13
0
livetrax/libs/backends/pulseaudio/pulseaudio_backend.cc

1832 lines
43 KiB
C++

/*
* Copyright (C) 2014,2019 Robin Gareus <robin@gareus.org>
* Copyright (C) 2013 Paul Davis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <math.h>
#include <regex.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <glibmm.h>
#include "pbd/compose.h"
#include "pbd/error.h"
#include "pbd/file_utils.h"
#include "pbd/pthread_utils.h"
#include "ardour/port_manager.h"
#include "pulseaudio_backend.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
static std::string s_instance_name;
const size_t PulseAudioBackend::_max_buffer_size = 8192;
#define N_CHANNELS (2)
PulseAudioBackend::PulseAudioBackend (AudioEngine& e, AudioBackendInfo& info)
: AudioBackend (e, info)
, p_stream (0)
, p_context (0)
, p_mainloop (0)
, _run (false)
, _active (false)
, _freewheel (false)
, _freewheeling (false)
, _last_process_start (0)
, _samplerate (48000)
, _samples_per_period (1024)
, _systemic_audio_output_latency (0)
, _dsp_load (0)
, _processed_samples (0)
, _port_change_flag (false)
{
_instance_name = s_instance_name;
pthread_mutex_init (&_port_callback_mutex, 0);
}
PulseAudioBackend::~PulseAudioBackend ()
{
pthread_mutex_destroy (&_port_callback_mutex);
}
/* Pulseaudio */
void
PulseAudioBackend::close_pulse (bool unlock)
{
if (p_mainloop) {
if (unlock) {
pa_threaded_mainloop_unlock (p_mainloop);
}
pa_threaded_mainloop_stop (p_mainloop);
}
if (p_stream) {
pa_stream_disconnect (p_stream);
pa_stream_unref (p_stream);
p_stream = NULL;
}
if (p_context) {
pa_context_disconnect (p_context);
pa_context_unref (p_context);
p_context = NULL;
}
if (p_mainloop) {
pa_threaded_mainloop_free (p_mainloop);
p_mainloop = NULL;
}
}
int
PulseAudioBackend::sync_pulse (pa_operation* op)
{
/* wait for async operation to complete */
if (!op) {
pa_threaded_mainloop_unlock (p_mainloop);
return 0;
}
pa_operation_state_t state = pa_operation_get_state (op);
while (PA_OPERATION_RUNNING == state) {
pa_threaded_mainloop_wait (p_mainloop);
state = pa_operation_get_state (op);
}
pa_operation_unref (op);
pa_threaded_mainloop_unlock (p_mainloop);
return PA_OPERATION_DONE == state;
}
bool
PulseAudioBackend::cork_pulse (bool pause)
{
pa_threaded_mainloop_lock (p_mainloop);
_operation_succeeded = false;
return sync_pulse (pa_stream_cork (p_stream, pause ? 1 : 0, stream_operation_cb, this)) && _operation_succeeded;
}
void
PulseAudioBackend::context_state_cb (pa_context* c, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
switch (pa_context_get_state (c)) {
case PA_CONTEXT_READY:
case PA_CONTEXT_TERMINATED:
case PA_CONTEXT_FAILED:
pa_threaded_mainloop_signal (d->p_mainloop, 0);
break;
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
break;
}
}
void
PulseAudioBackend::stream_state_cb (pa_stream* s, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
switch (pa_stream_get_state (s)) {
case PA_STREAM_READY:
case PA_STREAM_FAILED:
case PA_STREAM_TERMINATED:
pa_threaded_mainloop_signal (d->p_mainloop, 0);
break;
case PA_STREAM_UNCONNECTED:
case PA_STREAM_CREATING:
break;
}
}
void
PulseAudioBackend::stream_operation_cb (pa_stream*, int ok, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
d->_operation_succeeded = ok;
pa_threaded_mainloop_signal (d->p_mainloop, 0);
}
void
PulseAudioBackend::stream_request_cb (pa_stream*, size_t length, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
pa_threaded_mainloop_signal (d->p_mainloop, 0);
// XXX perhaps do processing here instead of waking up main callback thread.
// compare to coreaudio backend
}
void
PulseAudioBackend::stream_latency_update_cb (pa_stream* s, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
pa_usec_t latency;
int negative;
// XXX this needs PA_STREAM_AUTO_TIMING_UPDATE
if (0 == pa_stream_get_latency (s, &latency, &negative)) {
if (negative) {
d->_systemic_audio_output_latency = 0;
} else {
d->_systemic_audio_output_latency = floorf (latency * d->_samplerate / 1000000.f);
}
// XXX garbage value
printf ("Pulse latency update %d\n", d->_systemic_audio_output_latency);
d->update_latencies ();
}
pa_threaded_mainloop_signal (d->p_mainloop, 0);
}
void
PulseAudioBackend::stream_xrun_cb (pa_stream*, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
d->engine.Xrun ();
}
int
PulseAudioBackend::init_pulse ()
{
pa_sample_spec ss;
pa_buffer_attr ba;
ss.channels = N_CHANNELS;
ss.rate = _samplerate;
ss.format = PA_SAMPLE_FLOAT32LE;
/* https://freedesktop.org/software/pulseaudio/doxygen/structpa__buffer__attr.html */
ba.minreq = _samples_per_period * N_CHANNELS * sizeof (float);
ba.maxlength = 2 * ba.minreq;
ba.prebuf = (uint32_t)-1;
ba.tlength = (uint32_t)-1;
ba.fragsize = 0; // capture only
if (!pa_sample_spec_valid (&ss)) {
return AudioDeviceInvalidError;
}
if (!(p_mainloop = pa_threaded_mainloop_new ())) {
PBD::error << _("PulseAudioBackend: Failed to allocate main loop") << endmsg;
close_pulse ();
return BackendInitializationError;
}
if (!(p_context = pa_context_new (pa_threaded_mainloop_get_api (p_mainloop), PROGRAM_NAME))) {
PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg;
close_pulse ();
return BackendInitializationError;
}
pa_context_set_state_callback (p_context, PulseAudioBackend::context_state_cb, this);
if (pa_context_connect (p_context, NULL, PA_CONTEXT_NOFLAGS, NULL) < 0) {
PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg;
close_pulse ();
return AudioDeviceOpenError;
}
pa_threaded_mainloop_lock (p_mainloop);
if (pa_threaded_mainloop_start (p_mainloop) < 0) {
PBD::error << _("PulseAudioBackend: Failed to start main loop") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
/* Wait until the context is ready, context_state_cb will trigger this */
pa_threaded_mainloop_wait (p_mainloop);
if (pa_context_get_state (p_context) != PA_CONTEXT_READY) {
PBD::error << _("PulseAudioBackend: Failed to create context") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
if (!(p_stream = pa_stream_new (p_context, "master", &ss, NULL))) {
PBD::error << _("PulseAudioBackend: Failed to create new stream") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
pa_stream_set_state_callback (p_stream, PulseAudioBackend::stream_state_cb, this);
pa_stream_set_write_callback (p_stream, PulseAudioBackend::stream_request_cb, this);
pa_stream_set_latency_update_callback (p_stream, stream_latency_update_cb, this);
pa_stream_set_underflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this);
pa_stream_set_overflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this);
/* https://freedesktop.org/software/pulseaudio/doxygen/def_8h.html#a6966d809483170bc6d2e6c16188850fc */
pa_stream_flags_t sf = (pa_stream_flags_t) (
(int)PA_STREAM_START_CORKED
| (int)PA_STREAM_FAIL_ON_SUSPEND
/*
| (int)PA_STREAM_ADJUST_LATENCY
| (int)PA_STREAM_AUTO_TIMING_UPDATE
| (int)PA_STREAM_INTERPOLATE_TIMING
*/
);
if (pa_stream_connect_playback (p_stream, NULL, &ba, sf, NULL, NULL) < 0) {
PBD::error << _("PulseAudioBackend: Failed to connect playback stream") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
/* Wait until the stream is ready */
pa_threaded_mainloop_wait (p_mainloop);
if (pa_stream_get_state (p_stream) != PA_STREAM_READY) {
PBD::error << _("PulseAudioBackend: Failed to start stream") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
pa_threaded_mainloop_unlock (p_mainloop);
return 0;
}
/* AUDIOBACKEND API */
std::string
PulseAudioBackend::name () const
{
return X_("Pulseaudio");
}
bool
PulseAudioBackend::is_realtime () const
{
return true;
}
std::vector<AudioBackend::DeviceStatus>
PulseAudioBackend::enumerate_devices () const
{
std::vector<AudioBackend::DeviceStatus> devices;
devices.push_back (DeviceStatus (_("Default Playback"), true));
return devices;
}
std::vector<float>
PulseAudioBackend::available_sample_rates (const std::string&) const
{
std::vector<float> sr;
sr.push_back (8000.0);
sr.push_back (22050.0);
sr.push_back (24000.0);
sr.push_back (44100.0);
sr.push_back (48000.0);
sr.push_back (88200.0);
sr.push_back (96000.0);
sr.push_back (176400.0);
sr.push_back (192000.0);
return sr;
}
std::vector<uint32_t>
PulseAudioBackend::available_buffer_sizes (const std::string&) const
{
std::vector<uint32_t> bs;
bs.push_back (64);
bs.push_back (128);
bs.push_back (256);
bs.push_back (512);
bs.push_back (1024);
bs.push_back (2048);
bs.push_back (4096);
bs.push_back (8192);
return bs;
}
uint32_t
PulseAudioBackend::available_input_channel_count (const std::string&) const
{
return 0;
}
uint32_t
PulseAudioBackend::available_output_channel_count (const std::string&) const
{
return N_CHANNELS;
}
bool
PulseAudioBackend::can_change_sample_rate_when_running () const
{
return false;
}
bool
PulseAudioBackend::can_change_buffer_size_when_running () const
{
return false;
}
int
PulseAudioBackend::set_device_name (const std::string& d)
{
return 0;
}
int
PulseAudioBackend::set_sample_rate (float sr)
{
if (sr <= 0) {
return -1;
}
_samplerate = sr;
engine.sample_rate_change (sr);
return 0;
}
int
PulseAudioBackend::set_buffer_size (uint32_t bs)
{
if (bs <= 0 || bs > _max_buffer_size) {
return -1;
}
_samples_per_period = bs;
engine.buffer_size_change (bs);
return 0;
}
int
PulseAudioBackend::set_interleaved (bool yn)
{
if (!yn) {
return 0;
}
return -1;
}
int
PulseAudioBackend::set_input_channels (uint32_t cc)
{
return 0;
}
int
PulseAudioBackend::set_output_channels (uint32_t cc)
{
return 0;
}
int
PulseAudioBackend::set_systemic_input_latency (uint32_t sl)
{
return 0;
}
int
PulseAudioBackend::set_systemic_output_latency (uint32_t sl)
{
return 0;
}
/* Retrieving parameters */
std::string
PulseAudioBackend::device_name () const
{
return _("Default Playback");
}
float
PulseAudioBackend::sample_rate () const
{
return _samplerate;
}
uint32_t
PulseAudioBackend::buffer_size () const
{
return _samples_per_period;
}
bool
PulseAudioBackend::interleaved () const
{
return false;
}
uint32_t
PulseAudioBackend::input_channels () const
{
return 0;
}
uint32_t
PulseAudioBackend::output_channels () const
{
return N_CHANNELS;
}
uint32_t
PulseAudioBackend::systemic_input_latency () const
{
return 0;
}
uint32_t
PulseAudioBackend::systemic_output_latency () const
{
return _systemic_audio_output_latency;
}
/* MIDI */
std::vector<std::string>
PulseAudioBackend::enumerate_midi_options () const
{
std::vector<std::string> midi_options;
midi_options.push_back (get_standard_device_name (DeviceNone));
return midi_options;
}
std::vector<AudioBackend::DeviceStatus>
PulseAudioBackend::enumerate_midi_devices () const
{
return std::vector<AudioBackend::DeviceStatus> ();
}
int
PulseAudioBackend::set_midi_option (const std::string& opt)
{
return 0;
}
std::string
PulseAudioBackend::midi_option () const
{
return get_standard_device_name (DeviceNone);
}
/* External control app */
std::string
PulseAudioBackend::control_app_name () const
{
std::string ignored;
if (PBD::find_file (PBD::Searchpath (Glib::getenv("PATH")), X_("pavucontrol"), ignored)) {
return "pavucontrol";
}
return "";
}
void
PulseAudioBackend::launch_control_app ()
{
#ifdef NO_VFORK
(void) system ("pavucontrol");
#else
if (::vfork () == 0) {
::execlp ("pavucontrol", "pavucontrol", (char*)NULL);
exit (EXIT_SUCCESS);
}
#endif
}
/* State Control */
static void*
pthread_process (void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
d->main_process_thread ();
pthread_exit (0);
return 0;
}
int
PulseAudioBackend::_start (bool /*for_latency_measurement*/)
{
if (!_active && _run) {
PBD::error << _("PulseAudioBackend: already active.") << endmsg;
/* recover from 'halted', reap threads */
stop ();
}
if (_active || _run) {
PBD::info << _("PulseAudioBackend: already active.") << endmsg;
return BackendReinitializationError;
}
if (_ports.size () || _portmap.size ()) {
PBD::warning << _("PulseAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg;
_system_outputs.clear ();
_ports.clear ();
_portmap.clear ();
}
/* reset internal state */
_dsp_load = 0;
_freewheeling = false;
_freewheel = false;
_last_process_start = 0;
_systemic_audio_output_latency = 0;
/* connect to pulse-server and prepare stream */
int err = init_pulse ();
if (err) {
return err;
}
if (register_system_ports ()) {
PBD::error << _("PulseAudioBackend: failed to register system ports.") << endmsg;
close_pulse ();
return PortRegistrationError;
}
engine.sample_rate_change (_samplerate);
engine.buffer_size_change (_samples_per_period);
if (engine.reestablish_ports ()) {
PBD::error << _("PulseAudioBackend: Could not re-establish ports.") << endmsg;
close_pulse ();
return PortReconnectError;
}
engine.reconnect_ports ();
_run = true;
_port_change_flag = false;
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, -20, 100000,
&_main_thread, pthread_process, this)) {
if (pthread_create (&_main_thread, NULL, pthread_process, this)) {
PBD::error << _("PulseAudioBackend: failed to create process thread.") << endmsg;
stop ();
_run = false;
return ProcessThreadStartError;
} else {
PBD::warning << _("PulseAudioBackend: cannot acquire realtime permissions.") << endmsg;
}
}
int timeout = 5000;
while (!_active && --timeout > 0) {
Glib::usleep (1000);
}
if (timeout == 0 || !_active) {
PBD::error << _("PulseAudioBackend: failed to start process thread.") << endmsg;
_run = false;
close_pulse ();
return ProcessThreadStartError;
}
return NoError;
}
int
PulseAudioBackend::stop ()
{
void* status;
if (!_run) {
return 0;
}
_run = false;
pa_threaded_mainloop_lock (p_mainloop);
sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this));
if (pthread_join (_main_thread, &status)) {
PBD::error << _("PulseAudioBackend: failed to terminate.") << endmsg;
return -1;
}
unregister_ports ();
close_pulse ();
return (_active == false) ? 0 : -1;
}
int
PulseAudioBackend::freewheel (bool onoff)
{
_freewheeling = onoff;
return 0;
}
float
PulseAudioBackend::dsp_load () const
{
return 100.f * _dsp_load;
}
size_t
PulseAudioBackend::raw_buffer_size (DataType t)
{
switch (t) {
case DataType::AUDIO:
return _samples_per_period * sizeof (Sample);
case DataType::MIDI:
return _max_buffer_size;
}
return 0;
}
/* Process time */
samplepos_t
PulseAudioBackend::sample_time ()
{
return _processed_samples;
}
samplepos_t
PulseAudioBackend::sample_time_at_cycle_start ()
{
return _processed_samples;
}
pframes_t
PulseAudioBackend::samples_since_cycle_start ()
{
if (!_active || !_run || _freewheeling || _freewheel) {
return 0;
}
if (_last_process_start == 0) {
return 0;
}
const int64_t elapsed_time_us = g_get_monotonic_time () - _last_process_start;
return std::max ((pframes_t)0, (pframes_t)rint (1e-6 * elapsed_time_us * _samplerate));
}
void*
PulseAudioBackend::pulse_process_thread (void* arg)
{
ThreadData* td = reinterpret_cast<ThreadData*> (arg);
boost::function<void()> f = td->f;
delete td;
f ();
return 0;
}
int
PulseAudioBackend::create_process_thread (boost::function<void()> func)
{
pthread_t thread_id;
pthread_attr_t attr;
size_t stacksize = 100000;
ThreadData* td = new ThreadData (this, func, stacksize);
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, -22, stacksize,
&thread_id, pulse_process_thread, td)) {
pthread_attr_init (&attr);
pthread_attr_setstacksize (&attr, stacksize);
if (pthread_create (&thread_id, &attr, pulse_process_thread, td)) {
PBD::error << _("AudioEngine: cannot create process thread.") << endmsg;
pthread_attr_destroy (&attr);
return -1;
}
pthread_attr_destroy (&attr);
}
_threads.push_back (thread_id);
return 0;
}
int
PulseAudioBackend::join_process_threads ()
{
int rv = 0;
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i) {
void* status;
if (pthread_join (*i, &status)) {
PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg;
rv -= 1;
}
}
_threads.clear ();
return rv;
}
bool
PulseAudioBackend::in_process_thread ()
{
if (pthread_equal (_main_thread, pthread_self ()) != 0) {
return true;
}
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i) {
if (pthread_equal (*i, pthread_self ()) != 0) {
return true;
}
}
return false;
}
uint32_t
PulseAudioBackend::process_thread_count ()
{
return _threads.size ();
}
void
PulseAudioBackend::update_latencies ()
{
/* trigger latency callback in RT thread (locked graph) */
port_connect_add_remove_callback ();
}
/* PORTENGINE API */
void*
PulseAudioBackend::private_handle () const
{
return NULL;
}
const std::string&
PulseAudioBackend::my_name () const
{
return _instance_name;
}
uint32_t
PulseAudioBackend::port_name_size () const
{
return 256;
}
int
PulseAudioBackend::set_port_name (PortEngine::PortHandle port, const std::string& name)
{
std::string newname (_instance_name + ":" + name);
if (!valid_port (port)) {
PBD::error << _("PulseBackend::set_port_name: Invalid Port(s)") << endmsg;
return -1;
}
if (find_port (newname)) {
PBD::error << _("PulseBackend::set_port_name: Port with given name already exists") << endmsg;
return -1;
}
PulsePort* p = static_cast<PulsePort*> (port);
_portmap.erase (p->name ());
_portmap.insert (make_pair (newname, p));
return p->set_name (newname);
}
std::string
PulseAudioBackend::get_port_name (PortEngine::PortHandle port) const
{
if (!valid_port (port)) {
PBD::error << _("PulseBackend::get_port_name: Invalid Port(s)") << endmsg;
return std::string ();
}
return static_cast<PulsePort*> (port)->name ();
}
PortFlags
PulseAudioBackend::get_port_flags (PortEngine::PortHandle port) const
{
if (!valid_port (port)) {
PBD::error << _("PulseBackend::get_port_flags: Invalid Port(s)") << endmsg;
return PortFlags (0);
}
return static_cast<PulsePort*> (port)->flags ();
}
int
PulseAudioBackend::get_port_property (PortHandle port, const std::string& key, std::string& value, std::string& type) const
{
if (!valid_port (port)) {
PBD::warning << _("PulseBackend::get_port_property: Invalid Port(s)") << endmsg;
return -1;
}
if (key == "http://jackaudio.org/metadata/pretty-name") {
type = "";
value = static_cast<PulsePort*> (port)->pretty_name ();
if (!value.empty ()) {
return 0;
}
}
return -1;
}
int
PulseAudioBackend::set_port_property (PortHandle port, const std::string& key, const std::string& value, const std::string& type)
{
if (!valid_port (port)) {
PBD::warning << _("PulseBackend::set_port_property: Invalid Port(s)") << endmsg;
return -1;
}
if (key == "http://jackaudio.org/metadata/pretty-name" && type.empty ()) {
static_cast<PulsePort*> (port)->set_pretty_name (value);
return 0;
}
return -1;
}
PortEngine::PortHandle
PulseAudioBackend::get_port_by_name (const std::string& name) const
{
PortHandle port = (PortHandle)find_port (name);
return port;
}
int
PulseAudioBackend::get_ports (
const std::string& port_name_pattern,
DataType type, PortFlags flags,
std::vector<std::string>& port_names) const
{
int rv = 0;
regex_t port_regex;
bool use_regexp = false;
if (port_name_pattern.size () > 0) {
if (!regcomp (&port_regex, port_name_pattern.c_str (), REG_EXTENDED | REG_NOSUB)) {
use_regexp = true;
}
}
for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) {
PulsePort* port = *i;
if ((port->type () == type) && flags == (port->flags () & flags)) {
if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) {
port_names.push_back (port->name ());
++rv;
}
}
}
if (use_regexp) {
regfree (&port_regex);
}
return rv;
}
DataType
PulseAudioBackend::port_data_type (PortEngine::PortHandle port) const
{
if (!valid_port (port)) {
return DataType::NIL;
}
return static_cast<PulsePort*> (port)->type ();
}
PortEngine::PortHandle
PulseAudioBackend::register_port (
const std::string& name,
ARDOUR::DataType type,
ARDOUR::PortFlags flags)
{
if (name.size () == 0) {
return 0;
}
if (flags & IsPhysical) {
return 0;
}
return add_port (_instance_name + ":" + name, type, flags);
}
PortEngine::PortHandle
PulseAudioBackend::add_port (
const std::string& name,
ARDOUR::DataType type,
ARDOUR::PortFlags flags)
{
assert (name.size ());
if (find_port (name)) {
PBD::error << _("PulseBackend::register_port: Port already exists:")
<< " (" << name << ")" << endmsg;
return 0;
}
PulsePort* port = NULL;
switch (type) {
case DataType::AUDIO:
port = new PulseAudioPort (*this, name, flags);
break;
case DataType::MIDI:
port = new PulseMidiPort (*this, name, flags);
break;
default:
PBD::error << _("PulseBackend::register_port: Invalid Data Type.") << endmsg;
return 0;
}
_ports.insert (port);
_portmap.insert (make_pair (name, port));
return port;
}
void
PulseAudioBackend::unregister_port (PortEngine::PortHandle port_handle)
{
if (!_run) {
return;
}
PulsePort* port = static_cast<PulsePort*> (port_handle);
PortIndex::iterator i = std::find (_ports.begin (), _ports.end (), static_cast<PulsePort*> (port_handle));
if (i == _ports.end ()) {
PBD::error << _("PulseBackend::unregister_port: Failed to find port") << endmsg;
return;
}
disconnect_all (port_handle);
_portmap.erase (port->name ());
_ports.erase (i);
delete port;
}
int
PulseAudioBackend::register_system_ports ()
{
LatencyRange lr;
/* audio ports */
lr.min = lr.max = _systemic_audio_output_latency;
for (int i = 1; i <= N_CHANNELS; ++i) {
char tmp[64];
snprintf (tmp, sizeof (tmp), "system:playback_%d", i);
PortHandle p = add_port (std::string (tmp), DataType::AUDIO, static_cast<PortFlags> (IsInput | IsPhysical | IsTerminal));
if (!p)
return -1;
set_latency_range (p, true, lr);
PulsePort* ap = static_cast<PulsePort*> (p);
//ap->set_pretty_name ("")
_system_outputs.push_back (ap);
}
return 0;
}
void
PulseAudioBackend::unregister_ports (bool system_only)
{
_system_outputs.clear ();
for (PortIndex::iterator i = _ports.begin (); i != _ports.end ();) {
PortIndex::iterator cur = i++;
PulsePort* port = *cur;
if (!system_only || (port->is_physical () && port->is_terminal ())) {
port->disconnect_all ();
_portmap.erase (port->name ());
delete port;
_ports.erase (cur);
}
}
}
void
PulseAudioBackend::update_system_port_latecies ()
{
for (std::vector<PulsePort*>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
(*it)->update_connected_latency (false);
}
}
int
PulseAudioBackend::connect (const std::string& src, const std::string& dst)
{
PulsePort* src_port = find_port (src);
PulsePort* dst_port = find_port (dst);
if (!src_port) {
PBD::error << _("PulseBackend::connect: Invalid Source port:")
<< " (" << src << ")" << endmsg;
return -1;
}
if (!dst_port) {
PBD::error << _("PulseBackend::connect: Invalid Destination port:")
<< " (" << dst << ")" << endmsg;
return -1;
}
return src_port->connect (dst_port);
}
int
PulseAudioBackend::disconnect (const std::string& src, const std::string& dst)
{
PulsePort* src_port = find_port (src);
PulsePort* dst_port = find_port (dst);
if (!src_port || !dst_port) {
PBD::error << _("PulseBackend::disconnect: Invalid Port(s)") << endmsg;
return -1;
}
return src_port->disconnect (dst_port);
}
int
PulseAudioBackend::connect (PortEngine::PortHandle src, const std::string& dst)
{
PulsePort* dst_port = find_port (dst);
if (!valid_port (src)) {
PBD::error << _("PulseBackend::connect: Invalid Source Port Handle") << endmsg;
return -1;
}
if (!dst_port) {
PBD::error << _("PulseBackend::connect: Invalid Destination Port")
<< " (" << dst << ")" << endmsg;
return -1;
}
return static_cast<PulsePort*> (src)->connect (dst_port);
}
int
PulseAudioBackend::disconnect (PortEngine::PortHandle src, const std::string& dst)
{
PulsePort* dst_port = find_port (dst);
if (!valid_port (src) || !dst_port) {
PBD::error << _("PulseBackend::disconnect: Invalid Port(s)") << endmsg;
return -1;
}
return static_cast<PulsePort*> (src)->disconnect (dst_port);
}
int
PulseAudioBackend::disconnect_all (PortEngine::PortHandle port)
{
if (!valid_port (port)) {
PBD::error << _("PulseBackend::disconnect_all: Invalid Port") << endmsg;
return -1;
}
static_cast<PulsePort*> (port)->disconnect_all ();
return 0;
}
bool
PulseAudioBackend::connected (PortEngine::PortHandle port, bool /* process_callback_safe*/)
{
if (!valid_port (port)) {
PBD::error << _("PulseBackend::disconnect_all: Invalid Port") << endmsg;
return false;
}
return static_cast<PulsePort*> (port)->is_connected ();
}
bool
PulseAudioBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/)
{
PulsePort* dst_port = find_port (dst);
#ifndef NDEBUG
if (!valid_port (src) || !dst_port) {
PBD::error << _("PulseBackend::connected_to: Invalid Port") << endmsg;
return false;
}
#endif
return static_cast<PulsePort*> (src)->is_connected (dst_port);
}
bool
PulseAudioBackend::physically_connected (PortEngine::PortHandle port, bool /*process_callback_safe*/)
{
if (!valid_port (port)) {
PBD::error << _("PulseBackend::physically_connected: Invalid Port") << endmsg;
return false;
}
return static_cast<PulsePort*> (port)->is_physically_connected ();
}
int
PulseAudioBackend::get_connections (PortEngine::PortHandle port, std::vector<std::string>& names, bool /*process_callback_safe*/)
{
if (!valid_port (port)) {
PBD::error << _("PulseBackend::get_connections: Invalid Port") << endmsg;
return -1;
}
assert (0 == names.size ());
const std::set<PulsePort*>& connected_ports = static_cast<PulsePort*> (port)->get_connections ();
for (std::set<PulsePort*>::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) {
names.push_back ((*i)->name ());
}
return (int)names.size ();
}
/* MIDI */
int
PulseAudioBackend::midi_event_get (
pframes_t& timestamp,
size_t& size, uint8_t const** buf, void* port_buffer,
uint32_t event_index)
{
assert (buf && port_buffer);
PulseMidiBuffer& source = *static_cast<PulseMidiBuffer*> (port_buffer);
if (event_index >= source.size ()) {
return -1;
}
PulseMidiEvent* const event = source[event_index].get ();
timestamp = event->timestamp ();
size = event->size ();
*buf = event->data ();
return 0;
}
int
PulseAudioBackend::midi_event_put (
void* port_buffer,
pframes_t timestamp,
const uint8_t* buffer, size_t size)
{
assert (buffer && port_buffer);
PulseMidiBuffer& dst = *static_cast<PulseMidiBuffer*> (port_buffer);
dst.push_back (boost::shared_ptr<PulseMidiEvent> (new PulseMidiEvent (timestamp, buffer, size)));
return 0;
}
uint32_t
PulseAudioBackend::get_midi_event_count (void* port_buffer)
{
assert (port_buffer);
return static_cast<PulseMidiBuffer*> (port_buffer)->size ();
}
void
PulseAudioBackend::midi_clear (void* port_buffer)
{
assert (port_buffer);
PulseMidiBuffer* buf = static_cast<PulseMidiBuffer*> (port_buffer);
assert (buf);
buf->clear ();
}
/* Monitoring */
bool
PulseAudioBackend::can_monitor_input () const
{
return false;
}
int
PulseAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
int
PulseAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
bool
PulseAudioBackend::monitoring_input (PortEngine::PortHandle)
{
return false;
}
/* Latency management */
void
PulseAudioBackend::set_latency_range (PortEngine::PortHandle port, bool for_playback, LatencyRange latency_range)
{
if (!valid_port (port)) {
PBD::error << _("PulsePort::set_latency_range (): invalid port.") << endmsg;
}
static_cast<PulsePort*> (port)->set_latency_range (latency_range, for_playback);
}
LatencyRange
PulseAudioBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback)
{
LatencyRange r;
if (!valid_port (port)) {
PBD::error << _("PulsePort::get_latency_range (): invalid port.") << endmsg;
r.min = 0;
r.max = 0;
return r;
}
PulsePort* p = static_cast<PulsePort*> (port);
assert (p);
r = p->latency_range (for_playback);
if (p->is_physical () && p->is_terminal ()) {
if (p->is_input () && for_playback) {
r.min += _samples_per_period + _systemic_audio_output_latency;
r.max += _samples_per_period + _systemic_audio_output_latency;
}
if (p->is_output () && !for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
}
return r;
}
/* Discovering physical ports */
bool
PulseAudioBackend::port_is_physical (PortEngine::PortHandle port) const
{
if (!valid_port (port)) {
PBD::error << _("PulsePort::port_is_physical (): invalid port.") << endmsg;
return false;
}
return static_cast<PulsePort*> (port)->is_physical ();
}
void
PulseAudioBackend::get_physical_outputs (DataType type, std::vector<std::string>& port_names)
{
for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) {
PulsePort* port = *i;
if ((port->type () == type) && port->is_input () && port->is_physical ()) {
port_names.push_back (port->name ());
}
}
}
void
PulseAudioBackend::get_physical_inputs (DataType type, std::vector<std::string>& port_names)
{
for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) {
PulsePort* port = *i;
if ((port->type () == type) && port->is_output () && port->is_physical ()) {
port_names.push_back (port->name ());
}
}
assert (port_names.size () == 0);
}
ChanCount
PulseAudioBackend::n_physical_outputs () const
{
int n_midi = 0;
int n_audio = 0;
for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) {
PulsePort* port = *i;
if (port->is_output () && port->is_physical ()) {
switch (port->type ()) {
case DataType::AUDIO:
++n_audio;
break;
case DataType::MIDI:
++n_midi;
break;
default:
break;
}
}
}
ChanCount cc;
cc.set (DataType::AUDIO, n_audio);
cc.set (DataType::MIDI, n_midi);
return cc;
}
ChanCount
PulseAudioBackend::n_physical_inputs () const
{
int n_midi = 0;
int n_audio = 0;
for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) {
PulsePort* port = *i;
if (port->is_input () && port->is_physical ()) {
switch (port->type ()) {
case DataType::AUDIO:
++n_audio;
break;
case DataType::MIDI:
++n_midi;
break;
default:
break;
}
}
}
ChanCount cc;
cc.set (DataType::AUDIO, n_audio);
cc.set (DataType::MIDI, n_midi);
return cc;
}
/* Getting access to the data buffer for a port */
void*
PulseAudioBackend::get_buffer (PortEngine::PortHandle port, pframes_t nframes)
{
assert (port);
assert (valid_port (port));
return static_cast<PulsePort*> (port)->get_buffer (nframes);
}
/* Engine Process */
void*
PulseAudioBackend::main_process_thread ()
{
AudioEngine::thread_init_callback (this);
_active = true;
_processed_samples = 0;
manager.registration_callback ();
manager.graph_order_callback ();
manager.registration_callback ();
manager.graph_order_callback ();
/* flush stream */
pa_threaded_mainloop_lock (p_mainloop);
sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this));
/* begin streaming */
if (!cork_pulse (false)) {
_active = false;
if (_run) {
engine.halted_callback ("PulseAudio: cannot uncork stream");
}
}
stream_latency_update_cb (p_stream, this);
while (_run) {
if (_freewheeling != _freewheel) {
_freewheel = _freewheeling;
engine.freewheel_callback (_freewheel);
/* drain stream freewheeling */
pa_threaded_mainloop_lock (p_mainloop);
_operation_succeeded = false;
if (!sync_pulse (pa_stream_drain (p_stream, stream_operation_cb, this)) || !_operation_succeeded) {
break;
}
/* suspend output while freewheeling, re-anable after */
if (!cork_pulse (_freewheel)) {
break;
}
if (!_freewheel) {
pa_threaded_mainloop_lock (p_mainloop);
_operation_succeeded = false;
if (!sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this)) || !_operation_succeeded) {
break;
}
}
}
if (!_freewheel) {
pa_threaded_mainloop_lock (p_mainloop);
size_t bytes_to_write = sizeof (float) * _samples_per_period * N_CHANNELS;
if (pa_stream_writable_size (p_stream) < bytes_to_write) {
/* wait until stream_request_cb triggers */
pa_threaded_mainloop_wait (p_mainloop);
}
if (pa_stream_get_state (p_stream) != PA_STREAM_READY) {
pa_threaded_mainloop_unlock (p_mainloop);
break;
}
int64_t clock1 = g_get_monotonic_time ();
/* call engine process callback */
_last_process_start = g_get_monotonic_time ();
if (engine.process_callback (_samples_per_period)) {
pa_threaded_mainloop_unlock (p_mainloop);
_active = false;
return 0;
}
/* write back audio */
uint32_t i = 0;
float buf[_max_buffer_size * N_CHANNELS];
assert (_system_outputs.size () == N_CHANNELS);
/* interleave */
for (std::vector<PulsePort *>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) {
const float* src = (const float*)(*it)->get_buffer (_samples_per_period);
for (size_t n = 0; n < _samples_per_period; ++n) {
buf[N_CHANNELS * n + i] = src[n];
}
}
if (pa_stream_write (p_stream, buf, bytes_to_write, NULL, 0, PA_SEEK_RELATIVE) < 0) {
pa_threaded_mainloop_unlock (p_mainloop);
break;
}
pa_threaded_mainloop_unlock (p_mainloop);
_processed_samples += _samples_per_period;
_dsp_load_calc.set_max_time (_samplerate, _samples_per_period);
_dsp_load_calc.set_start_timestamp_us (clock1);
_dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time ());
_dsp_load = _dsp_load_calc.get_dsp_load ();
} else {
/* Freewheelin' */
_last_process_start = 0;
if (engine.process_callback (_samples_per_period)) {
_active = false;
return 0;
}
_dsp_load = 1.0f;
Glib::usleep (100); // don't hog cpu
}
bool connections_changed = false;
bool ports_changed = false;
if (!pthread_mutex_trylock (&_port_callback_mutex)) {
if (_port_change_flag) {
ports_changed = true;
_port_change_flag = false;
}
if (!_port_connection_queue.empty ()) {
connections_changed = true;
}
while (!_port_connection_queue.empty ()) {
PortConnectData* c = _port_connection_queue.back ();
manager.connect_callback (c->a, c->b, c->c);
_port_connection_queue.pop_back ();
delete c;
}
pthread_mutex_unlock (&_port_callback_mutex);
}
if (ports_changed) {
manager.registration_callback ();
}
if (connections_changed) {
manager.graph_order_callback ();
}
if (connections_changed || ports_changed) {
update_system_port_latecies ();
engine.latency_callback (false);
engine.latency_callback (true);
}
}
_active = false;
if (_run) {
engine.halted_callback ("PulseAudio I/O error.");
}
return 0;
}
/******************************************************************************/
static boost::shared_ptr<PulseAudioBackend> _instance;
static boost::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
static int deinstantiate ();
static bool already_configured ();
static bool available ();
static ARDOUR::AudioBackendInfo _descriptor = {
_("Pulseaudio"),
instantiate,
deinstantiate,
backend_factory,
already_configured,
available
};
static boost::shared_ptr<AudioBackend>
backend_factory (AudioEngine& e)
{
if (!_instance) {
_instance.reset (new PulseAudioBackend (e, _descriptor));
}
return _instance;
}
static int
instantiate (const std::string& arg1, const std::string& /* arg2 */)
{
s_instance_name = arg1;
return 0;
}
static int
deinstantiate ()
{
_instance.reset ();
return 0;
}
static bool
already_configured ()
{
return false;
}
static bool
available ()
{
return true;
}
extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo*
descriptor ()
{
return &_descriptor;
}
/******************************************************************************/
PulsePort::PulsePort (PulseAudioBackend& b, const std::string& name, PortFlags flags)
: _pulse_backend (b)
, _name (name)
, _flags (flags)
{
_capture_latency_range.min = 0;
_capture_latency_range.max = 0;
_playback_latency_range.min = 0;
_playback_latency_range.max = 0;
_pulse_backend.port_connect_add_remove_callback (); // XXX -> RT
}
PulsePort::~PulsePort ()
{
disconnect_all ();
_pulse_backend.port_connect_add_remove_callback (); // XXX -> RT
}
int
PulsePort::connect (PulsePort* port)
{
if (!port) {
PBD::error << _("PulsePort::connect (): invalid (null) port") << endmsg;
return -1;
}
if (type () != port->type ()) {
PBD::error << _("PulsePort::connect (): wrong port-type") << endmsg;
return -1;
}
if (is_output () && port->is_output ()) {
PBD::error << _("PulsePort::connect (): cannot inter-connect output ports.") << endmsg;
return -1;
}
if (is_input () && port->is_input ()) {
PBD::error << _("PulsePort::connect (): cannot inter-connect input ports.") << endmsg;
return -1;
}
if (this == port) {
PBD::error << _("PulsePort::connect (): cannot self-connect ports.") << endmsg;
return -1;
}
if (is_connected (port)) {
return -1;
}
_connect (port, true);
return 0;
}
void
PulsePort::_connect (PulsePort* port, bool callback)
{
_connections.insert (port);
if (callback) {
port->_connect (this, false);
_pulse_backend.port_connect_callback (name (), port->name (), true);
}
}
int
PulsePort::disconnect (PulsePort* port)
{
if (!port) {
PBD::error << _("PulsePort::disconnect (): invalid (null) port") << endmsg;
return -1;
}
if (!is_connected (port)) {
PBD::error << _("PulsePort::disconnect (): ports are not connected:")
<< " (" << name () << ") -> (" << port->name () << ")"
<< endmsg;
return -1;
}
_disconnect (port, true);
return 0;
}
void
PulsePort::_disconnect (PulsePort* port, bool callback)
{
std::set<PulsePort*>::iterator it = _connections.find (port);
assert (it != _connections.end ());
_connections.erase (it);
if (callback) {
port->_disconnect (this, false);
_pulse_backend.port_connect_callback (name (), port->name (), false);
}
}
void
PulsePort::disconnect_all ()
{
while (!_connections.empty ()) {
std::set<PulsePort*>::iterator it = _connections.begin ();
(*it)->_disconnect (this, false);
_pulse_backend.port_connect_callback (name (), (*it)->name (), false);
_connections.erase (it);
}
}
bool
PulsePort::is_connected (const PulsePort* port) const
{
return _connections.find (const_cast<PulsePort*> (port)) != _connections.end ();
}
bool
PulsePort::is_physically_connected () const
{
for (std::set<PulsePort*>::const_iterator it = _connections.begin (); it != _connections.end (); ++it) {
if ((*it)->is_physical ()) {
return true;
}
}
return false;
}
void
PulsePort::set_latency_range (const LatencyRange& latency_range, bool for_playback)
{
if (for_playback) {
_playback_latency_range = latency_range;
} else {
_capture_latency_range = latency_range;
}
for (std::set<PulsePort*>::const_iterator it = _connections.begin (); it != _connections.end (); ++it) {
if ((*it)->is_physical ()) {
(*it)->update_connected_latency (is_input ());
}
}
}
void
PulsePort::update_connected_latency (bool for_playback)
{
LatencyRange lr;
lr.min = lr.max = 0;
for (std::set<PulsePort*>::const_iterator it = _connections.begin (); it != _connections.end (); ++it) {
LatencyRange l;
l = (*it)->latency_range (for_playback);
lr.min = std::max (lr.min, l.min);
lr.max = std::max (lr.max, l.max);
}
set_latency_range (lr, for_playback);
}
/******************************************************************************/
PulseAudioPort::PulseAudioPort (PulseAudioBackend& b, const std::string& name, PortFlags flags)
: PulsePort (b, name, flags)
{
memset (_buffer, 0, sizeof (_buffer));
mlock (_buffer, sizeof (_buffer));
}
PulseAudioPort::~PulseAudioPort ()
{
}
void*
PulseAudioPort::get_buffer (pframes_t n_samples)
{
if (is_input ()) {
const std::set<PulsePort*>& connections = get_connections ();
std::set<PulsePort*>::const_iterator it = connections.begin ();
if (it == connections.end ()) {
memset (_buffer, 0, n_samples * sizeof (Sample));
} else {
PulseAudioPort* source = static_cast<PulseAudioPort*> (*it);
assert (source && source->is_output ());
memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
while (++it != connections.end ()) {
source = static_cast<PulseAudioPort*> (*it);
assert (source && source->is_output ());
Sample* dst = buffer ();
const Sample* src = source->const_buffer ();
for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
*dst += *src;
}
}
}
}
return _buffer;
}
PulseMidiPort::PulseMidiPort (PulseAudioBackend& b, const std::string& name, PortFlags flags)
: PulsePort (b, name, flags)
{
_buffer.clear ();
_buffer.reserve (256);
}
PulseMidiPort::~PulseMidiPort ()
{
}
struct MidiEventSorter {
bool
operator() (const boost::shared_ptr<PulseMidiEvent>& a, const boost::shared_ptr<PulseMidiEvent>& b)
{
return *a < *b;
}
};
void* PulseMidiPort::get_buffer (pframes_t /*n_samples*/)
{
if (is_input ()) {
_buffer.clear ();
const std::set<PulsePort*>& connections = get_connections ();
for (std::set<PulsePort*>::const_iterator i = connections.begin ();
i != connections.end ();
++i) {
const PulseMidiBuffer* src = static_cast<PulseMidiPort*> (*i)->const_buffer ();
for (PulseMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
_buffer.push_back (*it);
}
}
std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter ());
}
return &_buffer;
}
PulseMidiEvent::PulseMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
: _size (size)
, _timestamp (timestamp)
{
if (size > 0 && size < MaxPulseMidiEventSize) {
memcpy (_data, data, size);
}
}
PulseMidiEvent::PulseMidiEvent (const PulseMidiEvent& other)
: _size (other.size ())
, _timestamp (other.timestamp ())
{
if (other.size () && other.const_data ()) {
assert (other._size < MaxPulseMidiEventSize);
memcpy (_data, other._data, other._size);
}
};