13
0
livetrax/libs/backends/portaudio/winmmemidi_input_device.cc
Tim Mayberry e258c827e2 WinMME based midi input/output for portaudio backend
TODO:

Use MMCSS to elevate thread priorities
Enable/test and fix SYSEX related code
2015-07-31 09:59:54 +10:00

367 lines
10 KiB
C++

/*
* Copyright (C) 2015 Tim Mayberry <mojofunk@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "winmmemidi_input_device.h"
#include <stdexcept>
#include <cmath>
#include "pbd/compose.h"
#include "win_utils.h"
#include "midi_util.h"
#include "debug.h"
static const uint32_t MIDI_BUFFER_SIZE = 32768;
static const uint32_t SYSEX_BUFFER_SIZE = 32768;
namespace ARDOUR {
WinMMEMidiInputDevice::WinMMEMidiInputDevice (int index)
: m_handle(0)
, m_midi_buffer(new RingBuffer<uint8_t>(MIDI_BUFFER_SIZE))
, m_sysex_buffer(new uint8_t[SYSEX_BUFFER_SIZE])
{
DEBUG_MIDI (string_compose ("Creating midi input device index: %1\n", index));
std::string error_msg;
if (!open (index, error_msg)) {
DEBUG_MIDI (error_msg);
throw std::runtime_error (error_msg);
}
// perhaps this should be called in open
if (!add_sysex_buffer (error_msg)) {
DEBUG_MIDI (error_msg);
std::string close_error;
if (!close (close_error)) {
DEBUG_MIDI (close_error);
}
throw std::runtime_error (error_msg);
}
set_device_name (index);
}
WinMMEMidiInputDevice::~WinMMEMidiInputDevice ()
{
std::string error_msg;
if (!close (error_msg)) {
DEBUG_MIDI (error_msg);
}
}
bool
WinMMEMidiInputDevice::open (UINT index, std::string& error_msg)
{
MMRESULT result = midiInOpen (&m_handle,
index,
(DWORD_PTR) winmm_input_callback,
(DWORD_PTR) this,
CALLBACK_FUNCTION | MIDI_IO_STATUS);
if (result != MMSYSERR_NOERROR) {
error_msg = get_error_string (result);
return false;
}
DEBUG_MIDI (string_compose ("Opened MIDI device index %1\n", index));
return true;
}
bool
WinMMEMidiInputDevice::close (std::string& error_msg)
{
// return error message for first error encountered?
bool success = true;
MMRESULT result = midiInReset (m_handle);
if (result != MMSYSERR_NOERROR) {
error_msg = get_error_string (result);
DEBUG_MIDI (error_msg);
success = false;
}
result = midiInUnprepareHeader (m_handle, &m_sysex_header, sizeof(MIDIHDR));
if (result != MMSYSERR_NOERROR) {
error_msg = get_error_string (result);
DEBUG_MIDI (error_msg);
success = false;
}
result = midiInClose (m_handle);
if (result != MMSYSERR_NOERROR) {
error_msg = get_error_string (result);
DEBUG_MIDI (error_msg);
success = false;
}
m_handle = 0;
if (success) {
DEBUG_MIDI (string_compose ("Closed MIDI device: %1\n", name ()));
} else {
DEBUG_MIDI (string_compose ("Unable to Close MIDI device: %1\n", name ()));
}
return success;
}
bool
WinMMEMidiInputDevice::add_sysex_buffer (std::string& error_msg)
{
m_sysex_header.dwBufferLength = SYSEX_BUFFER_SIZE;
m_sysex_header.dwFlags = 0;
m_sysex_header.lpData = (LPSTR)m_sysex_buffer.get ();
MMRESULT result = midiInPrepareHeader (m_handle, &m_sysex_header, sizeof(MIDIHDR));
if (result != MMSYSERR_NOERROR) {
error_msg = get_error_string (result);
DEBUG_MIDI (error_msg);
return false;
}
result = midiInAddBuffer (m_handle, &m_sysex_header, sizeof(MIDIHDR));
if (result != MMSYSERR_NOERROR) {
error_msg = get_error_string (result);
DEBUG_MIDI (error_msg);
return false;
}
return true;
}
bool
WinMMEMidiInputDevice::set_device_name (UINT index)
{
MIDIINCAPS capabilities;
MMRESULT result = midiInGetDevCaps (index, &capabilities, sizeof(capabilities));
if (result != MMSYSERR_NOERROR) {
DEBUG_MIDI (get_error_string (result));
m_name = "Unknown Midi Input Device";
return false;
} else {
m_name = capabilities.szPname;
}
return true;
}
std::string
WinMMEMidiInputDevice::get_error_string (MMRESULT error_code)
{
char error_msg[MAXERRORLENGTH];
MMRESULT result = midiInGetErrorText (error_code, error_msg, MAXERRORLENGTH);
if (result != MMSYSERR_NOERROR) {
return error_msg;
}
return "WinMMEMidiInput: Unknown Error code";
}
void CALLBACK
WinMMEMidiInputDevice::winmm_input_callback(HMIDIIN handle,
UINT msg,
DWORD_PTR instance,
DWORD_PTR midi_msg,
DWORD timestamp)
{
WinMMEMidiInputDevice* midi_input = (WinMMEMidiInputDevice*)instance;
switch (msg) {
case MIM_OPEN:
case MIM_CLOSE:
// devices_changed_callback
break;
case MIM_MOREDATA:
// passing MIDI_IO_STATUS to midiInOpen means that MIM_MOREDATA
// will be sent when the callback isn't processing MIM_DATA messages
// fast enough to keep up with messages arriving at input device
// driver. I'm not sure what could be done differently if that occurs
// so just handle MIM_DATA as per normal
case MIM_DATA:
midi_input->handle_short_msg ((const uint8_t*)&midi_msg, (uint32_t)timestamp);
break;
case MIM_LONGDATA:
midi_input->handle_sysex_msg ((MIDIHDR*)&midi_msg, (uint32_t)timestamp);
break;
case MIM_ERROR:
DEBUG_MIDI ("WinMME: Driver sent an invalid MIDI message\n");
break;
case MIM_LONGERROR:
DEBUG_MIDI ("WinMME: Driver sent an invalid or incomplete SYSEX message\n");
break;
}
}
void
WinMMEMidiInputDevice::handle_short_msg (const uint8_t* midi_data,
uint32_t timestamp)
{
int length = get_midi_msg_length (midi_data[0]);
if (length == 0 || length == -1) {
DEBUG_MIDI ("ERROR: midi input driver sent an invalid midi message\n");
return;
}
enqueue_midi_msg (midi_data, length, timestamp);
}
void
WinMMEMidiInputDevice::handle_sysex_msg (MIDIHDR* const midi_header,
uint32_t timestamp)
{
#ifdef ENABLE_SYSEX
LPMIDIHDR header = (LPMIDIHDR)midi_header;
size_t byte_count = header->dwBytesRecorded;
if (!byte_count) {
DEBUG_MIDI (
"ERROR: WinMME driver has returned sysex header to us with no bytes\n");
return;
}
uint8_t* data = (uint8_t*)header->lpData;
if ((data[0] != 0xf0) || (data[byte_count - 1] != 0xf7)) {
DEBUG_MIDI (string_compose ("Discarding %1 byte sysex chunk\n", byte_count));
} else {
enqueue_midi_msg (data, byte_count, timestamp);
}
MMRESULT result = midiInAddBuffer (m_handle, &m_sysex_header, sizeof(MIDIHDR));
if (result != MMSYSERR_NOERROR) {
DEBUG_MIDI (get_error_string (result));
}
#endif
}
// fix param order
bool
WinMMEMidiInputDevice::dequeue_midi_event (uint64_t timestamp_start,
uint64_t timestamp_end,
uint64_t& timestamp,
uint8_t* midi_data,
size_t& data_size)
{
const uint32_t read_space = m_midi_buffer->read_space();
struct MidiEventHeader h(0,0);
if (read_space <= sizeof(MidiEventHeader)) {
return false;
}
RingBuffer<uint8_t>::rw_vector vector;
m_midi_buffer->get_read_vector (&vector);
if (vector.len[0] >= sizeof(MidiEventHeader)) {
memcpy ((uint8_t*)&h, vector.buf[0], sizeof(MidiEventHeader));
} else {
if (vector.len[0] > 0) {
memcpy ((uint8_t*)&h, vector.buf[0], vector.len[0]);
}
assert (vector.buf[1] || vector.len[0] == sizeof(MidiEventHeader));
memcpy (((uint8_t*)&h) + vector.len[0],
vector.buf[1],
sizeof(MidiEventHeader) - vector.len[0]);
}
if (h.time >= timestamp_end) {
DEBUG_TIMING (string_compose ("WinMMEMidiInput EVENT %1(ms) early\n",
(h.time - timestamp_end) * 1e-3));
return false;
} else if (h.time < timestamp_start) {
DEBUG_TIMING (string_compose ("WinMMEMidiInput EVENT %1(ms) late\n",
(timestamp_start - h.time) * 1e-3));
}
m_midi_buffer->increment_read_idx (sizeof(MidiEventHeader));
assert (h.size > 0);
if (h.size > data_size) {
DEBUG_MIDI ("WinMMEMidiInput::dequeue_event MIDI event too large!\n");
m_midi_buffer->increment_read_idx (h.size);
return false;
}
if (m_midi_buffer->read (&midi_data[0], h.size) != h.size) {
DEBUG_MIDI ("WinMMEMidiInput::dequeue_event Garbled MIDI EVENT DATA!!\n");
return false;
}
timestamp = h.time;
data_size = h.size;
return true;
}
bool
WinMMEMidiInputDevice::enqueue_midi_msg (const uint8_t* midi_data,
size_t data_size,
uint32_t timestamp)
{
const uint32_t total_size = sizeof(MidiEventHeader) + data_size;
if (data_size == 0) {
DEBUG_MIDI ("ERROR: zero length midi data\n");
return false;
}
if (m_midi_buffer->write_space () < total_size) {
DEBUG_MIDI ("WinMMEMidiInput: ring buffer overflow\n");
return false;
}
// don't use winmme timestamps for now
uint64_t ts = utils::get_microseconds ();
DEBUG_TIMING (string_compose (
"Enqueing MIDI data device: %1 with timestamp: %2 and size %3\n",
name (),
ts,
data_size));
struct MidiEventHeader h (ts, data_size);
m_midi_buffer->write ((uint8_t*)&h, sizeof(MidiEventHeader));
m_midi_buffer->write (midi_data, data_size);
return true;
}
bool
WinMMEMidiInputDevice::start ()
{
if (!m_started) {
MMRESULT result = midiInStart (m_handle);
m_started = (result == MMSYSERR_NOERROR);
if (!m_started) {
DEBUG_MIDI (get_error_string (result));
} else {
DEBUG_MIDI (
string_compose ("WinMMEMidiInput: device %1 started\n", name ()));
}
}
return m_started;
}
bool
WinMMEMidiInputDevice::stop ()
{
if (m_started) {
MMRESULT result = midiInStop (m_handle);
m_started = (result != MMSYSERR_NOERROR);
if (m_started) {
DEBUG_MIDI (get_error_string (result));
} else {
DEBUG_MIDI (
string_compose ("WinMMEMidiInput: device %1 stopped\n", name ()));
}
}
return !m_started;
}
} // namespace ARDOUR