13
0
livetrax/libs/surfaces/generic_midi/midicontrollable.cc

844 lines
24 KiB
C++

/*
* Copyright (C) 2006-2009 David Robillard <d@drobilla.net>
* Copyright (C) 2008-2018 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2009-2012 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2014-2019 Robin Gareus <robin@gareus.org>
* Copyright (C) 2015-2016 Len Ovens <len@ovenwerks.net>
* Copyright (C) 2016 Tim Mayberry <mojofunk@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdint.h>
#include <cmath>
#include <climits>
#include <iostream>
#include "pbd/error.h"
#include "pbd/compose.h"
#include "pbd/stacktrace.h"
#include "pbd/types_convert.h"
#include "pbd/xml++.h"
#include "midi++/types.h" // Added by JE - 06-01-2009. All instances of 'byte' changed to 'MIDI::byte' (for clarification)
#include "midi++/port.h"
#include "midi++/channel.h"
#include "ardour/async_midi_port.h"
#include "ardour/automation_control.h"
#include "ardour/midi_ui.h"
#include "ardour/debug.h"
#include "midicontrollable.h"
#include "generic_midi_control_protocol.h"
using namespace std;
using namespace MIDI;
using namespace PBD;
using namespace ARDOUR;
MIDIControllable::MIDIControllable (GenericMidiControlProtocol* s, MIDI::Parser& p, bool m)
: _surface (s)
, _parser (p)
, _momentary (m)
{
_learned = false; /* from URI */
_ctltype = Ctl_Momentary;
_encoder = No_enc;
setting = false;
last_value = 0; // got a better idea ?
last_incoming = 256; // any out of band value
last_controllable_value = 0.0f;
control_type = none;
control_rpn = -1;
control_nrpn = -1;
_control_description = "MIDI Control: none";
control_additional = (MIDI::byte) -1;
}
MIDIControllable::MIDIControllable (GenericMidiControlProtocol* s, MIDI::Parser& p, boost::shared_ptr<PBD::Controllable> c, bool m)
: _surface (s)
, _parser (p)
, _momentary (m)
{
set_controllable (c);
_learned = true; /* from controllable */
_ctltype = Ctl_Momentary;
_encoder = No_enc;
setting = false;
last_value = 0; // got a better idea ?
last_controllable_value = 0.0f;
control_type = none;
control_rpn = -1;
control_nrpn = -1;
_control_description = "MIDI Control: none";
control_additional = (MIDI::byte) -1;
}
MIDIControllable::~MIDIControllable ()
{
drop_external_control ();
}
int
MIDIControllable::init (const std::string& s)
{
_current_uri = s;
return 0;
}
void
MIDIControllable::midi_forget ()
{
/* stop listening for incoming messages, but retain
our existing event + type information.
*/
midi_sense_connection[0].disconnect ();
midi_sense_connection[1].disconnect ();
midi_learn_connection.disconnect ();
}
void
MIDIControllable::drop_external_control ()
{
midi_forget ();
control_rpn = -1;
control_nrpn = -1;
control_type = none;
control_additional = (MIDI::byte) -1;
}
boost::shared_ptr<PBD::Controllable>
MIDIControllable::get_controllable () const
{
return _controllable;
}
void
MIDIControllable::set_controllable (boost::shared_ptr<PBD::Controllable> c)
{
Glib::Threads::Mutex::Lock lm (controllable_lock);
if (c && c == _controllable) {
return;
}
controllable_death_connections.drop_connections ();
if (c) {
_controllable = c;
last_controllable_value = control_to_midi (c->get_value());
} else {
_controllable.reset();
last_controllable_value = 0.0f; // is there a better value?
}
last_incoming = 256;
if (c) {
c->DropReferences.connect (controllable_death_connections, MISSING_INVALIDATOR,
boost::bind (&MIDIControllable::drop_controllable, this),
MidiControlUI::instance());
}
}
void
MIDIControllable::midi_rebind (channel_t c)
{
if (c >= 0) {
bind_midi (c, control_type, control_additional);
} else {
midi_forget ();
}
}
void
MIDIControllable::learn_about_external_control ()
{
drop_external_control ();
_parser.any.connect_same_thread (midi_learn_connection, boost::bind (&MIDIControllable::midi_receiver, this, _1, _2, _3));
}
void
MIDIControllable::stop_learning ()
{
midi_learn_connection.disconnect ();
}
int
MIDIControllable::control_to_midi (float val)
{
if (!_controllable) {
return 0;
}
if (_controllable->is_gain_like()) {
return _controllable->internal_to_interface (val) * max_value_for_type ();
}
float control_min = _controllable->lower ();
float control_max = _controllable->upper ();
float control_range = control_max - control_min;
if (_controllable->is_toggle()) {
if (val >= (control_min + (control_range/2.0f))) {
return max_value_for_type();
} else {
return 0;
}
} else {
boost::shared_ptr<AutomationControl> actl = boost::dynamic_pointer_cast<AutomationControl> (_controllable);
if (actl) {
control_min = actl->internal_to_interface(control_min);
control_max = actl->internal_to_interface(control_max);
control_range = control_max - control_min;
val = actl->internal_to_interface(val);
}
}
// fiddle value of max so value doesn't jump from 125 to 127 for 1.0
// otherwise decrement won't work.
return (val - control_min) / control_range * (max_value_for_type () - 1);
}
float
MIDIControllable::midi_to_control (int val)
{
if (!_controllable) {
return 0;
}
/* fiddle with MIDI value so that we get an odd number of integer steps
and can thus represent "middle" precisely as 0.5. this maps to
the range 0..+1.0 (0 to 126)
*/
float fv = (val == 0 ? 0 : float (val - 1) / (max_value_for_type() - 1));
if (_controllable->is_gain_like()) {
return _controllable->interface_to_internal (fv);
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Raw value %1 float %2\n", val, fv));
float control_min = _controllable->lower ();
float control_max = _controllable->upper ();
float control_range = control_max - control_min;
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Min %1 Max %2 Range %3\n", control_min, control_max, control_range));
boost::shared_ptr<AutomationControl> actl = boost::dynamic_pointer_cast<AutomationControl> (_controllable);
if (actl) {
if (fv == 0.f) return control_min;
if (fv == 1.f) return control_max;
control_min = actl->internal_to_interface(control_min);
control_max = actl->internal_to_interface(control_max);
control_range = control_max - control_min;
return actl->interface_to_internal((fv * control_range) + control_min);
}
return (fv * control_range) + control_min;
}
void
MIDIControllable::midi_sense_note_on (Parser &p, EventTwoBytes *tb)
{
midi_sense_note (p, tb, true);
}
void
MIDIControllable::midi_sense_note_off (Parser &p, EventTwoBytes *tb)
{
midi_sense_note (p, tb, false);
}
int
MIDIControllable::lookup_controllable()
{
if (_current_uri.empty()) {
return -1;
}
boost::shared_ptr<Controllable> c = _surface->lookup_controllable (_current_uri);
if (!c) {
return -1;
}
set_controllable (c);
return 0;
}
void
MIDIControllable::drop_controllable ()
{
set_controllable (boost::shared_ptr<PBD::Controllable>());
}
void
MIDIControllable::midi_sense_note (Parser &, EventTwoBytes *msg, bool /*is_on*/)
{
if (!_controllable) {
if (lookup_controllable()) {
return;
}
}
assert (_controllable);
_surface->maybe_start_touch (_controllable);
if (!_controllable->is_toggle()) {
if (control_additional == msg->note_number) {
_controllable->set_value (midi_to_control (msg->velocity), Controllable::UseGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Note %1 value %2 %3\n", (int) msg->note_number, (float) midi_to_control (msg->velocity), current_uri() ));
}
} else {
if (control_additional == msg->note_number) {
float new_value = _controllable->get_value() > 0.5f ? 0.0f : 1.0f;
_controllable->set_value (new_value, Controllable::UseGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Note %1 Value %2 %3\n", (int) msg->note_number, (float) new_value, current_uri()));
}
}
last_value = (MIDI::byte) (_controllable->get_value() * 127.0); // to prevent feedback fights
}
void
MIDIControllable::midi_sense_controller (Parser &, EventTwoBytes *msg)
{
if (!_controllable) {
if (lookup_controllable ()) {
return;
}
}
assert (_controllable);
_surface->maybe_start_touch (_controllable);
if (control_additional == msg->controller_number) {
if (!_controllable->is_toggle()) {
if (get_encoder() == No_enc) {
float new_value = msg->value;
float max_value = max(last_controllable_value, new_value);
float min_value = min(last_controllable_value, new_value);
float range = max_value - min_value;
float threshold = (float) _surface->threshold ();
bool const in_sync = (
range < threshold &&
_controllable->get_value() <= midi_to_control(max_value) &&
_controllable->get_value() >= midi_to_control(min_value)
);
/* If the surface is not motorised, we try to prevent jumps when
the MIDI controller and controllable are out of sync.
There might be a better way of doing this.
*/
if (in_sync || _surface->motorised ()) {
_controllable->set_value (midi_to_control (new_value), Controllable::UseGroup);
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI CC %1 value %2 %3\n", (int) msg->controller_number, (float) midi_to_control(new_value), current_uri() ));
last_controllable_value = new_value;
} else {
int offset = (msg->value & 0x3f);
switch (get_encoder()) {
case Enc_L:
if (msg->value > 0x40) {
_controllable->set_value (midi_to_control (last_value - offset + 1), Controllable::UseGroup);
} else {
_controllable->set_value (midi_to_control (last_value + offset + 1), Controllable::UseGroup);
}
break;
case Enc_R:
if (msg->value > 0x40) {
_controllable->set_value (midi_to_control (last_value + offset + 1), Controllable::UseGroup);
} else {
_controllable->set_value (midi_to_control (last_value - offset + 1), Controllable::UseGroup);
}
break;
case Enc_2:
if (msg->value > 0x40) {
_controllable->set_value (midi_to_control (last_value - (0x7f - msg->value) + 1), Controllable::UseGroup);
} else {
_controllable->set_value (midi_to_control (last_value + offset + 1), Controllable::UseGroup);
}
break;
case Enc_B:
if (msg->value > 0x40) {
_controllable->set_value (midi_to_control (last_value + offset + 1), Controllable::UseGroup);
} else {
_controllable->set_value (midi_to_control (last_value - (0x40 - offset)), Controllable::UseGroup);
}
break;
default:
break;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI CC %1 value %2 %3\n", (int) msg->controller_number, (int) last_value, current_uri() ));
}
} else {
switch (get_ctltype()) {
case Ctl_Dial:
/* toggle value whenever direction of knob motion changes */
if (last_incoming > 127) {
/* relax ... first incoming message */
} else {
if (msg->value > last_incoming) {
_controllable->set_value (1.0, Controllable::UseGroup);
} else {
_controllable->set_value (0.0, Controllable::UseGroup);
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("dial Midi CC %1 value 1 %2\n", (int) msg->controller_number, current_uri()));
}
last_incoming = msg->value;
break;
case Ctl_Momentary:
/* toggle it if over 64, otherwise leave it alone. This behaviour that works with buttons which send a value > 64 each
* time they are pressed.
*/
if (msg->value >= 0x40) {
_controllable->set_value (_controllable->get_value() >= 0.5 ? 0.0 : 1.0, Controllable::UseGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("toggle Midi CC %1 value 1 %2\n", (int) msg->controller_number, current_uri()));
}
break;
case Ctl_Toggle:
/* toggle if value is over 64, otherwise turn it off. This is behaviour designed for buttons which send a value > 64 when pressed,
maintain state (i.e. they know they were pressed) and then send zero the next time.
*/
if (msg->value >= 0x40) {
_controllable->set_value (_controllable->get_value() >= 0.5 ? 0.0 : 1.0, Controllable::UseGroup);
} else {
_controllable->set_value (0.0, Controllable::NoGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Midi CC %1 value 0 %2\n", (int) msg->controller_number, current_uri()));
break;
}
}
}
last_value = (MIDI::byte) (control_to_midi(_controllable->get_value())); // to prevent feedback fights
}
}
void
MIDIControllable::midi_sense_program_change (Parser &, MIDI::byte msg)
{
if (!_controllable) {
if (lookup_controllable ()) {
return;
}
}
assert (_controllable);
_surface->maybe_start_touch (_controllable);
if (msg == control_additional) {
if (!_controllable->is_toggle()) {
_controllable->set_value (1.0, Controllable::UseGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI program %1 value 1.0 %3\n", (int) msg, current_uri() ));
} else {
float new_value = _controllable->get_value() > 0.5f ? 0.0f : 1.0f;
_controllable->set_value (new_value, Controllable::UseGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI program %1 value %2 %3\n", (int) msg, (float) new_value, current_uri()));
}
}
last_value = (MIDI::byte) (_controllable->get_value() * 127.0); // to prevent feedback fights
}
void
MIDIControllable::midi_sense_pitchbend (Parser &, pitchbend_t pb)
{
if (!_controllable) {
if (lookup_controllable ()) {
return;
}
}
assert (_controllable);
_surface->maybe_start_touch (_controllable);
if (!_controllable->is_toggle()) {
float new_value = pb;
float max_value = max (last_controllable_value, new_value);
float min_value = min (last_controllable_value, new_value);
float range = max_value - min_value;
float threshold = 128.f * _surface->threshold ();
bool const in_sync = (
range < threshold &&
_controllable->get_value() <= midi_to_control (max_value) &&
_controllable->get_value() >= midi_to_control (min_value)
);
if (in_sync || _surface->motorised ()) {
_controllable->set_value (midi_to_control (pb), Controllable::UseGroup);
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI pitchbend %1 value %2 %3\n", (int) control_channel, (float) midi_to_control (pb), current_uri() ));
last_controllable_value = new_value;
} else {
if (pb > 8065.0f) {
_controllable->set_value (1, Controllable::UseGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Midi pitchbend %1 value 1 %2\n", (int) control_channel, current_uri()));
} else {
_controllable->set_value (0, Controllable::UseGroup);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Midi pitchbend %1 value 0 %2\n", (int) control_channel, current_uri()));
}
}
last_value = control_to_midi (_controllable->get_value ());
}
void
MIDIControllable::midi_receiver (Parser &, MIDI::byte *msg, size_t /*len*/)
{
/* we only respond to channel messages */
if ((msg[0] & 0xF0) < 0x80 || (msg[0] & 0xF0) > 0xE0) {
return;
}
_surface->check_used_event(msg[0], msg[1]);
bind_midi ((channel_t) (msg[0] & 0xf), eventType (msg[0] & 0xF0), msg[1]);
if (_controllable) {
_controllable->LearningFinished ();
}
}
void
MIDIControllable::rpn_value_change (Parser&, uint16_t rpn, float val)
{
if (control_rpn == rpn) {
if (_controllable) {
_controllable->set_value (val, Controllable::UseGroup);
}
}
}
void
MIDIControllable::nrpn_value_change (Parser&, uint16_t nrpn, float val)
{
if (control_nrpn == nrpn) {
if (_controllable) {
_controllable->set_value (val, Controllable::UseGroup);
}
}
}
void
MIDIControllable::rpn_change (Parser&, uint16_t rpn, int dir)
{
if (control_rpn == rpn) {
if (_controllable) {
/* XXX how to increment/decrement ? */
// _controllable->set_value (val);
}
}
}
void
MIDIControllable::nrpn_change (Parser&, uint16_t nrpn, int dir)
{
if (control_nrpn == nrpn) {
if (_controllable) {
/* XXX how to increment/decrement ? */
// _controllable->set_value (val);
}
}
}
void
MIDIControllable::bind_rpn_value (channel_t chn, uint16_t rpn)
{
int chn_i = chn;
drop_external_control ();
control_rpn = rpn;
control_channel = chn;
_parser.channel_rpn[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::rpn_value_change, this, _1, _2, _3));
}
void
MIDIControllable::bind_nrpn_value (channel_t chn, uint16_t nrpn)
{
int chn_i = chn;
drop_external_control ();
control_nrpn = nrpn;
control_channel = chn;
_parser.channel_nrpn[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::rpn_value_change, this, _1, _2, _3));
}
void
MIDIControllable::bind_nrpn_change (channel_t chn, uint16_t nrpn)
{
int chn_i = chn;
drop_external_control ();
control_nrpn = nrpn;
control_channel = chn;
_parser.channel_nrpn_change[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::rpn_change, this, _1, _2, _3));
}
void
MIDIControllable::bind_rpn_change (channel_t chn, uint16_t rpn)
{
int chn_i = chn;
drop_external_control ();
control_rpn = rpn;
control_channel = chn;
_parser.channel_rpn_change[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::nrpn_change, this, _1, _2, _3));
}
void
MIDIControllable::bind_midi (channel_t chn, eventType ev, MIDI::byte additional)
{
char buf[64];
drop_external_control ();
control_type = ev;
control_channel = chn;
control_additional = additional;
int chn_i = chn;
switch (ev) {
case MIDI::off:
_parser.channel_note_off[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_note_off, this, _1, _2));
/* if this is a togglee, connect to noteOn as well,
and we'll toggle back and forth between the two.
*/
if (_momentary) {
_parser.channel_note_on[chn_i].connect_same_thread (midi_sense_connection[1], boost::bind (&MIDIControllable::midi_sense_note_on, this, _1, _2));
}
_control_description = "MIDI control: NoteOff";
break;
case MIDI::on:
_parser.channel_note_on[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_note_on, this, _1, _2));
if (_momentary) {
_parser.channel_note_off[chn_i].connect_same_thread (midi_sense_connection[1], boost::bind (&MIDIControllable::midi_sense_note_off, this, _1, _2));
}
_control_description = "MIDI control: NoteOn";
break;
case MIDI::controller:
_parser.channel_controller[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_controller, this, _1, _2));
snprintf (buf, sizeof (buf), "MIDI control: Controller %d", control_additional);
_control_description = buf;
break;
case MIDI::program:
_parser.channel_program_change[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_program_change, this, _1, _2));
_control_description = "MIDI control: ProgramChange";
break;
case MIDI::pitchbend:
_parser.channel_pitchbend[chn_i].connect_same_thread (midi_sense_connection[0], boost::bind (&MIDIControllable::midi_sense_pitchbend, this, _1, _2));
_control_description = "MIDI control: Pitchbend";
break;
default:
break;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Controlable: bind_midi: %1 on Channel %2 value %3 \n", _control_description, chn_i + 1, (int) additional));
}
MIDI::byte*
MIDIControllable::write_feedback (MIDI::byte* buf, int32_t& bufsize, bool /*force*/)
{
Glib::Threads::Mutex::Lock lm (controllable_lock, Glib::Threads::TRY_LOCK);
if (!lm.locked ()) {
return buf;
}
if (!_controllable || !_surface->get_feedback ()) {
return buf;
}
float val = _controllable->get_value ();
/* Note that when sending RPN/NPRN we do two things:
*
* always send MSB first, then LSB
* null/reset the parameter ID after sending.
*
* this follows recommendations found online, eg. http://www.philrees.co.uk/nrpnq.htm
*/
if (control_rpn >= 0) {
if (bufsize < 13) {
return buf;
}
int rpn_val = (int) lrintf (val * 16384.0);
if (last_value == rpn_val) {
return buf;
}
*buf++ = (0xb0) | control_channel;
*buf++ = 0x62;
*buf++ = (int) ((control_rpn) >> 7);
*buf++ = 0x63;
*buf++ = (int) (control_rpn & 0x7f);
*buf++ = 0x06;
*buf++ = (int) (rpn_val >> 7);
*buf++ = 0x26;
*buf++ = (int) (rpn_val & 0x7f);
*buf++ = 0x62;
*buf++ = 0x7f;
*buf++ = 0x63;
*buf++ = 0x7f;
bufsize -= 13;
last_value = rpn_val;
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI out: RPN %1 Channel %2 Value %3\n", control_rpn, (int) control_channel, val));
return buf;
}
if (control_nrpn >= 0) {
int rpn_val = (int) lrintf (val * 16384.0);
if (last_value == rpn_val) {
return buf;
}
*buf++ = (0xb0) | control_channel;
*buf++ = 0x64;
*buf++ = (int) ((control_rpn) >> 7);
*buf++ = 0x65;
*buf++ = (int) (control_rpn & 0x7f);
*buf++ = 0x06;
*buf++ = (int) (rpn_val >> 7);
*buf++ = 0x26;
*buf++ = (int) (rpn_val & 0x7f);
*buf++ = 0x64;
*buf++ = 0x7f;
*buf++ = 0x65;
*buf++ = 0x7f;
last_value = rpn_val;
bufsize -= 13;
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI out: NRPN %1 Channel %2 Value %3\n", control_nrpn, (int) control_channel, val));
return buf;
}
if (control_type == none || bufsize <= 2) {
return buf;
}
int const gm = control_to_midi (val);
if (gm == last_value) {
return buf;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Feedback: %1 %2\n", control_description(), current_uri()));
*buf++ = (0xF0 & control_type) | (0xF & control_channel);
int ev_size = 3;
switch (control_type) {
case MIDI::pitchbend:
*buf++ = int (gm) & 127;
*buf++ = (int (gm) >> 7) & 127;
break;
case MIDI::program:
*buf++ = control_additional; /* program number */
ev_size = 2;
break;
default:
*buf++ = control_additional; /* controller number */
*buf++ = gm;
break;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI out: Type %1 Channel %2 Bytes %3 %4\n", (int) control_type, (int) control_channel , (int) *(buf - 2), (int) *(buf - 1)));
last_value = gm;
bufsize -= ev_size;
return buf;
}
int
MIDIControllable::set_state (const XMLNode& node, int /*version*/)
{
int xx;
std::string str;
if (node.get_property ("event", str)) {
sscanf (str.c_str(), "0x%x", &xx);
control_type = (MIDI::eventType) xx;
} else {
return -1;
}
if (node.get_property ("channel", xx)) {
control_channel = xx;
} else {
return -1;
}
if (node.get_property ("additional", str)) {
sscanf (str.c_str(), "0x%x", &xx);
control_additional = (MIDI::byte) xx;
} else {
return -1;
}
bind_midi (control_channel, control_type, control_additional);
return 0;
}
XMLNode&
MIDIControllable::get_state ()
{
char buf[32];
XMLNode* node = new XMLNode ("MIDIControllable");
if (_current_uri.empty() && _controllable) {
node->set_property ("id", _controllable->id ());
} else {
node->set_property ("uri", _current_uri);
}
if (_controllable) {
snprintf (buf, sizeof(buf), "0x%x", (int) control_type);
node->set_property ("event", (const char *)buf);
node->set_property ("channel", (int16_t)control_channel);
snprintf (buf, sizeof(buf), "0x%x", (int) control_additional);
node->set_property ("additional", (const char *)buf);
}
return *node;
}
/** @return the maximum value for a control value transmitted
* using a given MIDI::eventType.
*/
int
MIDIControllable::max_value_for_type () const
{
/* XXX: this is not complete */
if (control_type == MIDI::pitchbend) {
return 16383;
}
return 127;
}