13
0
livetrax/libs/ardour/rt_midibuffer.cc

511 lines
11 KiB
C++

/*
* Copyright (C) 2019 Paul Davis <paul@linuxaudiosystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <iostream>
#include <algorithm> // std::reverse
#include "pbd/malign.h"
#include "pbd/compose.h"
#include "pbd/error.h"
#include "pbd/debug.h"
#include "ardour/debug.h"
#include "ardour/midi_buffer.h"
#include "ardour/midi_state_tracker.h"
#include "ardour/rt_midibuffer.h"
using namespace std;
using namespace ARDOUR;
using namespace PBD;
RTMidiBuffer::RTMidiBuffer ()
: _size (0)
, _capacity (0)
, _data (0)
, _reversed (false)
, _pool_size (0)
, _pool_capacity (0)
, _pool (0)
{
}
RTMidiBuffer::~RTMidiBuffer()
{
cache_aligned_free (_data);
cache_aligned_free (_pool);
}
void
RTMidiBuffer::resize (size_t size)
{
if (_data && size < _capacity) {
if (_size < size) {
/* truncate */
_size = size;
}
return;
}
Item* old_data = _data;
cache_aligned_malloc ((void**) &_data, size * sizeof (Item));
if (_size) {
assert (old_data);
memcpy (_data, old_data, _size * sizeof (Item));
cache_aligned_free (old_data);
}
_capacity = size;
}
bool
RTMidiBuffer::reversed () const
{
return _reversed;
}
void
RTMidiBuffer::reverse ()
{
if (_size == 0) {
return;
}
Item* previous_note_on[16][128];
uint8_t note_num;
uint8_t channel;
int32_t i;
memset (previous_note_on, 0, sizeof (Item*) * 16 * 128);
if (_reversed) {
i = _size - 1;
} else {
i = 0;
}
/* iterate from start to end, or end-to-start, depending on current
* _reversed status. Find each note on, and swap it with the relevant
* note off.
*/
while ((_reversed && (i >= 0)) || (!_reversed && (i < (int32_t) _size))) {
Item* item = &_data[i];
if (!item->bytes[0]) {
/* event is 3 bytes or less, so regular MIDI data */
switch (item->bytes[1] & 0xf0) { /* status byte */
case MIDI_CMD_NOTE_ON:
note_num = item->bytes[2];
channel = item->bytes[1] & 0xf;
if (!previous_note_on[channel][note_num]) {
previous_note_on[channel][note_num] = item;
} else {
std::cerr << "error: note is already on! ... ignored\n";
}
break;
case MIDI_CMD_NOTE_OFF: /* note off */
note_num = item->bytes[2];
channel = item->bytes[1] & 0xf;
if (previous_note_on[channel][note_num]) {
swap (item->bytes[1], previous_note_on[channel][note_num]->bytes[1]);
previous_note_on[channel][note_num] = 0;
} else {
std::cerr << "discovered note off without preceding note on... ignored\n";
}
break;
default:
break;
}
}
if (_reversed) {
--i;
} else {
++i;
}
}
_reversed = !_reversed;
}
void
RTMidiBuffer::dump (uint32_t cnt)
{
cerr << this << " total items: " << _size << " within " << _capacity << " blob pool: " << _pool_capacity << " used " << _pool_size << endl;
for (uint32_t i = 0; i < _size && i < cnt; ++i) {
Item* item = &_data[i];
uint8_t* addr;
uint32_t size;
if (item->bytes[0]) {
/* more than 3 bytes ... indirect */
uint32_t offset = item->offset & ~(1<<(CHAR_BIT-1));
Blob* blob = reinterpret_cast<Blob*> (&_pool[offset]);
size = blob->size;
addr = blob->data;
} else {
/* MIDI data is in bytes[1..3] (variable depending on message type */
size = Evoral::midi_event_size (item->bytes[1]);
addr = &item->bytes[1];
}
cerr << i << " @ " << item->timestamp << " sz=" << size << '\t';
cerr << hex;
for (size_t j =0 ; j < size; ++j) {
cerr << "0x" << hex << (int)addr[j] << dec << '/' << (int)addr[j] << ' ';
}
cerr << dec << endl;
}
}
uint32_t
RTMidiBuffer::write (TimeType time, Evoral::EventType /*type*/, uint32_t size, const uint8_t* buf)
{
/* This buffer stores only MIDI, we don't care about the value of "type" */
if (_size + size >= _capacity) {
if (size > 1024) {
resize (_capacity + size + 1024); // XXX 1024 is completely arbitrary
} else {
resize (_capacity + 1024); // XXX 1024 is completely arbitrary
}
}
_data[_size].timestamp = time;
if (size > 3) {
uint32_t off = store_blob (size, buf);
/* non-zero MSbit indicates that the data (more than 3 bytes) is not inline */
_data[_size].offset = (off | (1<<(CHAR_BIT-1)));
} else {
assert ((int) size == Evoral::midi_event_size (buf[0]));
/* zero MSbit indicates that the data (up to 3 bytes) is inline */
_data[_size].bytes[0] = 0;
switch (size) {
case 3:
_data[_size].bytes[3] = buf[2];
/* fallthru */
case 2:
_data[_size].bytes[2] = buf[1];
/* fallthru */
case 1:
_data[_size].bytes[1] = buf[0];
break;
}
}
++_size;
return size;
}
/* requires C++20 to be usable */
/*
static
bool
item_timestamp_earlier (ARDOUR::RTMidiBuffer::Item const & item, samplepos_t const & time)
{
return item.timestamp < time;
}
*/
static
bool
item_item_earlier (ARDOUR::RTMidiBuffer::Item const & item, ARDOUR::RTMidiBuffer::Item const & other)
{
return item.timestamp < other.timestamp;
}
void
RTMidiBuffer::track (MidiStateTracker& mst, samplepos_t start, samplepos_t end)
{
Glib::Threads::RWLock::ReaderLock lm (_lock, Glib::Threads::TRY_LOCK);
if (!lm.locked()) {
return;
}
bool reverse;
Item foo;
Item* iend;
Item* item;
foo.timestamp = start;
if (start < end) {
iend = _data+_size;
item = lower_bound (_data, iend, foo, item_item_earlier);
reverse = false;
} else {
iend = _data;
--iend; /* yes, this is technically "illegal" but we will never indirect */
Item* uend = _data + _size;
item = upper_bound (_data, uend, foo, item_item_earlier);
if (item == uend) {
--item;
}
reverse = true;
}
while ((item != iend) && ((reverse && (item->timestamp > end)) || (!reverse && (item->timestamp < end)))) {
TimeType evtime = item->timestamp;
/* Adjust event times to be relative to 'start', taking
* 'offset' into account.
*/
if (reverse) {
if (evtime > start) {
--item;
continue;
}
} else {
if (evtime < start) {
++item;
continue;
}
}
uint8_t* addr;
if (item->bytes[0]) {
/* more than 3 bytes ... indirect */
uint32_t offset = item->offset & ~(1<<(CHAR_BIT-1));
Blob* blob = reinterpret_cast<Blob*> (&_pool[offset]);
addr = blob->data;
} else {
addr = &item->bytes[1];
}
mst.track (addr);
if (reverse) {
--item;
} else {
++item;
}
}
}
uint32_t
RTMidiBuffer::read (MidiBuffer& dst, samplepos_t start, samplepos_t end, MidiNoteTracker& tracker, samplecnt_t offset)
{
Glib::Threads::RWLock::ReaderLock lm (_lock, Glib::Threads::TRY_LOCK);
if (!lm.locked()) {
return 0;
}
bool reverse;
Item foo;
Item* iend;
Item* item;
foo.timestamp = start;
uint32_t count = 0;
if (start < end) {
iend = _data+_size;
item = lower_bound (_data, iend, foo, item_item_earlier);
reverse = false;
} else {
iend = _data;
--iend; /* yes, this is technically "illegal" but we will never indirect */
Item* uend = _data + _size;
item = upper_bound (_data, uend, foo, item_item_earlier);
if (item == uend) {
--item;
}
reverse = true;
}
#ifndef NDEBUG
TimeType unadjusted_time;
Item* last = &_data[_size-1];
#endif
DEBUG_TRACE (DEBUG::MidiRingBuffer, string_compose ("read from %1 .. %2 .. initial index = %3 (time = %4) (range in list of %7 %5..%6)\n", start, end, item - _data, item->timestamp, _data->timestamp, last->timestamp, _size));
// dump (999);
while ((item != iend) && ((reverse && (item->timestamp > end)) || (!reverse && (item->timestamp < end)))) {
TimeType evtime = item->timestamp;
#ifndef NDEBUG
unadjusted_time = evtime;
#endif
/* Adjust event times to be relative to 'start', taking
* 'offset' into account.
*/
if (reverse) {
if (evtime > start) {
--item;
continue;
}
evtime = start - evtime;
} else {
if (evtime < start) {
++item;
continue;
}
evtime -= start;
}
evtime += offset;
uint32_t size;
uint8_t* addr;
if (item->bytes[0]) {
/* more than 3 bytes ... indirect */
uint32_t offset = item->offset & ~(1<<(CHAR_BIT-1));
Blob* blob = reinterpret_cast<Blob*> (&_pool[offset]);
size = blob->size;
addr = blob->data;
} else {
size = Evoral::midi_event_size (item->bytes[1]);
addr = &item->bytes[1];
}
if (!dst.push_back (evtime, Evoral::MIDI_EVENT, size, addr)) {
DEBUG_TRACE (DEBUG::MidiRingBuffer, string_compose ("MidiRingBuffer: overflow in destination MIDI buffer, stopped after %1 events, dst size = %2\n", count, dst.size()));
break;
}
DEBUG_TRACE (DEBUG::MidiRingBuffer, string_compose ("read event sz %1 @ %2 (=> %3 via -%4 +%5\n", size, unadjusted_time, evtime, start, offset));
#if 0
cerr << "\tevent @ " << unadjusted_time << " evtime " << evtime << " off " << offset << " sz=" << size << '\t';
cerr << "\t0x" << hex << (int)addr[0] << dec << ' ';
for (size_t j = 1 ; j < size; ++j) {
cerr << "0x" << hex << (int)addr[j] << dec << '/' << (int)addr[j] << ' ';
}
cerr << '\n';
#endif
tracker.track (addr);
if (reverse) {
--item;
} else {
++item;
}
++count;
}
DEBUG_TRACE (DEBUG::MidiRingBuffer, string_compose ("total events found for %1 .. %2 = %3\n", start, end, count));
return count;
}
uint32_t
RTMidiBuffer::alloc_blob (uint32_t size)
{
if (_pool_size + size > _pool_capacity) {
uint8_t* old_pool = _pool;
_pool_capacity += size * 4;
cache_aligned_malloc ((void **) &_pool, (_pool_capacity * sizeof (Blob)));
memcpy (_pool, old_pool, _pool_size * sizeof (Blob));
cache_aligned_free (old_pool);
}
uint32_t offset = _pool_size;
#if defined(__arm__) || defined(__aarch64__)
_pool_size += ((size - 1) | 3) + 1;
#else
_pool_size += size;
#endif
return offset;
}
uint32_t
RTMidiBuffer::store_blob (uint32_t size, uint8_t const * data)
{
uint32_t offset = alloc_blob (size);
uint8_t* addr = &_pool[offset];
*(reinterpret_cast<uint32_t*> (addr)) = size;
addr += sizeof (size);
memcpy (addr, data, size);
return offset;
}
void
RTMidiBuffer::clear ()
{
/* mark main array as empty */
_size = 0;
/* free the entire current pool size, if any */
_pool_size = 0;
/* rendering new data .. it will not be reversed */
_reversed = false;
}
samplecnt_t
RTMidiBuffer::span() const
{
if (_size == 0 || _size == 1) {
return 0;
}
const Item* last = &_data[_size-1];
const Item* first = &_data[0];
return last->timestamp - first->timestamp;
}