13
0
livetrax/libs/plugins/reasonablesynth.lv2/rsynth.c

557 lines
16 KiB
C

/* reasonable simple synth
*
* Copyright (C) 2013 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE // needed for M_PI
#endif
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#ifndef COMPILER_MSVC
#include <stdbool.h>
#endif
#include <assert.h>
#ifndef BUFFER_SIZE_SAMPLES
#define BUFFER_SIZE_SAMPLES 64
#endif
#ifndef MIN
#define MIN(A, B) ( (A) < (B) ? (A) : (B) )
#endif
/* internal MIDI event abstraction */
enum RMIDI_EV_TYPE {
INVALID=0,
NOTE_ON,
NOTE_OFF,
PROGRAM_CHANGE,
CONTROL_CHANGE,
};
struct rmidi_event_t {
enum RMIDI_EV_TYPE type;
uint8_t channel; /**< the MIDI channel number 0-15 */
union {
struct {
uint8_t note;
uint8_t velocity;
} tone;
struct {
uint8_t param;
uint8_t value;
} control;
} d;
};
typedef struct {
uint32_t tme[3]; // attack, decay, release times [settings:ms || internal:samples]
float vol[2]; // attack, sustain volume [0..1]
uint32_t off[3]; // internal use (added attack,decay,release times)
} ADSRcfg;
typedef struct _RSSynthChannel {
uint32_t keycomp;
uint32_t adsr_cnt[128];
float adsr_amp[128];
float phase[128]; // various use, zero'ed on note-on
int8_t miditable[128]; // internal, note-on/off velocity
int8_t midimsgs [128]; // internal, note-off + on in same cycle
ADSRcfg adsr;
void (*synthesize) (struct _RSSynthChannel* sc,
const uint8_t note, const float vol, const float pc,
const size_t n_samples, float* left, float* right);
} RSSynthChannel;
typedef void (*SynthFunction) (RSSynthChannel* sc,
const uint8_t note, const float vol, const float pc,
const size_t n_samples, float* left, float* right);
typedef struct {
uint32_t boffset;
float buf [2][BUFFER_SIZE_SAMPLES];
RSSynthChannel sc[16];
float freqs[128];
float kcgain;
float kcfilt;
double rate;
uint32_t xmas_on;
uint32_t xmas_off;
} RSSynthesizer;
/* initialize ADSR values
*
* @param rate sample-rate
* @param a attack time in seconds
* @param d decay time in seconds
* @param r release time in seconds
* @param avol attack gain [0..1]
* @param svol sustain volume level [0..1]
*/
static void init_adsr(ADSRcfg *adsr, const double rate,
const uint32_t a, const uint32_t d, const uint32_t r,
const float avol, const float svol) {
adsr->vol[0] = avol;
adsr->vol[1] = svol;
adsr->tme[0] = a * rate / 1000.0;
adsr->tme[1] = d * rate / 1000.0;
adsr->tme[2] = r * rate / 1000.0;
assert(adsr->tme[0] > 32);
assert(adsr->tme[1] > 32);
assert(adsr->tme[2] > 32);
assert(adsr->vol[0] >=0 && adsr->vol[1] <= 1.0);
assert(adsr->vol[1] >=0 && adsr->vol[1] <= 1.0);
adsr->off[0] = adsr->tme[0];
adsr->off[1] = adsr->tme[1] + adsr->off[0];
adsr->off[2] = adsr->tme[2] + adsr->off[1];
}
/* calculate per-sample, per-key envelope */
static inline float adsr_env(RSSynthChannel *sc, const uint8_t note) {
if (sc->adsr_cnt[note] < sc->adsr.off[0]) {
// attack
const uint32_t p = ++sc->adsr_cnt[note];
if (p == sc->adsr.tme[0]) {
sc->adsr_amp[note] = sc->adsr.vol[0];
return sc->adsr.vol[0];
} else {
const float d = sc->adsr.vol[0] - sc->adsr_amp[note];
return sc->adsr_amp[note] + (p / (float) sc->adsr.tme[0]) * d;
}
}
else if (sc->adsr_cnt[note] < sc->adsr.off[1]) {
// decay
const uint32_t p = ++sc->adsr_cnt[note] - sc->adsr.off[0];
if (p == sc->adsr.tme[1]) {
sc->adsr_amp[note] = sc->adsr.vol[1];
return sc->adsr.vol[1];
} else {
const float d = sc->adsr.vol[1] - sc->adsr_amp[note];
return sc->adsr_amp[note] + (p / (float) sc->adsr.tme[1]) * d;
}
}
else if (sc->adsr_cnt[note] == sc->adsr.off[1]) {
// sustain
return sc->adsr.vol[1];
}
else if (sc->adsr_cnt[note] < sc->adsr.off[2]) {
// release
const uint32_t p = ++sc->adsr_cnt[note] - sc->adsr.off[1];
if (p == sc->adsr.tme[2]) {
sc->adsr_amp[note] = 0;
return 0;
} else {
const float d = 0 - sc->adsr_amp[note];
return sc->adsr_amp[note] + (p / (float) sc->adsr.tme[2]) * d;
}
}
else {
sc->adsr_cnt[note] = 0;
return 0;
}
}
/*****************************************************************************/
/* piano like sound w/slight stereo phase */
static void synthesize_sineP (RSSynthChannel* sc,
const uint8_t note, const float vol, const float fq,
const size_t n_samples, float* left, float* right) {
size_t i;
float phase = sc->phase[note];
for (i=0; i < n_samples; ++i) {
float env = adsr_env(sc, note);
if (sc->adsr_cnt[note] == 0) break;
const float amp = vol * env;
if (amp > 1e-10) {
left[i] += amp * sinf(2.0 * M_PI * phase);
left[i] += .300 * amp * sinf(2.0 * M_PI * phase * 2.0);
left[i] += .150 * amp * sinf(2.0 * M_PI * phase * 3.0);
left[i] += .080 * amp * sinf(2.0 * M_PI * phase * 4.0);
//left[i] -= .007 * amp * sinf(2.0 * M_PI * phase * 5.0);
//left[i] += .010 * amp * sinf(2.0 * M_PI * phase * 6.0);
left[i] += .020 * amp * sinf(2.0 * M_PI * phase * 7.0);
phase += fq;
right[i] += amp * sinf(2.0 * M_PI * phase);
right[i] += .300 * amp * sinf(2.0 * M_PI * phase * 2.0);
right[i] += .150 * amp * sinf(2.0 * M_PI * phase * 3.0);
right[i] -= .080 * amp * sinf(2.0 * M_PI * phase * 4.0);
//right[i] += .007 * amp * sinf(2.0 * M_PI * phase * 5.0);
//right[i] += .010 * amp * sinf(2.0 * M_PI * phase * 6.0);
right[i] -= .020 * amp * sinf(2.0 * M_PI * phase * 7.0);
} else {
phase += fq;
}
if (phase > 1.0) phase -= 2.0;
}
sc->phase[note] = phase;
}
static const ADSRcfg piano_adsr = {{ 5, 800, 100}, { 1.0, 0.0}, {0,0,0}};
/*****************************************************************************/
/* process note - move through ADSR states, count active keys,.. */
static void process_key (void *synth,
const uint8_t chn, const uint8_t note,
const size_t n_samples, float *left, float *right)
{
RSSynthesizer* rs = (RSSynthesizer*)synth;
RSSynthChannel* sc = &rs->sc[chn];
const int8_t vel = sc->miditable[note];
const int8_t msg = sc->midimsgs[note];
const float vol = /* master_volume */ 0.1 * fabsf(vel) / 127.0;
const float phase = sc->phase[note];
sc->midimsgs[note] = 0;
if (phase == -10 && vel > 0) {
// new note on
assert(sc->adsr_cnt[note] == 0);
sc->adsr_amp[note] = 0;
sc->adsr_cnt[note] = 0;
sc->phase[note] = 0;
sc->keycomp++;
//printf("[On] Now %d keys active on chn %d\n", sc->keycomp, chn);
}
else if (phase >= -1.0 && phase <= 1.0 && vel > 0) {
// sustain note or re-start note while adsr in progress:
if (sc->adsr_cnt[note] > sc->adsr.off[1] || msg == 3) {
// x-fade to attack
sc->adsr_amp[note] = adsr_env(sc, note);
sc->adsr_cnt[note] = 0;
}
}
else if (phase >= -1.0 && phase <= 1.0 && vel < 0) {
// note off
if (sc->adsr_cnt[note] <= sc->adsr.off[1]) {
if (sc->adsr_cnt[note] != sc->adsr.off[1]) {
// x-fade to release
sc->adsr_amp[note] = adsr_env(sc, note);
}
sc->adsr_cnt[note] = sc->adsr.off[1] + 1;
}
}
else {
/* note-on + off in same cycle */
sc->miditable[note] = 0;
sc->adsr_cnt[note] = 0;
sc->phase[note] = -10;
return;
}
// synthesize actual sound
sc->synthesize(sc, note, vol, rs->freqs[note], n_samples, left, right);
if (sc->adsr_cnt[note] == 0) {
//printf("Note %d,%d released\n", chn, note);
sc->miditable[note] = 0;
sc->adsr_amp[note] = 0;
sc->phase[note] = -10;
sc->keycomp--;
//printf("[off] Now %d keys active on chn %d\n", sc->keycomp, chn);
}
}
/* synthesize a BUFFER_SIZE_SAMPLES's of audio-data */
static void synth_fragment (void *synth, const size_t n_samples, float *left, float *right) {
RSSynthesizer* rs = (RSSynthesizer*)synth;
memset (left, 0, n_samples * sizeof(float));
memset (right, 0, n_samples * sizeof(float));
uint8_t keycomp = 0;
int c,k;
size_t i;
for (c=0; c < 16; ++c) {
for (k=0; k < 128; ++k) {
if (rs->sc[c].miditable[k] == 0) continue;
process_key(synth, c, k, n_samples, left, right);
}
keycomp += rs->sc[c].keycomp;
}
#if 1 // key-compression
float kctgt = 8.0 / (float)(keycomp + 7.0);
if (kctgt < .5) kctgt = .5;
if (kctgt > 1.0) kctgt = 1.0;
const float _w = rs->kcfilt;
for (i=0; i < n_samples; ++i) {
rs->kcgain += _w * (kctgt - rs->kcgain);
left[i] *= rs->kcgain;
right[i] *= rs->kcgain;
}
rs->kcgain += 1e-12;
#endif
}
static void synth_reset_channel(RSSynthChannel* sc) {
int k;
for (k=0; k < 128; ++k) {
sc->adsr_cnt[k] = 0;
sc->adsr_amp[k] = 0;
sc->phase[k] = -10;
sc->miditable[k] = 0;
sc->midimsgs[k] = 0;
}
sc->keycomp = 0;
}
static void synth_reset(void *synth) {
RSSynthesizer* rs = (RSSynthesizer*)synth;
int c;
for (c=0; c < 16; ++c) {
synth_reset_channel(&(rs->sc[c]));
}
rs->kcgain = 0;
}
static void synth_load(RSSynthChannel *sc, const double rate,
SynthFunction synthesize,
ADSRcfg const * const adsr) {
synth_reset_channel(sc);
init_adsr(&sc->adsr, rate,
adsr->tme[0], adsr->tme[1], adsr->tme[2],
adsr->vol[0], adsr->vol[1]);
sc->synthesize = synthesize;
}
/**
* internal abstraction of MIDI data handling
*/
static void synth_process_midi_event(void *synth, struct rmidi_event_t *ev) {
RSSynthesizer* rs = (RSSynthesizer*)synth;
switch(ev->type) {
case NOTE_ON:
rs->sc[ev->channel].midimsgs[ev->d.tone.note] |= 1;
if (rs->sc[ev->channel].miditable[ev->d.tone.note] <= 0)
rs->sc[ev->channel].miditable[ev->d.tone.note] = ev->d.tone.velocity;
break;
case NOTE_OFF:
rs->sc[ev->channel].midimsgs[ev->d.tone.note] |= 2;
if (rs->sc[ev->channel].miditable[ev->d.tone.note] > 0)
rs->sc[ev->channel].miditable[ev->d.tone.note] *= -1.0;
break;
case PROGRAM_CHANGE:
break;
case CONTROL_CHANGE:
if (ev->d.control.param == 0x00 || ev->d.control.param == 0x20) {
/* 0x00 and 0x20 are used for BANK select */
break;
} else
if (ev->d.control.param == 121) {
/* reset all controllers */
break;
} else
if (ev->d.control.param == 120 || ev->d.control.param == 123) {
/* Midi panic: 120: all sound off, 123: all notes off*/
synth_reset_channel(&(rs->sc[ev->channel]));
break;
} else
if (ev->d.control.param >= 120) {
/* params 122-127 are reserved - skip them. */
break;
}
break;
default:
break;
}
}
/******************************************************************************
* PUBLIC API (used by lv2.c)
*/
/**
* align LV2 and internal synth buffers
* call synth_fragment as often as needed for the given LV2 buffer size
*
* @param synth synth-handle
* @param written samples written so far (offset in \ref out)
* @param nframes total samples to synthesize and write to the \out buffer
* @param out pointer to stereo output buffers
* @return end of buffer (written + nframes)
*/
static uint32_t synth_sound (void *synth, uint32_t written, const uint32_t nframes, float **out) {
RSSynthesizer* rs = (RSSynthesizer*)synth;
while (written < nframes) {
uint32_t nremain = nframes - written;
if (rs->boffset >= BUFFER_SIZE_SAMPLES) {
const uint32_t tosynth = MIN(BUFFER_SIZE_SAMPLES, nremain);
rs->boffset = BUFFER_SIZE_SAMPLES - tosynth;
synth_fragment(rs, tosynth, &(rs->buf[0][rs->boffset]), &(rs->buf[1][rs->boffset]));
}
uint32_t nread = MIN(nremain, (BUFFER_SIZE_SAMPLES - rs->boffset));
memcpy(&out[0][written], &rs->buf[0][rs->boffset], nread*sizeof(float));
memcpy(&out[1][written], &rs->buf[1][rs->boffset], nread*sizeof(float));
written += nread;
rs->boffset += nread;
}
return written;
}
/**
* parse raw midi-data.
*
* @param synth synth-handle
* @param data 8bit midi message
* @param size number of bytes in the midi-message
*/
static void synth_parse_midi(void *synth, const uint8_t *data, const size_t size) {
if (size < 2 || size > 3) return;
// All messages need to be 3 bytes; except program-changes: 2bytes.
if (size == 2 && (data[0] & 0xf0) != 0xC0) return;
struct rmidi_event_t ev;
ev.channel = data[0]&0x0f;
switch (data[0] & 0xf0) {
case 0x80:
ev.type=NOTE_OFF;
ev.d.tone.note=data[1]&0x7f;
ev.d.tone.velocity=data[2]&0x7f;
break;
case 0x90:
ev.type=NOTE_ON;
ev.d.tone.note=data[1]&0x7f;
ev.d.tone.velocity=data[2]&0x7f;
if (ev.d.tone.velocity == 0) {
ev.type=NOTE_OFF;
}
break;
case 0xB0:
ev.type=CONTROL_CHANGE;
ev.d.control.param=data[1]&0x7f;
ev.d.control.value=data[2]&0x7f;
break;
case 0xC0:
ev.type=PROGRAM_CHANGE;
ev.d.control.value=data[1]&0x7f;
break;
default:
return;
}
synth_process_midi_event(synth, &ev);
}
static const uint8_t jingle[] = { 71 ,71 ,71 ,71 ,71 ,71 ,71 ,74 ,67 ,69 ,71 ,72 ,72 ,72 ,72 ,72 ,71 ,71 ,71 ,71 ,71 ,69 ,69 ,71 ,69 ,74 ,71 ,71 ,71 ,71 ,71 ,71 ,71 ,74 ,67 ,69 ,71 ,72 ,72 ,72 ,72 ,72 ,71 ,71 ,71 ,71 ,74 ,74 ,72 ,69 ,67 ,62 ,62 ,71 ,69 ,67 ,62 ,62 ,62 ,62 ,71 ,69 ,67 ,64 ,64 ,64 ,72 ,71 ,69 ,66 ,74 ,76 ,74 ,72 ,69 ,71 ,62 ,62 ,71 ,69 ,67 ,62 ,62 ,62 ,62 ,71 ,69 ,67 ,64 ,64 ,64 ,72 ,71 ,69 ,74 ,74 ,74 ,74 ,76 ,74 ,72 ,69 ,67 ,74 ,71 ,71 ,71 ,71 ,71 ,71 ,71 ,74 ,67 ,69 ,71 ,72 ,72 ,72 ,72 ,72 ,71 ,71 ,71 ,71 ,71 ,69 ,69 ,71 ,69 ,74 ,71 ,71 ,71 ,71 ,71 ,71 ,71 ,74 ,67 ,69 ,71 ,72 ,72 ,72 ,72 ,72 ,71 ,71 ,71 ,71 ,74 ,74 ,72 ,69 ,67 };
static void synth_parse_xmas(void *synth, const uint8_t *data, const size_t size) {
RSSynthesizer* rs = (RSSynthesizer*)synth;
if (size < 2 || size > 3) return;
// All messages need to be 3 bytes; except program-changes: 2bytes.
if (size == 2 && (data[0] & 0xf0) != 0xC0) return;
struct rmidi_event_t ev;
ev.channel = data[0]&0x0f;
switch (data[0] & 0xf0) {
case 0x80:
ev.type=NOTE_OFF;
ev.d.tone.note=jingle[rs->xmas_off++];
ev.d.tone.velocity=data[2]&0x7f;
if (rs->xmas_off >= sizeof(jingle)) rs->xmas_off = 0;
break;
case 0x90:
ev.type=NOTE_ON;
ev.d.tone.note=jingle[rs->xmas_on++];
ev.d.tone.velocity=data[2]&0x7f;
if (rs->xmas_on >= sizeof(jingle)) rs->xmas_on = 0;
break;
case 0xB0:
ev.type=CONTROL_CHANGE;
ev.d.control.param=data[1]&0x7f;
ev.d.control.value=data[2]&0x7f;
break;
case 0xC0:
ev.type=PROGRAM_CHANGE;
ev.d.control.value=data[1]&0x7f;
break;
default:
return;
}
synth_process_midi_event(synth, &ev);
}
/**
* initialize the synth
* This should be called after synth_alloc()
* as soon as the sample-rate is known
*
* @param synth synth-handle
* @param rate sample-rate
*/
static void synth_init(void *synth, double rate) {
RSSynthesizer* rs = (RSSynthesizer*)synth;
rs->rate = rate;
rs->boffset = BUFFER_SIZE_SAMPLES;
const float tuning = 440;
int c,k;
for (k=0; k < 128; k++) {
rs->freqs[k] = (tuning / 32.0f) * powf(2, (k - 9.0) / 12.0) / rate;
assert(rs->freqs[k] < M_PI/2); // otherwise spatialization may phase out..
}
rs->kcfilt = 12.0 / rate;
synth_reset(synth);
for (c=0; c < 16; c++) {
synth_load(&rs->sc[c], rate, &synthesize_sineP, &piano_adsr);
}
rs->xmas_on = 0;
rs->xmas_off = 0;
}
/**
* Allocate data-structure, create a handle for all other synth_* functions.
*
* This data should be freeded with \ref synth_free when the synth is no
* longer needed.
*
* The synth can only be used after calling \rev synth_init as well.
*
* @return synth-handle
*/
static void * synth_alloc(void) {
return calloc(1, sizeof(RSSynthesizer));
}
/**
* release synth data structure
* @param synth synth-handle
*/
static void synth_free(void *synth) {
free(synth);
}
/* vi:set ts=8 sts=2 sw=2 et: */