13
0
livetrax/libs/qm-dsp/maths/MathUtilities.cpp

430 lines
7.8 KiB
C++

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
QM DSP Library
Centre for Digital Music, Queen Mary, University of London.
This file 2005-2006 Christian Landone.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "MathUtilities.h"
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
double MathUtilities::mod(double x, double y)
{
double a = floor( x / y );
double b = x - ( y * a );
return b;
}
double MathUtilities::princarg(double ang)
{
double ValOut;
ValOut = mod( ang + M_PI, -2 * M_PI ) + M_PI;
return ValOut;
}
void MathUtilities::getAlphaNorm(const double *data, int len, int alpha, double* ANorm)
{
int i;
double temp = 0.0;
double a=0.0;
for( i = 0; i < len; i++)
{
temp = data[ i ];
a += ::pow( fabs(temp), double(alpha) );
}
a /= ( double )len;
a = ::pow( a, ( 1.0 / (double) alpha ) );
*ANorm = a;
}
double MathUtilities::getAlphaNorm( const vector <double> &data, int alpha )
{
int i;
int len = data.size();
double temp = 0.0;
double a=0.0;
for( i = 0; i < len; i++)
{
temp = data[ i ];
a += ::pow( fabs(temp), double(alpha) );
}
a /= ( double )len;
a = ::pow( a, ( 1.0 / (double) alpha ) );
return a;
}
double MathUtilities::round(double x)
{
if (x < 0) {
return -floor(-x + 0.5);
} else {
return floor(x + 0.5);
}
}
double MathUtilities::median(const double *src, int len)
{
if (len == 0) return 0;
vector<double> scratch;
for (int i = 0; i < len; ++i) scratch.push_back(src[i]);
sort(scratch.begin(), scratch.end());
int middle = len/2;
if (len % 2 == 0) {
return (scratch[middle] + scratch[middle - 1]) / 2;
} else {
return scratch[middle];
}
}
double MathUtilities::sum(const double *src, int len)
{
int i ;
double retVal =0.0;
for( i = 0; i < len; i++)
{
retVal += src[ i ];
}
return retVal;
}
double MathUtilities::mean(const double *src, int len)
{
double retVal =0.0;
if (len == 0) return 0;
double s = sum( src, len );
retVal = s / (double)len;
return retVal;
}
double MathUtilities::mean(const vector<double> &src,
int start,
int count)
{
double sum = 0.;
if (count == 0) return 0;
for (int i = 0; i < (int)count; ++i)
{
sum += src[start + i];
}
return sum / count;
}
void MathUtilities::getFrameMinMax(const double *data, int len, double *min, double *max)
{
int i;
double temp = 0.0;
if (len == 0) {
*min = *max = 0;
return;
}
*min = data[0];
*max = data[0];
for( i = 0; i < len; i++)
{
temp = data[ i ];
if( temp < *min )
{
*min = temp ;
}
if( temp > *max )
{
*max = temp ;
}
}
}
int MathUtilities::getMax( double* pData, int Length, double* pMax )
{
int index = 0;
int i;
double temp = 0.0;
double max = pData[0];
for( i = 0; i < Length; i++)
{
temp = pData[ i ];
if( temp > max )
{
max = temp ;
index = i;
}
}
if (pMax) *pMax = max;
return index;
}
int MathUtilities::getMax( const vector<double> & data, double* pMax )
{
int index = 0;
int i;
double temp = 0.0;
double max = data[0];
for( i = 0; i < int(data.size()); i++)
{
temp = data[ i ];
if( temp > max )
{
max = temp ;
index = i;
}
}
if (pMax) *pMax = max;
return index;
}
void MathUtilities::circShift( double* pData, int length, int shift)
{
shift = shift % length;
double temp;
int i,n;
for( i = 0; i < shift; i++)
{
temp=*(pData + length - 1);
for( n = length-2; n >= 0; n--)
{
*(pData+n+1)=*(pData+n);
}
*pData = temp;
}
}
int MathUtilities::compareInt (const void * a, const void * b)
{
return ( *(int*)a - *(int*)b );
}
void MathUtilities::normalise(double *data, int length, NormaliseType type)
{
switch (type) {
case NormaliseNone: return;
case NormaliseUnitSum:
{
double sum = 0.0;
for (int i = 0; i < length; ++i) {
sum += data[i];
}
if (sum != 0.0) {
for (int i = 0; i < length; ++i) {
data[i] /= sum;
}
}
}
break;
case NormaliseUnitMax:
{
double max = 0.0;
for (int i = 0; i < length; ++i) {
if (fabs(data[i]) > max) {
max = fabs(data[i]);
}
}
if (max != 0.0) {
for (int i = 0; i < length; ++i) {
data[i] /= max;
}
}
}
break;
}
}
void MathUtilities::normalise(vector<double> &data, NormaliseType type)
{
switch (type) {
case NormaliseNone: return;
case NormaliseUnitSum:
{
double sum = 0.0;
for (int i = 0; i < (int)data.size(); ++i) sum += data[i];
if (sum != 0.0) {
for (int i = 0; i < (int)data.size(); ++i) data[i] /= sum;
}
}
break;
case NormaliseUnitMax:
{
double max = 0.0;
for (int i = 0; i < (int)data.size(); ++i) {
if (fabs(data[i]) > max) max = fabs(data[i]);
}
if (max != 0.0) {
for (int i = 0; i < (int)data.size(); ++i) data[i] /= max;
}
}
break;
}
}
double MathUtilities::getLpNorm(const vector<double> &data, int p)
{
double tot = 0.0;
for (int i = 0; i < int(data.size()); ++i) {
tot += abs(pow(data[i], p));
}
return pow(tot, 1.0 / p);
}
vector<double> MathUtilities::normaliseLp(const vector<double> &data,
int p,
double threshold)
{
int n = int(data.size());
if (n == 0 || p == 0) return data;
double norm = getLpNorm(data, p);
if (norm < threshold) {
return vector<double>(n, 1.0 / pow(n, 1.0 / p)); // unit vector
}
vector<double> out(n);
for (int i = 0; i < n; ++i) {
out[i] = data[i] / norm;
}
return out;
}
void MathUtilities::adaptiveThreshold(vector<double> &data)
{
int sz = int(data.size());
if (sz == 0) return;
vector<double> smoothed(sz);
int p_pre = 8;
int p_post = 7;
for (int i = 0; i < sz; ++i) {
int first = max(0, i - p_pre);
int last = min(sz - 1, i + p_post);
smoothed[i] = mean(data, first, last - first + 1);
}
for (int i = 0; i < sz; i++) {
data[i] -= smoothed[i];
if (data[i] < 0.0) data[i] = 0.0;
}
}
bool
MathUtilities::isPowerOfTwo(int x)
{
if (x < 1) return false;
if (x & (x-1)) return false;
return true;
}
int
MathUtilities::nextPowerOfTwo(int x)
{
if (isPowerOfTwo(x)) return x;
if (x < 1) return 1;
int n = 1;
while (x) { x >>= 1; n <<= 1; }
return n;
}
int
MathUtilities::previousPowerOfTwo(int x)
{
if (isPowerOfTwo(x)) return x;
if (x < 1) return 1;
int n = 1;
x >>= 1;
while (x) { x >>= 1; n <<= 1; }
return n;
}
int
MathUtilities::nearestPowerOfTwo(int x)
{
if (isPowerOfTwo(x)) return x;
int n0 = previousPowerOfTwo(x), n1 = nextPowerOfTwo(x);
if (x - n0 < n1 - x) return n0;
else return n1;
}
double
MathUtilities::factorial(int x)
{
if (x < 0) return 0;
double f = 1;
for (int i = 1; i <= x; ++i) {
f = f * i;
}
return f;
}
int
MathUtilities::gcd(int a, int b)
{
int c = a % b;
if (c == 0) {
return b;
} else {
return gcd(b, c);
}
}