by the Meter signal from IO.
* Caller MUST hold its own processor_lock to prevent reconfiguration
* of meter size during this call.
*/
void
PeakMeter::meter ()
{
if (!_active) {
return;
}
assert(_visible_peak_power.size() == _peak_signal.size());
const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ());
const size_t n_midi = min (_peak_signal.size(), (size_t) current_meters.n_midi());
for (size_t n = 0; n < limit; ++n) {
/* grab peak since last read */
float new_peak = _peak_signal[n]; /* XXX we should use atomic exchange from here ... */
_peak_signal[n] = 0; /* ... to here */
if (n < n_midi) {
_max_peak_power[n] = -INFINITY; // std::max (new_peak, _max_peak_power[n]); // XXX
_max_peak_signal[n] = 0;
if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
;
} else {
/* empirical WRT to falloff times , 0.01f ^= 100 Hz update rate */
new_peak = _visible_peak_power[n] - sqrt(_visible_peak_power[n] * Config->get_meter_falloff() * 0.01f * 0.0002f);
if (new_peak < (1.0 / 512.0)) new_peak = 0;
}
_visible_peak_power[n] = new_peak;
continue;
}
/* AUDIO */
/* compute new visible value using falloff */
_max_peak_signal[n] = std::max(new_peak, _max_peak_signal[n]);
if (new_peak > 0.0) {
new_peak = accurate_coefficient_to_dB (new_peak);
} else {
new_peak = minus_infinity();
}
/* update max peak */
_max_peak_power[n] = std::max (new_peak, _max_peak_power[n]);
if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
_visible_peak_power[n] = new_peak;
} else {
// do falloff
new_peak = _visible_peak_power[n] - (Config->get_meter_falloff() * 0.01f);
_visible_peak_power[n] = std::max (new_peak, -INFINITY);
}
}
}
float
PeakMeter::meter_level(uint32_t n, MeterType type) {
switch (type) {
case MeterKrms:
{
const uint32_t n_midi = current_meters.n_midi();
if ((n - n_midi) < _kmeter.size() && (n - n_midi) >= 0) {
#if 0
return fast_coefficient_to_dB (_kmeter[n-n_midi]->read());
#else
return accurate_coefficient_to_dB (_kmeter[n-n_midi]->read());
#endif
}
return minus_infinity();
}
case MeterPeak:
return peak_power(n);
case MeterMaxSignal:
if (n < _max_peak_signal.size()) {
return _max_peak_signal[n];
} else {
return minus_infinity();
}
default:
case MeterMaxPeak:
if (n < _max_peak_power.size()) {
return _max_peak_power[n];
} else {
return minus_infinity();
}
}
}
void
PeakMeter::set_type(MeterType t)
{
if (t == _meter_type) {
return;
}
_meter_type = t;
if (t & MeterKrms) {
const size_t n_audio = current_meters.n_audio();
for (size_t n = 0; n < n_audio; ++n) {
_kmeter[n]->reset();
}
}
TypeChanged(t);
}
XMLNode&
PeakMeter::state (bool full_state)
{
XMLNode& node (Processor::state (full_state));
node.add_property("type", "meter");
return node;
}