David Robillard
a473d630eb
git-svn-id: svn://localhost/ardour2/branches/3.0@9654 d708f5d6-7413-0410-9779-e7cbd77b26cf
232 lines
6.9 KiB
C++
232 lines
6.9 KiB
C++
/*
|
|
Copyright (C) 2008 Torben Hohn
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
|
|
#include "ardour/pi_controller.h"
|
|
|
|
static inline double hann(double x) {
|
|
return 0.5 * (1.0 - cos(2 * M_PI * x));
|
|
}
|
|
|
|
PIController::PIController (double resample_factor, int fir_size)
|
|
{
|
|
resample_mean = resample_factor;
|
|
static_resample_factor = resample_factor;
|
|
offset_array = new double[fir_size];
|
|
window_array = new double[fir_size];
|
|
offset_differential_index = 0;
|
|
offset_integral = 0.0;
|
|
smooth_size = fir_size;
|
|
|
|
for (int i = 0; i < fir_size; i++) {
|
|
offset_array[i] = 0.0;
|
|
window_array[i] = hann(double(i) / (double(fir_size) - 1.0));
|
|
}
|
|
|
|
// These values could be configurable
|
|
catch_factor = 20000;
|
|
catch_factor2 = 4000;
|
|
pclamp = 150.0;
|
|
controlquant = 10000.0;
|
|
fir_empty = false;
|
|
}
|
|
|
|
PIController::~PIController ()
|
|
{
|
|
delete [] offset_array;
|
|
delete [] window_array;
|
|
}
|
|
|
|
double
|
|
PIController::get_ratio (int fill_level, int period_size)
|
|
{
|
|
double offset = fill_level;
|
|
double this_catch_factor = catch_factor;
|
|
double this_catch_factor2 = catch_factor2 * 4096.0/(double)period_size;
|
|
|
|
|
|
// Save offset.
|
|
if( fir_empty ) {
|
|
for (int i = 0; i < smooth_size; i++) {
|
|
offset_array[i] = offset;
|
|
}
|
|
fir_empty = false;
|
|
} else {
|
|
offset_array[(offset_differential_index++) % smooth_size] = offset;
|
|
}
|
|
|
|
// Build the mean of the windowed offset array basically fir lowpassing.
|
|
smooth_offset = 0.0;
|
|
for (int i = 0; i < smooth_size; i++) {
|
|
smooth_offset += offset_array[(i + offset_differential_index - 1) % smooth_size] * window_array[i];
|
|
}
|
|
smooth_offset /= double(smooth_size);
|
|
|
|
// This is the integral of the smoothed_offset
|
|
offset_integral += smooth_offset;
|
|
|
|
std::cerr << smooth_offset << " ";
|
|
|
|
// Clamp offset : the smooth offset still contains unwanted noise which would go straigth onto the resample coeff.
|
|
// It only used in the P component and the I component is used for the fine tuning anyways.
|
|
|
|
if (fabs(smooth_offset) < pclamp)
|
|
smooth_offset = 0.0;
|
|
|
|
smooth_offset += (static_resample_factor - resample_mean) * this_catch_factor;
|
|
|
|
// Ok, now this is the PI controller.
|
|
// u(t) = K * (e(t) + 1/T \int e(t') dt')
|
|
// Kp = 1/catch_factor and T = catch_factor2 Ki = Kp/T
|
|
current_resample_factor
|
|
= static_resample_factor - smooth_offset / this_catch_factor - offset_integral / this_catch_factor / this_catch_factor2;
|
|
|
|
// Now quantize this value around resample_mean, so that the noise which is in the integral component doesnt hurt.
|
|
current_resample_factor = floor((current_resample_factor - resample_mean) * controlquant + 0.5) / controlquant + resample_mean;
|
|
|
|
// Calculate resample_mean so we can init ourselves to saner values.
|
|
// resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
|
|
resample_mean = (1.0-0.01) * resample_mean + 0.01 * current_resample_factor;
|
|
std::cerr << fill_level << " " << smooth_offset << " " << offset_integral << " " << current_resample_factor << " " << resample_mean << "\n";
|
|
return current_resample_factor;
|
|
}
|
|
|
|
void
|
|
PIController::out_of_bounds()
|
|
{
|
|
int i;
|
|
// Set the resample_rate... we need to adjust the offset integral, to do this.
|
|
// first look at the PI controller, this code is just a special case, which should never execute once
|
|
// everything is swung in.
|
|
offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
|
|
// Also clear the array. we are beginning a new control cycle.
|
|
for (i = 0; i < smooth_size; i++) {
|
|
offset_array[i] = 0.0;
|
|
}
|
|
fir_empty = false;
|
|
}
|
|
|
|
|
|
PIChaser::PIChaser() {
|
|
pic = new PIController( 1.0, 16 );
|
|
array_index = 0;
|
|
for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
|
|
realtime_stamps[i] = 0;
|
|
chasetime_stamps[i] = 0;
|
|
}
|
|
|
|
speed_threshold = 0.2;
|
|
pos_threshold = 4000;
|
|
want_locate_val = 0;
|
|
}
|
|
|
|
void
|
|
PIChaser::reset() {
|
|
array_index = 0;
|
|
for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
|
|
realtime_stamps[i] = 0;
|
|
chasetime_stamps[i] = 0;
|
|
}
|
|
pic->reset(1.0);
|
|
}
|
|
PIChaser::~PIChaser() {
|
|
delete pic;
|
|
}
|
|
|
|
double
|
|
PIChaser::get_ratio(framepos_t chasetime_measured, framepos_t chasetime, framepos_t slavetime_measured, framepos_t slavetime, bool in_control, int period_size ) {
|
|
|
|
feed_estimator( chasetime_measured, chasetime );
|
|
std::cerr << (double)chasetime_measured/48000.0 << " " << chasetime << " " << slavetime << " ";
|
|
double crude = get_estimate();
|
|
double fine;
|
|
framepos_t massaged_chasetime = chasetime + (framepos_t)( (double)(slavetime_measured - chasetime_measured) * crude );
|
|
|
|
fine = pic->get_ratio (slavetime - massaged_chasetime, period_size);
|
|
if (in_control) {
|
|
if (fabs(fine-crude) > crude*speed_threshold) {
|
|
std::cout << "reset to " << crude << " fine = " << fine << "\n";
|
|
pic->reset( crude );
|
|
speed = crude;
|
|
} else {
|
|
speed = fine;
|
|
}
|
|
|
|
if (abs(chasetime-slavetime) > pos_threshold) {
|
|
pic->reset( crude );
|
|
speed = crude;
|
|
want_locate_val = chasetime;
|
|
std::cout << "we are off by " << chasetime-slavetime << " want_locate:" << chasetime << "\n";
|
|
} else {
|
|
want_locate_val = 0;
|
|
}
|
|
} else {
|
|
std::cout << "not in control..." << crude << "\n";
|
|
speed = crude;
|
|
pic->reset( crude );
|
|
}
|
|
|
|
return speed;
|
|
}
|
|
|
|
void
|
|
PIChaser::feed_estimator (framepos_t realtime, framepos_t chasetime ) {
|
|
array_index += 1;
|
|
realtime_stamps [ array_index%ESTIMATOR_SIZE ] = realtime;
|
|
chasetime_stamps[ array_index%ESTIMATOR_SIZE ] = chasetime;
|
|
}
|
|
|
|
double
|
|
PIChaser::get_estimate() {
|
|
double est = 0;
|
|
int num=0;
|
|
int i;
|
|
framepos_t n1_realtime;
|
|
framepos_t n1_chasetime;
|
|
for( i=(array_index + 1); i<=(array_index + ESTIMATOR_SIZE); i++ ) {
|
|
if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
|
|
n1_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
|
|
n1_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
|
|
i+=1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for( ; i<=(array_index + ESTIMATOR_SIZE); i++ ) {
|
|
if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
|
|
if( (realtime_stamps[(i)%ESTIMATOR_SIZE] - n1_realtime) > 200 ) {
|
|
framepos_t n_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
|
|
framepos_t n_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
|
|
est += ((double)( n_chasetime - n1_chasetime ))
|
|
/ ((double)( n_realtime - n1_realtime ));
|
|
n1_realtime = n_realtime;
|
|
n1_chasetime = n_chasetime;
|
|
num += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(num)
|
|
return est/(double)num;
|
|
else
|
|
return 0.0;
|
|
}
|