13
0
livetrax/gtk2_ardour/fft_graph.cc
David Robillard e0aaed6d65 *** NEW CODING POLICY ***
All #include statements that include a header that is a part of a library
bundled with ardour MUST use quotes, not angle brackets.

Do this:

#include "ardour/types.h"

NOT this:

#include <ardour/types.h>

Rationale:

This is best practice in general, to ensure we include the local version
and not the system version.  That quotes mean "local" (in some sense)
and angle brackets mean "system" (in some sense) is a ubiquitous
convention and IIRC right in the C spec somewhere.

More pragmatically, this is required by (my) waf (stuff) for dependencies
to work correctly.  That is:

!!! FAILURE TO DO THIS CAN RESULT IN BROKEN BUILDS !!!

Failure to comply is punishable by death by torture. :)

P.S. It's not that dramatic in all cases, but this (in combination with some
GCC flags specific to the include type) is the best way I have found to be
absolutely 100% positive the local ones are being used (and we definitely
want to be absolutely 100% positive on that one).


git-svn-id: svn://localhost/ardour2/branches/3.0@4655 d708f5d6-7413-0410-9779-e7cbd77b26cf
2009-02-25 18:26:51 +00:00

484 lines
11 KiB
C++

/*
Copyright (C) 2006 Paul Davis
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <iostream>
#include <glibmm.h>
#include <glibmm/refptr.h>
#include <gdkmm/gc.h>
#include <gtkmm/widget.h>
#include <gtkmm/style.h>
#include <gtkmm/treemodel.h>
#include <gtkmm/treepath.h>
#include "pbd/stl_delete.h"
#include <math.h>
#include "fft_graph.h"
#include "analysis_window.h"
using namespace std;
using namespace Gtk;
using namespace Gdk;
FFTGraph::FFTGraph(int windowSize)
{
_logScale = 0;
_in = 0;
_out = 0;
_hanning = 0;
_logScale = 0;
_a_window = 0;
_show_minmax = false;
_show_normalized = false;
setWindowSize(windowSize);
}
void
FFTGraph::setWindowSize(int windowSize)
{
if (_a_window) {
Glib::Mutex::Lock lm (_a_window->track_list_lock);
setWindowSize_internal(windowSize);
} else {
setWindowSize_internal(windowSize);
}
}
void
FFTGraph::setWindowSize_internal(int windowSize)
{
// remove old tracklist & graphs
if (_a_window) {
_a_window->clear_tracklist();
}
_windowSize = windowSize;
_dataSize = windowSize / 2;
if (_in != 0) {
fftwf_destroy_plan(_plan);
free(_in);
_in = 0;
}
if (_out != 0) {
free(_out);
_out = 0;
}
if (_hanning != 0) {
free(_hanning);
_hanning = 0;
}
if (_logScale != 0) {
free(_logScale);
_logScale = 0;
}
// When destroying, window size is set to zero to free up memory
if (windowSize == 0)
return;
// FFT input & output buffers
_in = (float *) fftwf_malloc(sizeof(float) * _windowSize);
_out = (float *) fftwf_malloc(sizeof(float) * _windowSize);
// Hanning window
_hanning = (float *) malloc(sizeof(float) * _windowSize);
// normalize the window
double sum = 0.0;
for (int i=0; i < _windowSize; i++) {
_hanning[i]=0.81f * ( 0.5f - (0.5f * (float) cos(2.0f * M_PI * (float)i / (float)(_windowSize))));
sum += _hanning[i];
}
double isum = 1.0 / sum;
for (int i=0; i < _windowSize; i++) {
_hanning[i] *= isum;
}
_logScale = (int *) malloc(sizeof(int) * _dataSize);
//float count = 0;
for (int i = 0; i < _dataSize; i++) {
_logScale[i] = 0;
}
_plan = fftwf_plan_r2r_1d(_windowSize, _in, _out, FFTW_R2HC, FFTW_ESTIMATE);
}
FFTGraph::~FFTGraph()
{
// This will free everything
setWindowSize(0);
}
bool
FFTGraph::on_expose_event (GdkEventExpose* event)
{
redraw();
return true;
}
FFTResult *
FFTGraph::prepareResult(Gdk::Color color, string trackname)
{
FFTResult *res = new FFTResult(this, color, trackname);
return res;
}
void
FFTGraph::set_analysis_window(AnalysisWindow *a_window)
{
_a_window = a_window;
}
void
FFTGraph::draw_scales(Glib::RefPtr<Gdk::Window> window)
{
Glib::RefPtr<Gtk::Style> style = get_style();
Glib::RefPtr<Gdk::GC> black = style->get_black_gc();
Glib::RefPtr<Gdk::GC> white = style->get_white_gc();
window->draw_rectangle(black, true, 0, 0, width, height);
/**
* 4 5
* _ _
* | |
* 1 | | 2
* |________|
* 3
**/
// Line 1
window->draw_line(white, h_margin, v_margin, h_margin, height - v_margin );
// Line 2
window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + 1, height - v_margin );
// Line 3
window->draw_line(white, h_margin, height - v_margin, width - h_margin, height - v_margin );
#define DB_METRIC_LENGTH 8
// Line 4
window->draw_line(white, h_margin - DB_METRIC_LENGTH, v_margin, h_margin, v_margin );
// Line 5
window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + DB_METRIC_LENGTH, v_margin );
if (graph_gc == 0) {
graph_gc = GC::create( get_window() );
}
Color grey;
grey.set_rgb_p(0.2, 0.2, 0.2);
graph_gc->set_rgb_fg_color( grey );
if (layout == 0) {
layout = create_pango_layout ("");
layout->set_font_description (get_style()->get_font());
}
// Draw logscale
int logscale_pos = 0;
int position_on_scale;
/* TODO, write better scales and change the log function so that octaves are of equal pixel length
float scale_points[10] = { 55.0, 110.0, 220.0, 440.0, 880.0, 1760.0, 3520.0, 7040.0, 14080.0, 28160.0 };
for (int x = 0; x < 10; x++) {
// i = 0.. _dataSize-1
float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);
freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
}
*/
for (int x = 1; x < 8; x++) {
position_on_scale = (int)floor( (double)currentScaleWidth*(double)x/8.0);
while (_logScale[logscale_pos] < position_on_scale)
logscale_pos++;
int coord = (int)(v_margin + 1.0 + position_on_scale);
int SR = 44100;
int rate_at_pos = (int)((double)(SR/2) * (double)logscale_pos / (double)_dataSize);
char buf[32];
if (rate_at_pos < 1000)
snprintf(buf,32,"%dHz",rate_at_pos);
else
snprintf(buf,32,"%dk",(int)floor( (float)rate_at_pos/(float)1000) );
std::string label = buf;
layout->set_text(label);
window->draw_line(graph_gc, coord, v_margin, coord, height - v_margin - 1);
int width, height;
layout->get_pixel_size (width, height);
window->draw_layout(white, coord - width / 2, v_margin / 2, layout);
}
}
void
FFTGraph::redraw()
{
Glib::Mutex::Lock lm (_a_window->track_list_lock);
draw_scales(get_window());
if (_a_window == 0)
return;
if (!_a_window->track_list_ready)
return;
cairo_t *cr;
cr = gdk_cairo_create(GDK_DRAWABLE(get_window()->gobj()));
cairo_set_line_width(cr, 1.5);
cairo_translate(cr, (float)v_margin + 1.0, (float)h_margin);
// Find "session wide" min & max
float min = 1000000000000.0;
float max = -1000000000000.0;
TreeNodeChildren track_rows = _a_window->track_list.get_model()->children();
for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
TreeModel::Row row = *i;
FFTResult *res = row[_a_window->tlcols.graph];
// disregard fft analysis from empty signals
if (res->minimum() == res->maximum()) {
continue;
}
if ( res->minimum() < min) {
min = res->minimum();
}
if ( res->maximum() > max) {
max = res->maximum();
}
}
if (!_show_normalized) {
min = -150.0f;
max = 0.0f;
}
//int graph_height = height - 2 * h_margin;
float fft_pane_size_w = (float)(width - 2*v_margin) - 1.0;
float fft_pane_size_h = (float)(height - 2*h_margin);
double pixels_per_db = (double)fft_pane_size_h / (double)(max - min);
cairo_rectangle(cr, 0.0, 0.0, fft_pane_size_w, fft_pane_size_h);
cairo_clip(cr);
for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
TreeModel::Row row = *i;
// don't show graphs for tracks which are deselected
if (!row[_a_window->tlcols.visible]) {
continue;
}
FFTResult *res = row[_a_window->tlcols.graph];
// don't show graphs for empty signals
if (res->minimum() == res->maximum()) {
continue;
}
float mpp;
if (_show_minmax) {
mpp = -1000000.0;
cairo_set_source_rgba(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p(), 0.30);
cairo_move_to(cr, 0.5f + (float)_logScale[0], 0.5f + (float)( fft_pane_size_h - (int)floor( (res->maxAt(0) - min) * pixels_per_db) ));
// Draw the line of maximum values
for (int x = 1; x < res->length(); x++) {
if (res->maxAt(x) > mpp)
mpp = res->maxAt(x);
mpp = fmax(mpp, min);
mpp = fmin(mpp, max);
// If the next point on the log scale is at the same location,
// don't draw yet
if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
continue;
}
float X = 0.5f + (float)_logScale[x];
float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) );
cairo_line_to(cr, X, Y);
mpp = -1000000.0;
}
mpp = +10000000.0;
// Draw back to the start using the minimum value
for (int x = res->length()-1; x >= 0; x--) {
if (res->minAt(x) < mpp)
mpp = res->minAt(x);
mpp = fmax(mpp, min);
mpp = fmin(mpp, max);
// If the next point on the log scale is at the same location,
// don't draw yet
if (x - 1 > 0 && _logScale[x] == _logScale[x - 1]) {
continue;
}
float X = 0.5f + (float)_logScale[x];
float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) );
cairo_line_to(cr, X, Y );
mpp = +10000000.0;
}
cairo_close_path(cr);
cairo_fill(cr);
}
// Set color from track
cairo_set_source_rgb(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p());
mpp = -1000000.0;
cairo_move_to(cr, 0.5, fft_pane_size_h-0.5);
for (int x = 0; x < res->length(); x++) {
if (res->avgAt(x) > mpp)
mpp = res->avgAt(x);
mpp = fmax(mpp, min);
mpp = fmin(mpp, max);
// If the next point on the log scale is at the same location,
// don't draw yet
if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
continue;
}
cairo_line_to(cr, 0.5f + (float)_logScale[x], 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) ));
mpp = -1000000.0;
}
cairo_stroke(cr);
}
cairo_destroy(cr);
}
void
FFTGraph::on_size_request(Gtk::Requisition* requisition)
{
width = max(requisition->width, minScaleWidth + h_margin * 2);
height = max(requisition->height, minScaleHeight + 2 + v_margin * 2);
update_size();
requisition->width = width;;
requisition->height = height;
}
void
FFTGraph::on_size_allocate(Gtk::Allocation & alloc)
{
width = alloc.get_width();
height = alloc.get_height();
update_size();
DrawingArea::on_size_allocate (alloc);
}
void
FFTGraph::update_size()
{
currentScaleWidth = width - h_margin*2;
currentScaleHeight = height - 2 - v_margin*2;
float SR = 44100;
float FFT_START = SR/(double)_dataSize;
float FFT_END = SR/2.0;
float FFT_RANGE = log( FFT_END / FFT_START);
float pixel = 0;
for (int i = 0; i < _dataSize; i++) {
float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);
float freq_at_pixel;
pixel--;
do {
pixel++;
freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
} while (freq_at_bin > freq_at_pixel);
_logScale[i] = (int)floor(pixel);
}
}