13
0
livetrax/libs/evoral/ControlList.cc

2206 lines
56 KiB
C++

/*
* Copyright (C) 2008-2009 Hans Baier <hansfbaier@googlemail.com>
* Copyright (C) 2008-2012 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2008-2015 David Robillard <d@drobilla.net>
* Copyright (C) 2010-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2014-2018 Robin Gareus <robin@gareus.org>
* Copyright (C) 2014 Ben Loftis <ben@harrisonconsoles.com>
* Copyright (C) 2015 Nick Mainsbridge <mainsbridge@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <cmath>
#ifdef COMPILER_MSVC
#include <float.h>
// 'std::isnan()' is not available in MSVC.
#define isnan_local(val) (bool)_isnan((double)val)
#else
#define isnan_local std::isnan
#endif
#define GUARD_POINT_DELTA Temporal::timecnt_t (64)
#include <cassert>
#include <cmath>
#include <iostream>
#include <utility>
#include "evoral/ControlList.h"
#include "evoral/Curve.h"
#include "evoral/ParameterDescriptor.h"
#include "evoral/TypeMap.h"
#include "evoral/types.h"
#include "pbd/control_math.h"
#include "pbd/compose.h"
#include "pbd/error.h"
#include "pbd/i18n.h"
#include "pbd/debug.h"
using namespace std;
using namespace PBD;
using namespace Temporal;
namespace Evoral {
inline bool event_time_less_than (ControlEvent* a, ControlEvent* b)
{
return a->when < b->when;
}
ControlList::ControlList (const Parameter& id, const ParameterDescriptor& desc, TimeDomain ts)
: _parameter(id)
, _desc(desc)
, _interpolation (default_interpolation ())
, _time_domain (ts)
, _curve(0)
{
_frozen = 0;
_changed_when_thawed = false;
_lookup_cache.left = timepos_t::max (_time_domain);
_lookup_cache.range.first = _events.end();
_lookup_cache.range.second = _events.end();
_search_cache.left = timepos_t::max (_time_domain);
_search_cache.first = _events.end();
_sort_pending = false;
new_write_pass = true;
_in_write_pass = false;
did_write_during_pass = false;
insert_position = timepos_t::max (_time_domain);
most_recent_insert_iterator = _events.end();
}
ControlList::ControlList (const ControlList& other)
: _parameter(other._parameter)
, _desc(other._desc)
, _interpolation(other._interpolation)
, _time_domain (other._time_domain)
, _curve(0)
{
_frozen = 0;
_changed_when_thawed = false;
_lookup_cache.range.first = _events.end();
_lookup_cache.range.second = _events.end();
_search_cache.first = _events.end();
_sort_pending = false;
new_write_pass = true;
_in_write_pass = false;
did_write_during_pass = false;
insert_position = timepos_t::max (_time_domain);
most_recent_insert_iterator = _events.end();
// XXX copy_events() emits Dirty, but this is just assignment copy/construction
copy_events (other);
}
ControlList::ControlList (const ControlList& other, timepos_t const & start, timepos_t const & end)
: _parameter(other._parameter)
, _desc(other._desc)
, _interpolation(other._interpolation)
, _time_domain (other._time_domain)
, _curve(0)
{
_frozen = 0;
_changed_when_thawed = false;
_lookup_cache.range.first = _events.end();
_lookup_cache.range.second = _events.end();
_search_cache.first = _events.end();
_sort_pending = false;
/* now grab the relevant points, and shift them back if necessary */
boost::shared_ptr<ControlList> section = const_cast<ControlList*>(&other)->copy (start, end);
if (!section->empty()) {
// XXX copy_events() emits Dirty, but this is just assignment copy/construction
copy_events (*(section.get()));
}
new_write_pass = true;
_in_write_pass = false;
did_write_during_pass = false;
insert_position = timepos_t::max (_time_domain);
most_recent_insert_iterator = _events.end();
mark_dirty ();
}
ControlList::~ControlList()
{
for (EventList::iterator x = _events.begin(); x != _events.end(); ++x) {
delete (*x);
}
_events.clear ();
delete _curve;
}
boost::shared_ptr<ControlList>
ControlList::create(const Parameter& id, const ParameterDescriptor& desc, TimeDomain time_style)
{
return boost::shared_ptr<ControlList>(new ControlList(id, desc, time_style));
}
bool
ControlList::operator== (const ControlList& other)
{
return _events == other._events;
}
ControlList&
ControlList::operator= (const ControlList& other)
{
if (this != &other) {
/* list should be frozen before assignment */
assert (_frozen > 0);
_changed_when_thawed = false;
_sort_pending = false;
insert_position = other.insert_position;
new_write_pass = true;
_in_write_pass = false;
did_write_during_pass = false;
insert_position = timepos_t::max (_time_domain);
_parameter = other._parameter;
_desc = other._desc;
_interpolation = other._interpolation;
copy_events (other);
}
return *this;
}
void
ControlList::copy_events (const ControlList& other)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
for (EventList::iterator x = _events.begin(); x != _events.end(); ++x) {
delete (*x);
}
_events.clear ();
Glib::Threads::RWLock::ReaderLock olm (other._lock);
for (const_iterator i = other.begin(); i != other.end(); ++i) {
_events.push_back (new ControlEvent ((*i)->when, (*i)->value));
}
unlocked_invalidate_insert_iterator ();
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::create_curve()
{
_curve = new Curve(*this);
}
void
ControlList::destroy_curve()
{
delete _curve;
_curve = NULL;
}
ControlList::InterpolationStyle
ControlList::default_interpolation () const
{
if (_desc.toggled) {
return Discrete;
} else if (_desc.logarithmic) {
return Logarithmic;
}
return Linear;
}
void
ControlList::maybe_signal_changed ()
{
if (_frozen) {
_changed_when_thawed = true;
} else {
Dirty (); /* EMIT SIGNAL */
}
}
void
ControlList::clear ()
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
for (EventList::iterator x = _events.begin(); x != _events.end(); ++x) {
delete (*x);
}
_events.clear ();
unlocked_invalidate_insert_iterator ();
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::x_scale (ratio_t const & factor)
{
Glib::Threads::RWLock::WriterLock lm (_lock);
_x_scale (factor);
}
bool
ControlList::extend_to (timepos_t const & end)
{
Glib::Threads::RWLock::WriterLock lm (_lock);
if (_events.empty() || _events.back()->when == end) {
return false;
}
ratio_t factor (end.val(), _events.back()->when.val());
_x_scale (factor);
return true;
}
void
ControlList::y_transform (boost::function<double(double)> callback)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
for (iterator i = _events.begin(); i != _events.end(); ++i) {
(*i)->value = callback ((*i)->value);
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::list_merge (ControlList const& other, boost::function<double(double, double)> callback)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
EventList nel;
/* First scale existing events, copy into a new list.
* The original list is needed later to interpolate
* for new events only present in the master list.
*/
for (iterator i = _events.begin(); i != _events.end(); ++i) {
float val = callback ((*i)->value, other.eval ((*i)->when));
nel.push_back (new ControlEvent ((*i)->when , val));
}
/* Now add events which are only present in the master-list. */
const EventList& evl (other.events());
for (const_iterator i = evl.begin(); i != evl.end(); ++i) {
bool found = false;
// TODO: optimize, remember last matching iterator (lists are sorted)
for (iterator j = _events.begin(); j != _events.end(); ++j) {
if ((*i)->when == (*j)->when) {
found = true;
break;
}
}
/* skip events that have already been merge in the first pass */
if (found) {
continue;
}
float val = callback (unlocked_eval ((*i)->when), (*i)->value);
nel.push_back (new ControlEvent ((*i)->when, val));
}
nel.sort (event_time_less_than);
for (EventList::iterator x = _events.begin(); x != _events.end(); ++x) {
delete (*x);
}
_events.clear ();
_events = nel;
unlocked_remove_duplicates ();
unlocked_invalidate_insert_iterator ();
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::_x_scale (ratio_t const & factor)
{
for (iterator i = _events.begin(); i != _events.end(); ++i) {
(*i)->when = (*i)->when.operator* (factor);
}
mark_dirty ();
}
struct ControlEventTimeComparator {
bool operator() (ControlEvent* a, ControlEvent* b) {
return a->when < b->when;
}
};
void
ControlList::thin (double thinning_factor)
{
if (thinning_factor == 0.0 || _desc.toggled) {
return;
}
assert (is_sorted ());
bool changed = false;
{
Glib::Threads::RWLock::WriterLock lm (_lock);
ControlEvent* prevprev = 0;
ControlEvent* cur = 0;
ControlEvent* prev = 0;
iterator pprev;
int counter = 0;
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 thin from %2 events\n", this, _events.size()));
for (iterator i = _events.begin(); i != _events.end(); ++i) {
cur = *i;
counter++;
if (counter > 2) {
/* compute the area of the triangle formed by 3 points
*/
const double ppw = prevprev->when.val();
const double pw = prev->when.val();
const double cw = cur->when.val();
double area = fabs ((ppw * (prev->value - cur->value)) +
(pw * (cur->value - prevprev->value)) +
(cw * (prevprev->value - prev->value)));
if (area < thinning_factor) {
iterator tmp = pprev;
/* pprev will change to current
i is incremented to the next event
as we loop.
*/
pprev = i;
_events.erase (tmp);
changed = true;
continue;
}
}
prevprev = prev;
prev = cur;
pprev = i;
}
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 thin => %2 events\n", this, _events.size()));
if (changed) {
unlocked_invalidate_insert_iterator ();
mark_dirty ();
}
}
if (changed) {
maybe_signal_changed ();
}
}
void
ControlList::fast_simple_add (timepos_t const & time, double value)
{
Glib::Threads::RWLock::WriterLock lm (_lock);
/* to be used only for loading pre-sorted data from saved state */
assert (time.time_domain() == _time_domain);
_events.insert (_events.end(), new ControlEvent (time, value));
mark_dirty ();
if (_frozen) {
_sort_pending = true;
}
}
void
ControlList::invalidate_insert_iterator ()
{
Glib::Threads::RWLock::WriterLock lm (_lock);
unlocked_invalidate_insert_iterator ();
}
void
ControlList::unlocked_invalidate_insert_iterator ()
{
most_recent_insert_iterator = _events.end();
}
void
ControlList::unlocked_remove_duplicates ()
{
if (_events.size() < 2) {
return;
}
iterator i = _events.begin();
iterator prev = i++;
while (i != _events.end()) {
if ((*prev)->when == (*i)->when && (*prev)->value == (*i)->value) {
i = _events.erase (i);
} else {
++prev;
++i;
}
}
}
void
ControlList::start_write_pass (timepos_t const & time)
{
Glib::Threads::RWLock::WriterLock lm (_lock);
timepos_t when = time;
DEBUG_TRACE (DEBUG::ControlList, string_compose ("%1: setup write pass @ %2\n", this, when));
insert_position = when;
/* leave the insert iterator invalid, so that we will do the lookup
of where it should be in a "lazy" way - deferring it until
we actually add the first point (which may never happen).
*/
unlocked_invalidate_insert_iterator ();
/* except if we're already in an active write-pass.
*
* invalid iterator == end() the iterator is set to the correct
* position in ControlList::add IFF (_in_write_pass && new_write_pass)
*/
if (_in_write_pass && !new_write_pass) {
#if 1
add_guard_point (when, timecnt_t (_time_domain)); // also sets most_recent_insert_iterator
#else
const ControlEvent cp (when, 0.0);
most_recent_insert_iterator = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
#endif
}
}
void
ControlList::write_pass_finished (timepos_t const & /*when*/, double thinning_factor)
{
DEBUG_TRACE (DEBUG::ControlList, "write pass finished\n");
if (did_write_during_pass) {
thin (thinning_factor);
did_write_during_pass = false;
}
new_write_pass = true;
_in_write_pass = false;
}
void
ControlList::set_in_write_pass (bool yn, bool add_point, timepos_t when)
{
DEBUG_TRACE (DEBUG::ControlList, string_compose ("set_in_write_pass: in-write: %1 @ %2 add point? %3\n", yn, when, add_point));
_in_write_pass = yn;
if (yn && add_point) {
Glib::Threads::RWLock::WriterLock lm (_lock);
add_guard_point (when, timecnt_t (_time_domain));
}
}
void
ControlList::add_guard_point (timepos_t const & time, timecnt_t const & offset)
{
assert (time.time_domain() == _time_domain);
assert (offset.time_domain() == _time_domain);
timepos_t when = time;
// caller needs to hold writer-lock
if (offset.negative() && when < offset) {
return;
}
assert (offset <= timecnt_t());
if (!offset.zero()) {
/* check if there are points between when + offset .. when */
ControlEvent cp (when + offset, 0.0);
iterator s;
iterator e;
if ((s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator)) != _events.end()) {
cp.when = when;
e = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
if (s != e) {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 add_guard_point, none added, found event between %2 and %3\n", this, when.earlier (offset), when));
return;
}
}
}
/* don't do this again till the next write pass,
* unless we're not in a write-pass (transport stopped)
*/
if (_in_write_pass && new_write_pass) {
WritePassStarted (); /* EMIT SIGNAL w/WriteLock */
new_write_pass = false;
}
when += offset;
ControlEvent cp (when, 0.0);
most_recent_insert_iterator = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
double eval_value = unlocked_eval (when);
if (most_recent_insert_iterator == _events.end()) {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 insert iterator at end, adding eval-value there %2\n", this, eval_value));
_events.push_back (new ControlEvent (when, eval_value));
/* leave insert iterator at the end */
} else if ((*most_recent_insert_iterator)->when == when) {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 insert iterator at existing point, setting eval-value there %2\n", this, eval_value));
/* most_recent_insert_iterator points to a control event
already at the insert position, so there is
nothing to do.
... except ...
advance most_recent_insert_iterator so that the "real"
insert occurs in the right place, since it
points to the control event just inserted.
*/
++most_recent_insert_iterator;
} else {
/* insert a new control event at the right spot */
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 insert eval-value %2 just before iterator @ %3\n",
this, eval_value, (*most_recent_insert_iterator)->when));
most_recent_insert_iterator = _events.insert (most_recent_insert_iterator, new ControlEvent (when, eval_value));
/* advance most_recent_insert_iterator so that the "real"
* insert occurs in the right place, since it
* points to the control event just inserted.
*/
++most_recent_insert_iterator;
}
}
bool
ControlList::in_write_pass () const
{
return _in_write_pass;
}
bool
ControlList::editor_add (timepos_t const & time, double value, bool with_guard)
{
/* this is for making changes from a graphical line editor */
{
Glib::Threads::RWLock::WriterLock lm (_lock);
timepos_t when = time;
ControlEvent cp (when, 0.0f);
iterator i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
if (i != _events.end () && (*i)->when == when) {
return false;
}
/* clamp new value to allowed range */
value = std::min ((double)_desc.upper, std::max ((double)_desc.lower, value));
if (_events.empty()) {
/* as long as the point we're adding is not at zero,
* add an "anchor" point there.
*/
if (when >= 1) {
_events.insert (_events.end(), new ControlEvent (timepos_t (_time_domain), value));
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 added value %2 at zero\n", this, value));
}
}
insert_position = when;
if (with_guard) {
add_guard_point (when, -GUARD_POINT_DELTA);
maybe_add_insert_guard (when);
i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
}
iterator result;
DEBUG_TRACE (DEBUG::ControlList, string_compose ("editor_add: actually add when= %1 value= %2\n", when, value));
result = _events.insert (i, new ControlEvent (when, value));
if (i == result) {
return false;
}
mark_dirty ();
}
maybe_signal_changed ();
return true;
}
void
ControlList::maybe_add_insert_guard (timepos_t const & time)
{
timepos_t when = time;
// caller needs to hold writer-lock
if (most_recent_insert_iterator != _events.end()) {
if ((*most_recent_insert_iterator)->when.earlier (when) > GUARD_POINT_DELTA) {
/* Next control point is some distance from where our new point is
going to go, so add a new point to avoid changing the shape of
the line too much. The insert iterator needs to point to the
new control point so that our insert will happen correctly. */
most_recent_insert_iterator = _events.insert ( most_recent_insert_iterator,
new ControlEvent (when + GUARD_POINT_DELTA, (*most_recent_insert_iterator)->value));
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 added insert guard point @ %2 = %3\n",
this, when + GUARD_POINT_DELTA,
(*most_recent_insert_iterator)->value));
}
}
}
/** If we would just be adding to a straight line, move the previous point instead. */
bool
ControlList::maybe_insert_straight_line (timepos_t const & time, double value)
{
timepos_t when = time;
// caller needs to hold writer-lock
if (_events.empty()) {
return false;
}
if (_events.back()->value == value) {
// Point b at the final point, which we know exists
EventList::iterator b = _events.end();
--b;
if (b == _events.begin()) {
return false; // No previous point
}
// Check the previous point's value
--b;
if ((*b)->value == value) {
/* At least two points with the exact same value (straight
line), just move the final point to the new time. */
_events.back()->when = when;
DEBUG_TRACE (DEBUG::ControlList, string_compose ("final value of %1 moved to %2\n", value, when));
return true;
}
}
return false;
}
ControlList::iterator
ControlList::erase_from_iterator_to (iterator iter, timepos_t const & time)
{
timepos_t when = time;
// caller needs to hold writer-lock
while (iter != _events.end()) {
if ((*iter)->when < when) {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 erase existing @ %2\n", this, (*iter)->when));
delete *iter;
iter = _events.erase (iter);
continue;
} else if ((*iter)->when >= when) {
break;
}
++iter;
}
return iter;
}
/* this is for making changes from some kind of user interface or
* control surface (GUI, MIDI, OSC etc)
*/
void
ControlList::add (timepos_t const & time, double value, bool with_guards, bool with_initial)
{
assert (time.time_domain() == _time_domain);
timepos_t when = time;
/* clamp new value to allowed range */
value = std::min ((double)_desc.upper, std::max ((double)_desc.lower, value));
DEBUG_TRACE (DEBUG::ControlList,
string_compose ("@%1 add %2 at %3 guards = %4 write pass = %5 (new? %6) at end? %7\n",
this, value, when, with_guards, _in_write_pass, new_write_pass,
(most_recent_insert_iterator == _events.end())));
{
Glib::Threads::RWLock::WriterLock lm (_lock);
ControlEvent cp (when, 0.0f);
iterator insertion_point;
if (_events.empty() && with_initial) {
/* empty: add an "anchor" point if the point we're adding past time 0 */
if (when >= 1) {
if (_desc.toggled) {
const double opp_val = ((value >= 0.5) ? 1.0 : 0.0);
_events.insert (_events.end(), new ControlEvent (timepos_t (_time_domain), opp_val));
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 added toggled value %2 at zero\n", this, opp_val));
} else {
_events.insert (_events.end(), new ControlEvent (timepos_t (_time_domain), value));
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 added default value %2 at zero\n", this, _desc.normal));
}
}
}
if (_in_write_pass && new_write_pass) {
/* first write in a write pass: add guard point if requested */
if (with_guards) {
add_guard_point (insert_position, timecnt_t (_time_domain));
did_write_during_pass = true;
} else {
/* not adding a guard, but we need to set iterator appropriately */
const ControlEvent cp (when, 0.0);
most_recent_insert_iterator = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
}
WritePassStarted (); /* EMIT SIGNAL w/WriteLock */
new_write_pass = false;
} else if (_in_write_pass &&
(most_recent_insert_iterator == _events.end() || when > (*most_recent_insert_iterator)->when)) {
/* in write pass: erase from most recent insert to now */
if (most_recent_insert_iterator != _events.end()) {
/* advance to avoid deleting the last inserted point itself. */
++most_recent_insert_iterator;
}
if (with_guards) {
most_recent_insert_iterator = erase_from_iterator_to (most_recent_insert_iterator, when + GUARD_POINT_DELTA);
maybe_add_insert_guard (when);
} else {
most_recent_insert_iterator = erase_from_iterator_to(most_recent_insert_iterator, when);
}
} else if (!_in_write_pass) {
/* not in a write pass: figure out the iterator we should insert in front of */
DEBUG_TRACE (DEBUG::ControlList, string_compose ("compute(b) MRI for position %1\n", when));
ControlEvent cp (when, 0.0f);
most_recent_insert_iterator = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
}
/* OK, now we're really ready to add a new point */
if (most_recent_insert_iterator == _events.end()) {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 appending new point at end\n", this));
const bool done = maybe_insert_straight_line (when, value);
if (!done) {
_events.push_back (new ControlEvent (when, value));
DEBUG_TRACE (DEBUG::ControlList, string_compose ("\tactually appended, size now %1\n", _events.size()));
}
most_recent_insert_iterator = _events.end();
--most_recent_insert_iterator;
} else if ((*most_recent_insert_iterator)->when == when) {
if ((*most_recent_insert_iterator)->value != value) {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 reset existing point to new value %2\n", this, value));
/* only one point allowed per time point, so add a guard point
* before it if needed then reset the value of the point.
*/
(*most_recent_insert_iterator)->value = value;
/* if we modified the final value, then its as
* if we inserted a new point as far as the
* next addition, so make sure we know that.
*/
if (_events.back()->when == when) {
most_recent_insert_iterator = _events.end();
}
} else {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 same time %2, same value value %3\n", this, when, value));
}
} else {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 insert new point at %2 at iterator at %3\n", this, when, (*most_recent_insert_iterator)->when));
bool done = false;
/* check for possible straight line here until maybe_insert_straight_line () handles the insert iterator properly*/
if (most_recent_insert_iterator != _events.begin ()) {
bool have_point2 = false;
--most_recent_insert_iterator;
const bool have_point1 = (*most_recent_insert_iterator)->value == value;
if (most_recent_insert_iterator != _events.begin ()) {
--most_recent_insert_iterator;
have_point2 = (*most_recent_insert_iterator)->value == value;
++most_recent_insert_iterator;
}
if (have_point1 && have_point2) {
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 no change: move existing at %3 to %2\n", this, when, (*most_recent_insert_iterator)->when));
(*most_recent_insert_iterator)->when = when;
done = true;
} else {
++most_recent_insert_iterator;
}
}
/* if the transport is stopped, add guard points */
if (!done && !_in_write_pass) {
add_guard_point (when, -GUARD_POINT_DELTA);
maybe_add_insert_guard (when);
} else if (with_guards) {
maybe_add_insert_guard (when);
}
if (!done) {
EventList::iterator x = _events.insert (most_recent_insert_iterator, new ControlEvent (when, value));
DEBUG_TRACE (DEBUG::ControlList, string_compose ("@%1 inserted new value before MRI, size now %2\n", this, _events.size()));
most_recent_insert_iterator = x;
}
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::erase (iterator i)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
if (most_recent_insert_iterator == i) {
unlocked_invalidate_insert_iterator ();
}
_events.erase (i);
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::erase (iterator start, iterator end)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
_events.erase (start, end);
unlocked_invalidate_insert_iterator ();
mark_dirty ();
}
maybe_signal_changed ();
}
/** Erase the first event which matches the given time and value */
void
ControlList::erase (timepos_t const & time, double value)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
timepos_t when = time;
iterator i = begin ();
while (i != end() && ((*i)->when != when || (*i)->value != value)) {
++i;
}
if (i != end ()) {
_events.erase (i);
if (most_recent_insert_iterator == i) {
unlocked_invalidate_insert_iterator ();
}
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::erase_range (timepos_t const & start, timepos_t const & endt)
{
bool erased = false;
{
Glib::Threads::RWLock::WriterLock lm (_lock);
erased = erase_range_internal (start, endt, _events);
if (erased) {
mark_dirty ();
}
}
if (erased) {
maybe_signal_changed ();
}
}
bool
ControlList::erase_range_internal (timepos_t const & start, timepos_t const & endt, EventList & events)
{
bool erased = false;
iterator s;
iterator e;
/* This is where we have to pick the time domain to be used when
* defining the control points.
*
* start/endt retain their values no matter what the time domain is,
* but the location of the control point is specified as a single
* integer value that represents either samples or beats. The sample
* position and beat position, while representing the same position on
* the timeline, will be numerically different anywhere (except perhaps
* zero).
*
* eg. start = 1000000 samples == 12.34 beats
* cp.when = 100000 if ControlList uses AudioTime
* cp.when = 23074 if ControlList uses BeatTime (see Beats::to_ticks())
*
*/
ControlEvent cp (start, 0.0f);
if ((s = lower_bound (events.begin(), events.end(), &cp, time_comparator)) != events.end()) {
cp.when = endt;
e = upper_bound (events.begin(), events.end(), &cp, time_comparator);
events.erase (s, e);
if (s != e) {
unlocked_invalidate_insert_iterator ();
erased = true;
}
}
return erased;
}
void
ControlList::slide (iterator before, timecnt_t const & distance)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
if (before == _events.end()) {
return;
}
timecnt_t wd = distance;
while (before != _events.end()) {
(*before)->when += wd;
++before;
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::shift (timepos_t const & time, timecnt_t const & distance)
{
timepos_t pos = time;
{
Glib::Threads::RWLock::WriterLock lm (_lock);
double v0, v1;
if (distance.negative()) {
/* Route::shift () with negative shift is used
* for "remove time". The time [pos.. pos-frames] is removed.
* and everyhing after, moved backwards.
*/
v0 = unlocked_eval (pos);
v1 = unlocked_eval (pos.earlier (distance));
erase_range_internal (pos, pos.earlier (distance), _events);
} else {
v0 = v1 = unlocked_eval (pos);
}
bool dst_guard_exists = false;
for (iterator i = _events.begin(); i != _events.end(); ++i) {
if ((*i)->when == pos) {
dst_guard_exists = true;
}
if ((*i)->when >= pos) {
(*i)->when += distance;
}
}
/* add guard-points to retain shape, if needed */
if (distance.positive()) {
ControlEvent cp (pos, 0.0);
iterator s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
if (s != _events.end ()) {
_events.insert (s, new ControlEvent (pos, v0));
}
pos += distance;
} else if (distance.negative() && pos > 0) {
ControlEvent cp (pos.decrement(), 0.0);
iterator s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
if (s != _events.end ()) {
_events.insert (s, new ControlEvent (pos.decrement(), v0));
}
}
if (!dst_guard_exists) {
ControlEvent cp (pos, 0.0);
iterator s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
_events.insert (s, new ControlEvent (pos, s == _events.end () ? v0 : v1));
}
mark_dirty ();
}
maybe_signal_changed ();
}
void
ControlList::modify (iterator iter, timepos_t const & time, double val)
{
/* note: we assume higher level logic is in place to avoid this
* reordering the time-order of control events in the list. ie. all
* points after *iter are later than when.
*/
/* catch possible float/double rounding errors from higher levels */
val = std::min ((double)_desc.upper, std::max ((double)_desc.lower, val));
{
Glib::Threads::RWLock::WriterLock lm (_lock);
timepos_t when = time;
(*iter)->when = when;
(*iter)->value = val;
if (isnan_local (val)) {
abort ();
}
if (!_frozen) {
_events.sort (event_time_less_than);
unlocked_remove_duplicates ();
unlocked_invalidate_insert_iterator ();
} else {
_sort_pending = true;
}
mark_dirty ();
}
maybe_signal_changed ();
}
std::pair<ControlList::iterator,ControlList::iterator>
ControlList::control_points_adjacent (timepos_t const & xtime)
{
Glib::Threads::RWLock::ReaderLock lm (_lock);
iterator i;
timepos_t xval = xtime;
ControlEvent cp (xval, 0.0f);
std::pair<iterator,iterator> ret;
ret.first = _events.end();
ret.second = _events.end();
for (i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator); i != _events.end(); ++i) {
if (ret.first == _events.end()) {
if ((*i)->when >= xval) {
if (i != _events.begin()) {
ret.first = i;
--ret.first;
} else {
return ret;
}
}
}
if ((*i)->when > xval) {
ret.second = i;
break;
}
}
return ret;
}
void
ControlList::freeze ()
{
_frozen++;
}
void
ControlList::thaw ()
{
assert(_frozen > 0);
if (--_frozen > 0) {
return;
}
{
Glib::Threads::RWLock::WriterLock lm (_lock);
if (_sort_pending) {
_events.sort (event_time_less_than);
unlocked_remove_duplicates ();
unlocked_invalidate_insert_iterator ();
_sort_pending = false;
}
}
maybe_signal_changed ();
}
void
ControlList::mark_dirty () const
{
_lookup_cache.left = timepos_t::max (_time_domain);
_lookup_cache.range.first = _events.end();
_lookup_cache.range.second = _events.end();
_search_cache.left = timepos_t::max (_time_domain);
_search_cache.first = _events.end();
if (_curve) {
_curve->mark_dirty();
}
}
void
ControlList::truncate_end (timepos_t const & last_time)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
timepos_t last_coordinate = last_time;
ControlEvent cp (last_coordinate, 0);
ControlList::reverse_iterator i;
double last_val;
if (_events.empty()) {
return;
}
if (last_coordinate == _events.back()->when) {
return;
}
if (last_coordinate > _events.back()->when) {
/* extending end:
*/
iterator foo = _events.begin();
bool lessthantwo;
if (foo == _events.end()) {
lessthantwo = true;
} else if (++foo == _events.end()) {
lessthantwo = true;
} else {
lessthantwo = false;
}
if (lessthantwo) {
/* less than 2 points: add a new point */
_events.push_back (new ControlEvent (last_coordinate, _events.back()->value));
} else {
/* more than 2 points: check to see if the last 2 values
are equal. if so, just move the position of the
last point. otherwise, add a new point.
*/
iterator penultimate = _events.end();
--penultimate; /* points at last point */
--penultimate; /* points at the penultimate point */
if (_events.back()->value == (*penultimate)->value) {
_events.back()->when = last_coordinate;
} else {
_events.push_back (new ControlEvent (last_coordinate, _events.back()->value));
}
}
} else {
/* shortening end */
last_val = unlocked_eval (last_coordinate);
last_val = max ((double) _desc.lower, last_val);
last_val = min ((double) _desc.upper, last_val);
i = _events.rbegin();
/* make i point to the last control point */
++i;
/* now go backwards, removing control points that are
beyond the new last coordinate.
*/
// FIXME: SLOW! (size() == O(n))
uint32_t sz = _events.size();
while (i != _events.rend() && sz > 2) {
ControlList::reverse_iterator tmp;
tmp = i;
++tmp;
if ((*i)->when < last_coordinate) {
break;
}
_events.erase (i.base());
--sz;
i = tmp;
}
_events.back()->when = last_coordinate;
_events.back()->value = last_val;
}
unlocked_invalidate_insert_iterator ();
mark_dirty();
}
maybe_signal_changed ();
}
void
ControlList::truncate_start (timecnt_t const & overall)
{
{
Glib::Threads::RWLock::WriterLock lm (_lock);
iterator i;
double first_legal_value;
timepos_t first_legal_coordinate;
timepos_t overall_length (overall);
if (_events.empty()) {
/* nothing to truncate */
return;
} else if (overall_length == _events.back()->when) {
/* no change in overall length */
return;
}
if (overall_length > _events.back()->when) {
/* growing at front: duplicate first point. shift all others */
timepos_t shift (_events.back()->when.distance (overall_length));
uint32_t np;
for (np = 0, i = _events.begin(); i != _events.end(); ++i, ++np) {
(*i)->when += shift;
}
if (np < 2) {
/* less than 2 points: add a new point */
_events.push_front (new ControlEvent (timepos_t (_time_domain), _events.front()->value));
} else {
/* more than 2 points: check to see if the first 2 values
are equal. if so, just move the position of the
first point. otherwise, add a new point.
*/
iterator second = _events.begin();
++second; /* points at the second point */
if (_events.front()->value == (*second)->value) {
/* first segment is flat, just move start point back to zero */
_events.front()->when = timepos_t (_time_domain);
} else {
/* leave non-flat segment in place, add a new leading point. */
_events.push_front (new ControlEvent (timepos_t (_time_domain), _events.front()->value));
}
}
} else {
/* shrinking at front */
first_legal_coordinate = _events.back()->when.distance (overall_length);
first_legal_value = unlocked_eval (first_legal_coordinate);
first_legal_value = max ((double)_desc.lower, first_legal_value);
first_legal_value = min ((double)_desc.upper, first_legal_value);
/* remove all events earlier than the new "front" */
i = _events.begin();
while (i != _events.end() && !_events.empty()) {
ControlList::iterator tmp;
tmp = i;
++tmp;
if ((*i)->when > first_legal_coordinate) {
break;
}
_events.erase (i);
i = tmp;
}
/* shift all remaining points left to keep their same
relative position
*/
for (i = _events.begin(); i != _events.end(); ++i) {
(*i)->when.shift_earlier (timecnt_t (first_legal_coordinate, timepos_t()));
}
/* add a new point for the interpolated new value */
_events.push_front (new ControlEvent (timepos_t (_time_domain), first_legal_value));
}
unlocked_invalidate_insert_iterator ();
mark_dirty();
}
maybe_signal_changed ();
}
double
ControlList::unlocked_eval (timepos_t const & xtime) const
{
pair<EventList::iterator,EventList::iterator> range;
int32_t npoints;
timepos_t lpos, upos;
double lval, uval;
double fraction;
double xx;
double ll;
const_iterator length_check_iter = _events.begin();
for (npoints = 0; npoints < 4; ++npoints, ++length_check_iter) {
if (length_check_iter == _events.end()) {
break;
}
}
switch (npoints) {
case 0:
return _desc.normal;
case 1:
return _events.front()->value;
case 2:
if (xtime >= _events.back()->when) {
return _events.back()->value;
} else if (xtime <= _events.front()->when) {
return _events.front()->value;
}
lpos = _events.front()->when;
lval = _events.front()->value;
upos = _events.back()->when;
uval = _events.back()->value;
xx = lpos.distance (xtime).distance().val();
ll = lpos.distance (upos).distance().val();
fraction = xx / ll;
switch (_interpolation) {
case Discrete:
return lval;
case Logarithmic:
return interpolate_logarithmic (lval, uval, fraction, _desc.lower, _desc.upper);
case Exponential:
return interpolate_gain (lval, uval, fraction, _desc.upper);
case Curved:
/* only used x-fade curves, never direct eval */
assert (0);
default: // Linear
return interpolate_linear (lval, uval, fraction);
}
default:
if (xtime >= _events.back()->when) {
return _events.back()->value;
} else if (xtime <= _events.front()->when) {
return _events.front()->value;
}
return multipoint_eval (xtime);
}
abort(); /*NOTREACHED*/ /* stupid gcc */
return _desc.normal;
}
double
ControlList::multipoint_eval (timepos_t const & xtime) const
{
timepos_t upos, lpos;
double uval, lval;
double fraction;
/* "Stepped" lookup (no interpolation) */
/* FIXME: no cache. significant? */
if (_interpolation == Discrete) {
const ControlEvent cp (xtime, 0);
EventList::const_iterator i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator);
// shouldn't have made it to multipoint_eval
assert(i != _events.end());
if (i == _events.begin() || (*i)->when == xtime)
return (*i)->value;
else
return (*(--i))->value;
}
/* Only do the range lookup if xtime is in a different range than last time
* this was called (or if the lookup cache has been marked "dirty" (left<0) */
if ((_lookup_cache.left == timepos_t::max (_time_domain)) ||
((_lookup_cache.left > xtime) ||
(_lookup_cache.range.first == _events.end()) ||
((*_lookup_cache.range.second)->when < xtime))) {
const ControlEvent cp (xtime, 0);
_lookup_cache.range = equal_range (_events.begin(), _events.end(), &cp, time_comparator);
}
pair<const_iterator,const_iterator> range = _lookup_cache.range;
if (range.first == range.second) {
/* x does not exist within the list as a control point */
_lookup_cache.left = xtime;
if (range.first != _events.begin()) {
--range.first;
lpos = (*range.first)->when;
lval = (*range.first)->value;
} else {
/* we're before the first point */
// return _default_value;
return _events.front()->value;
}
if (range.second == _events.end()) {
/* we're after the last point */
return _events.back()->value;
}
upos = (*range.second)->when;
uval = (*range.second)->value;
fraction = (double) lpos.distance (xtime).distance().val() / (double) lpos.distance (upos).distance().val();
switch (_interpolation) {
case Logarithmic:
return interpolate_logarithmic (lval, uval, fraction, _desc.lower, _desc.upper);
case Exponential:
return interpolate_gain (lval, uval, fraction, _desc.upper);
case Discrete:
/* should not reach here */
assert (0);
case Curved:
/* only used x-fade curves, never direct eval */
assert (0);
default: // Linear
return interpolate_linear (lval, uval, fraction);
break;
}
assert (0);
}
/* x is a control point in the data */
_lookup_cache.left = timepos_t::max (_time_domain);
return (*range.first)->value;
}
void
ControlList::build_search_cache_if_necessary (timepos_t const & start_time) const
{
timepos_t start = start_time;
if (_events.empty()) {
/* Empty, nothing to cache, move to end. */
_search_cache.first = _events.end();
_search_cache.left = timepos_t::max (_time_domain);
return;
} else if ((_search_cache.left == timepos_t::max (_time_domain)) || (_search_cache.left > start)) {
/* Marked dirty (left == max), or we're too far forward, re-search. */
const ControlEvent start_point (start, 0);
_search_cache.first = lower_bound (_events.begin(), _events.end(), &start_point, time_comparator);
_search_cache.left = start;
}
/* We now have a search cache that is not too far right, but it may be too
far left and need to be advanced. */
while (_search_cache.first != end() && (*_search_cache.first)->when < start) {
++_search_cache.first;
}
_search_cache.left = start;
}
/** Get the earliest event after \a start without interpolation.
*
* If an event is found, \a x and \a y are set to its coordinates.
*
* \param inclusive Include events with timestamp exactly equal to \a start
* \return true if event is found (and \a x and \a y are valid).
*/
bool
ControlList::rt_safe_earliest_event_discrete_unlocked (timepos_t const & start_time, timepos_t & x, double& y, bool inclusive) const
{
timepos_t start = start_time;
build_search_cache_if_necessary (start);
if (_search_cache.first != _events.end()) {
const ControlEvent* const first = *_search_cache.first;
const bool past_start = (inclusive ? first->when >= start : first->when > start);
/* Earliest points is in range, return it */
if (past_start) {
x = first->when;
y = first->value;
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = first->when;
++_search_cache.first;
assert(x >= start);
return true;
} else {
return false;
}
/* No points in range */
} else {
return false;
}
}
/** Get the earliest time the line crosses an integer (Linear interpolation).
*
* If an event is found, \a x and \a y are set to its coordinates.
*
* \param inclusive Include events with timestamp exactly equal to \a start
* \return true if event is found (and \a x and \a y are valid).
*/
bool
ControlList::rt_safe_earliest_event_linear_unlocked (Temporal::timepos_t const & start_time, Temporal::timepos_t & x, double& y, bool inclusive, Temporal::timecnt_t min_x_delta) const
{
timepos_t start = start_time;
// cout << "earliest_event(start: " << start << ", x: " << x << ", y: " << y << ", inclusive: " << inclusive << ")" << endl;
const_iterator length_check_iter = _events.begin();
if (_events.empty()) { // 0 events
return false;
} else if (_events.end() == ++length_check_iter) { // 1 event
return rt_safe_earliest_event_discrete_unlocked (start + min_x_delta, x, y, inclusive);
}
if (min_x_delta > 0) {
/* if there is an event between [start and start + min_x_delta], use it,
* otherwise interpolate at start + min_x_delta
*/
build_search_cache_if_necessary (start);
const ControlEvent* first = *_search_cache.first;
if (_search_cache.first != _events.end()) {
if (((first->when > start) || (inclusive && first->when == start)) && first->when < start + min_x_delta) {
x = first->when;
y = first->value;
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = x;
return true;
}
}
}
start += min_x_delta;
// Hack to avoid infinitely repeating the same event
build_search_cache_if_necessary (start);
if (_search_cache.first != _events.end()) {
const ControlEvent* first = NULL;
const ControlEvent* next = NULL;
if (_search_cache.first == _events.begin() || (*_search_cache.first)->when <= start) {
/* Step is after first */
first = *_search_cache.first;
++_search_cache.first;
if (_search_cache.first == _events.end()) {
return false;
}
next = *_search_cache.first;
} else {
/* Step is before first */
const_iterator prev = _search_cache.first;
--prev;
first = *prev;
next = *_search_cache.first;
}
if (inclusive && first->when == start) {
x = first->when;
y = first->value;
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = first->when;
return true;
} else if (next->when < start || (!inclusive && next->when == start)) {
/* "Next" is before the start, no points left. */
return false;
}
if (fabs(first->value - next->value) <= 1) {
if (next->when > start) {
x = next->when;
y = next->value;
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = next->when;
return true;
} else {
return false;
}
}
const double slope = (next->value - first->value) / (double) first->when.distance (next->when).distance().val();
//cerr << "start y: " << start_y << endl;
//y = first->value + (slope * fabs(start - first->when));
y = first->value;
if (first->value < next->value) { // ramping up
y = ceil(y);
} else { // ramping down
y = floor(y);
}
if (_time_domain == AudioTime) {
x = first->when + timepos_t (samplepos_t ((y - first->value) / (double)slope));
} else {
x = first->when + timepos_t::from_ticks ((y - first->value) / (double)slope);
}
while ((inclusive && x < start_time) || (x <= start_time && y != next->value)) {
if (first->value < next->value) { // ramping up
y += 1.0;
} else { // ramping down
y -= 1.0;
}
if (_time_domain == AudioTime) {
x = first->when + timepos_t (samplepos_t ((y - first->value) / (double)slope));
} else {
x = first->when + timepos_t::from_ticks (int64_t ((y - first->value) / (double)slope));
}
}
#if 0
cerr << first->value << " @ " << first->when << " ... "
<< next->value << " @ " << next->when
<< " = " << y << " @ " << x << endl;
#endif
assert( (y >= first->value && y <= next->value)
|| (y <= first->value && y >= next->value) );
const bool past_start = (inclusive ? x >= start_time : x > start_time);
if (past_start) {
/* Move left of cache to this point
* (Optimize for immediate call this cycle within range) */
_search_cache.left = x;
assert(inclusive ? x >= start_time : x > start_time);
return true;
} else {
if (inclusive) {
x = next->when;
_search_cache.left = next->when;
} else {
x = start;
_search_cache.left = x;
}
return true;
}
} else {
/* No points in the future, so no steps (towards them) in the future */
return false;
}
}
/** @param start Start position in model coordinates.
* @param end End position in model coordinates.
* @param op 0 = cut, 1 = copy, 2 = clear.
*/
boost::shared_ptr<ControlList>
ControlList::cut_copy_clear (timepos_t const & start_time, timepos_t const & end_time, int op)
{
boost::shared_ptr<ControlList> nal = create (_parameter, _desc, _time_domain);
iterator s, e;
timepos_t start = start_time;
timepos_t end = end_time;
ControlEvent cp (start, 0.0);
{
Glib::Threads::RWLock::WriterLock lm (_lock);
/* first, determine s & e, two iterators that define the range of points
affected by this operation
*/
if ((s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator)) == _events.end()) {
return nal;
}
/* and the last that is at or after `end' */
cp.when = end;
e = upper_bound (_events.begin(), _events.end(), &cp, time_comparator);
/* if "start" isn't the location of an existing point,
evaluate the curve to get a value for the start. Add a point to
both the existing event list, and if its not a "clear" operation,
to the copy ("nal") as well.
Note that the time positions of the points in each list are different
because we want the copy ("nal") to have a zero time reference.
*/
/* before we begin any cut/clear operations, get the value of the curve
at "end".
*/
double end_value = unlocked_eval (end);
if ((*s)->when != start) {
double val = unlocked_eval (start);
if (op == 0) { // cut
if (start > _events.front()->when) {
_events.insert (s, (new ControlEvent (start, val)));
}
}
if (op != 2) { // ! clear
nal->_events.push_back (new ControlEvent (timepos_t (_time_domain), val));
}
}
for (iterator x = s; x != e; ) {
/* adjust new points to be relative to start, which
has been set to zero.
*/
if (op != 2) {
nal->_events.push_back (new ControlEvent (timepos_t (start.distance ((*x)->when)), (*x)->value));
}
if (op != 1) {
x = _events.erase (x);
} else {
++x;
}
}
if (e == _events.end() || (*e)->when != end) {
/* only add a boundary point if there is a point after "end"
*/
if (op == 0 && (e != _events.end() && end < (*e)->when)) { // cut
_events.insert (e, new ControlEvent (end, end_value));
}
if (op != 2 && (e != _events.end() && end < (*e)->when)) { // cut/copy
nal->_events.push_back (new ControlEvent (timepos_t (start.distance (start)), end_value));
}
}
unlocked_invalidate_insert_iterator ();
mark_dirty ();
}
if (op != 1) {
maybe_signal_changed ();
}
return nal;
}
boost::shared_ptr<ControlList>
ControlList::cut (timepos_t const & start, timepos_t const & end)
{
return cut_copy_clear (start, end, 0);
}
boost::shared_ptr<ControlList>
ControlList::copy (timepos_t const & start, timepos_t const & end)
{
return cut_copy_clear (start, end, 1);
}
void
ControlList::clear (timepos_t const & start, timepos_t const & end)
{
cut_copy_clear (start, end, 2);
}
/** @param pos Position in model coordinates */
bool
ControlList::paste (const ControlList& alist, timepos_t const & time)
{
if (alist._events.empty()) {
return false;
}
{
Glib::Threads::RWLock::WriterLock lm (_lock);
iterator where;
iterator prev;
timepos_t end;
timepos_t pos = time;
ControlEvent cp (pos, 0.0);
where = upper_bound (_events.begin(), _events.end(), &cp, time_comparator);
for (const_iterator i = alist.begin();i != alist.end(); ++i) {
double value = (*i)->value;
if (alist.parameter() != parameter()) {
const ParameterDescriptor& src_desc = alist.descriptor();
// This does not work for logscale and will probably also not do
// the right thing for integer_step and sr_dependent parameters.
//
// TODO various flags from from ARDOUR::ParameterDescriptor
// to Evoral::ParameterDescriptor
value -= src_desc.lower; // translate to 0-relative
value /= (src_desc.upper - src_desc.lower); // normalize range
value *= (_desc.upper - _desc.lower); // scale to our range
value += _desc.lower; // translate to our offset
if (_desc.toggled) {
value = (value < 0.5) ? 0.0 : 1.0;
}
/* catch possible rounding errors */
value = std::min ((double)_desc.upper, std::max ((double)_desc.lower, value));
}
timepos_t adj_pos;
if (_time_domain == (*i)->when.time_domain()) {
adj_pos = (*i)->when + pos;
} else {
if (_time_domain == AudioTime) {
adj_pos = timepos_t (((*i)->when + pos).samples());
} else {
adj_pos = timepos_t (((*i)->when + pos).beats());
}
}
_events.insert (where, new ControlEvent (adj_pos, value));
end = (*i)->when + pos;
}
/* move all points after the insertion along the timeline by
the correct amount.
*/
while (where != _events.end()) {
iterator tmp;
if ((*where)->when <= end) {
tmp = where;
++tmp;
_events.erase(where);
where = tmp;
} else {
break;
}
}
unlocked_invalidate_insert_iterator ();
mark_dirty ();
}
maybe_signal_changed ();
return true;
}
/** Move automation around according to a list of region movements.
* @param return true if anything was changed, otherwise false (ie nothing needed changing)
*/
bool
ControlList::move_ranges (const list< RangeMove> & movements)
{
typedef list<RangeMove> RangeMoveList;
{
Glib::Threads::RWLock::WriterLock lm (_lock);
/* a copy of the events list before we started moving stuff around */
EventList old_events = _events;
/* clear the source and destination ranges in the new list */
bool things_erased = false;
for (RangeMoveList::const_iterator i = movements.begin (); i != movements.end (); ++i) {
timepos_t start = i->from;
timepos_t end = i->from + i->length;
if (erase_range_internal (start, end, _events)) {
things_erased = true;
}
start = i->to;
end = i->to + i->length;
if (erase_range_internal (start, end, _events)) {
things_erased = true;
}
}
/* if nothing was erased, there is nothing to do */
if (!things_erased) {
return false;
}
/* copy the events into the new list */
for (RangeMoveList::const_iterator i = movements.begin (); i != movements.end (); ++i) {
iterator j = old_events.begin ();
const timepos_t limit = i->from + i->length;
const timecnt_t dx = i->from.distance (i->to);
while (j != old_events.end ()) {
timepos_t jtime;
switch (_time_domain) {
case AudioTime:
jtime = (*j)->when;
break;
case BeatTime:
jtime = (*j)->when;
break;
default:
/*NOTREACHED*/
return false;
}
if (jtime > limit) {
break;
}
if (jtime >= i->from) {
ControlEvent* ev = new ControlEvent (**j);
switch (_time_domain) {
case AudioTime:
ev->when += dx;
break;
case BeatTime:
ev->when += dx;
break;
default:
/*NOTREACHED*/
return false;
}
_events.push_back (ev);
}
++j;
}
}
if (!_frozen) {
_events.sort (event_time_less_than);
unlocked_remove_duplicates ();
unlocked_invalidate_insert_iterator ();
} else {
_sort_pending = true;
}
mark_dirty ();
}
maybe_signal_changed ();
return true;
}
bool
ControlList::set_interpolation (InterpolationStyle s)
{
if (_interpolation == s) {
return true;
}
switch (s) {
case Logarithmic:
if (_desc.lower * _desc.upper <= 0 || _desc.upper <= _desc.lower) {
return false;
}
break;
case Exponential:
if (_desc.lower != 0 || _desc.upper <= _desc.lower) {
return false;
}
default:
break;
}
_interpolation = s;
InterpolationChanged (s); /* EMIT SIGNAL */
return true;
}
bool
ControlList::operator!= (ControlList const & other) const
{
if (_events.size() != other._events.size()) {
return true;
}
EventList::const_iterator i = _events.begin ();
EventList::const_iterator j = other._events.begin ();
while (i != _events.end() && (*i)->when == (*j)->when && (*i)->value == (*j)->value) {
++i;
++j;
}
if (i != _events.end ()) {
return true;
}
return (
_parameter != other._parameter ||
_interpolation != other._interpolation ||
_desc.lower != other._desc.lower ||
_desc.upper != other._desc.upper ||
_desc.normal != other._desc.normal
);
}
bool
ControlList::is_sorted () const
{
Glib::Threads::RWLock::ReaderLock lm (_lock);
if (_events.size () == 0) {
return true;
}
const_iterator i = _events.begin();
const_iterator n = i;
while (++n != _events.end ()) {
if (event_time_less_than(*n,*i)) {
return false;
}
++i;
}
return true;
}
void
ControlList::dump (ostream& o)
{
/* NOT LOCKED ... for debugging only */
for (EventList::iterator x = _events.begin(); x != _events.end(); ++x) {
o << (*x)->value << " @ " << (*x)->when << endl;
}
}
void
ControlList::set_time_domain (Temporal::TimeDomain td)
{
assert (_events.empty());
_time_domain = td;
/* XXX: TODO: apply to all points */
}
void
ControlList::set_time_domain_empty (Temporal::TimeDomain td)
{
/* the event list may or may not be empty, but we act as if it is. This
is used in e.g. ::set_state(), since we do not need to modify the
event time domains there.
*/
_time_domain = td;
}
} // namespace Evoral