286 lines
8.1 KiB
C
286 lines
8.1 KiB
C
/*
|
|
* cluster_segmenter.c
|
|
* soundbite
|
|
*
|
|
* Created by Mark Levy on 06/04/2006.
|
|
* Copyright 2006 Centre for Digital Music, Queen Mary, University of London.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version. See the file
|
|
COPYING included with this distribution for more information.
|
|
*
|
|
*/
|
|
|
|
#include "cluster_segmenter.h"
|
|
|
|
extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d);
|
|
extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr);
|
|
|
|
/* converts constant-Q features to normalised chroma */
|
|
void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma)
|
|
{
|
|
int noct = ncoeff / bins; /* number of complete octaves in constant-Q */
|
|
int t, b, oct, ix;
|
|
//double maxchroma; /* max chroma value at each time, for normalisation */
|
|
//double sum; /* for normalisation */
|
|
|
|
for (t = 0; t < nframes; t++)
|
|
{
|
|
for (b = 0; b < bins; b++)
|
|
chroma[t][b] = 0;
|
|
for (oct = 0; oct < noct; oct++)
|
|
{
|
|
ix = oct * bins;
|
|
for (b = 0; b < bins; b++)
|
|
chroma[t][b] += fabs(cq[t][ix+b]);
|
|
}
|
|
/* normalise to unit sum
|
|
sum = 0;
|
|
for (b = 0; b < bins; b++)
|
|
sum += chroma[t][b];
|
|
for (b = 0; b < bins; b++)
|
|
chroma[t][b] /= sum;
|
|
*/
|
|
/* normalise to unit max - NO this made results much worse!
|
|
maxchroma = 0;
|
|
for (b = 0; b < bins; b++)
|
|
if (chroma[t][b] > maxchroma)
|
|
maxchroma = chroma[t][b];
|
|
if (maxchroma > 0)
|
|
for (b = 0; b < bins; b++)
|
|
chroma[t][b] /= maxchroma;
|
|
*/
|
|
}
|
|
}
|
|
|
|
/* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */
|
|
void mpeg7_constq(double** features, int nframes, int ncoeff)
|
|
{
|
|
int i, j;
|
|
double ss;
|
|
double env;
|
|
double maxenv = 0;
|
|
|
|
/* convert const-Q features to dB scale */
|
|
for (i = 0; i < nframes; i++)
|
|
for (j = 0; j < ncoeff; j++)
|
|
features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON);
|
|
|
|
/* normalise each feature vector and add the norm as an extra feature dimension */
|
|
for (i = 0; i < nframes; i++)
|
|
{
|
|
ss = 0;
|
|
for (j = 0; j < ncoeff; j++)
|
|
ss += features[i][j] * features[i][j];
|
|
env = sqrt(ss);
|
|
for (j = 0; j < ncoeff; j++)
|
|
features[i][j] /= env;
|
|
features[i][ncoeff] = env;
|
|
if (env > maxenv)
|
|
maxenv = env;
|
|
}
|
|
/* normalise the envelopes */
|
|
for (i = 0; i < nframes; i++)
|
|
features[i][ncoeff] /= maxenv;
|
|
}
|
|
|
|
/* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */
|
|
/* NB h is a vector in row major order, as required by cluster_melt() */
|
|
/* for historical reasons we normalise the histograms by their norm (not to sum to one) */
|
|
void create_histograms(int* x, int nx, int m, int hlen, double* h)
|
|
{
|
|
int i, j, t;
|
|
double norm;
|
|
|
|
for (i = 0; i < nx*m; i++)
|
|
h[i] = 0;
|
|
|
|
for (i = hlen/2; i < nx-hlen/2; i++)
|
|
{
|
|
for (j = 0; j < m; j++)
|
|
h[i*m+j] = 0;
|
|
for (t = i-hlen/2; t <= i+hlen/2; t++)
|
|
++h[i*m+x[t]];
|
|
norm = 0;
|
|
for (j = 0; j < m; j++)
|
|
norm += h[i*m+j] * h[i*m+j];
|
|
for (j = 0; j < m; j++)
|
|
h[i*m+j] /= norm;
|
|
}
|
|
|
|
/* duplicate histograms at beginning and end to create one histogram for each data value supplied */
|
|
for (i = 0; i < hlen/2; i++)
|
|
for (j = 0; j < m; j++)
|
|
h[i*m+j] = h[hlen/2*m+j];
|
|
for (i = nx-hlen/2; i < nx; i++)
|
|
for (j = 0; j < m; j++)
|
|
h[i*m+j] = h[(nx-hlen/2-1)*m+j];
|
|
}
|
|
|
|
/* segment using HMM and then histogram clustering */
|
|
void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states,
|
|
int histogram_length, int nclusters, int neighbour_limit)
|
|
{
|
|
int i, j;
|
|
|
|
/*****************************/
|
|
if (0) {
|
|
/* try just using the predominant bin number as a 'decoded state' */
|
|
nHMM_states = feature_length + 1; /* allow a 'zero' state */
|
|
double chroma_thresh = 0.05;
|
|
double maxval;
|
|
int maxbin;
|
|
for (i = 0; i < frames_read; i++)
|
|
{
|
|
maxval = 0;
|
|
for (j = 0; j < feature_length; j++)
|
|
{
|
|
if (features[i][j] > maxval)
|
|
{
|
|
maxval = features[i][j];
|
|
maxbin = j;
|
|
}
|
|
}
|
|
if (maxval > chroma_thresh)
|
|
q[i] = maxbin;
|
|
else
|
|
q[i] = feature_length;
|
|
}
|
|
|
|
}
|
|
if (1) {
|
|
/*****************************/
|
|
|
|
|
|
/* scale all the features to 'balance covariances' during HMM training */
|
|
double scale = 10;
|
|
for (i = 0; i < frames_read; i++)
|
|
for (j = 0; j < feature_length; j++)
|
|
features[i][j] *= scale;
|
|
|
|
/* train an HMM on the features */
|
|
|
|
/* create a model */
|
|
model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states);
|
|
|
|
/* train the model */
|
|
hmm_train(features, frames_read, model);
|
|
/*
|
|
printf("\n\nafter training:\n");
|
|
hmm_print(model);
|
|
*/
|
|
/* decode the hidden state sequence */
|
|
viterbi_decode(features, frames_read, model, q);
|
|
hmm_close(model);
|
|
|
|
/*****************************/
|
|
}
|
|
/*****************************/
|
|
|
|
|
|
/*
|
|
fprintf(stderr, "HMM state sequence:\n");
|
|
for (i = 0; i < frames_read; i++)
|
|
fprintf(stderr, "%d ", q[i]);
|
|
fprintf(stderr, "\n\n");
|
|
*/
|
|
|
|
/* create histograms of states */
|
|
double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */
|
|
create_histograms(q, frames_read, nHMM_states, histogram_length, h);
|
|
|
|
/* cluster the histograms */
|
|
int nbsched = 20; /* length of inverse temperature schedule */
|
|
double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */
|
|
double b0 = 100;
|
|
double alpha = 0.7;
|
|
bsched[0] = b0;
|
|
for (i = 1; i < nbsched; i++)
|
|
bsched[i] = alpha * bsched[i-1];
|
|
cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q);
|
|
|
|
/* now q holds a sequence of cluster assignments */
|
|
|
|
free(h);
|
|
free(bsched);
|
|
}
|
|
|
|
/* segment constant-Q or chroma features */
|
|
void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type,
|
|
int nHMM_states, int histogram_length, int nclusters, int neighbour_limit)
|
|
{
|
|
int feature_length;
|
|
double** chroma;
|
|
int i;
|
|
|
|
if (feature_type == FEATURE_TYPE_CONSTQ)
|
|
{
|
|
/* fprintf(stderr, "Converting to dB and normalising...\n");
|
|
*/
|
|
mpeg7_constq(features, frames_read, ncoeff);
|
|
/*
|
|
fprintf(stderr, "Running PCA...\n");
|
|
*/
|
|
/* do PCA on the features (but not the envelope) */
|
|
int ncomponents = 20;
|
|
pca_project(features, frames_read, ncoeff, ncomponents);
|
|
|
|
/* copy the envelope so that it immediatly follows the chosen components */
|
|
for (i = 0; i < frames_read; i++)
|
|
features[i][ncomponents] = features[i][ncoeff];
|
|
|
|
feature_length = ncomponents + 1;
|
|
|
|
/**************************************
|
|
//TEST
|
|
// feature file name
|
|
char* dir = "/Users/mark/documents/semma/audio/";
|
|
char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char));
|
|
strcpy(file_name, dir);
|
|
strcat(file_name, trackname);
|
|
strcat(file_name, "_features_c20r8h0.2f0.6.mat");
|
|
|
|
// get the features from Matlab from mat-file
|
|
int frames_in_file;
|
|
readmatarray_size(file_name, 2, &frames_in_file, &feature_length);
|
|
readmatarray(file_name, 2, frames_in_file, feature_length, features);
|
|
// copy final frame to ensure that we get as many as we expected
|
|
int missing_frames = frames_read - frames_in_file;
|
|
while (missing_frames > 0)
|
|
{
|
|
for (i = 0; i < feature_length; i++)
|
|
features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i];
|
|
--missing_frames;
|
|
}
|
|
|
|
free(file_name);
|
|
******************************************/
|
|
|
|
cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
|
|
}
|
|
|
|
if (feature_type == FEATURE_TYPE_CHROMA)
|
|
{
|
|
/*
|
|
fprintf(stderr, "Converting to chroma features...\n");
|
|
*/
|
|
/* convert constant-Q to normalised chroma features */
|
|
chroma = (double**) malloc(frames_read*sizeof(double*));
|
|
for (i = 0; i < frames_read; i++)
|
|
chroma[i] = (double*) malloc(bins*sizeof(double));
|
|
cq2chroma(features, frames_read, ncoeff, bins, chroma);
|
|
feature_length = bins;
|
|
|
|
cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
|
|
|
|
for (i = 0; i < frames_read; i++)
|
|
free(chroma[i]);
|
|
free(chroma);
|
|
}
|
|
}
|
|
|
|
|
|
|