Paul Davis
86a31e34ba
ConstraintPacker is the one Item-derivative that should NOT call Item::size_allocate_children() because it just did the size computation for its children and called their ::constrained() method, which in turns calls size_allocate() with the correct size
783 lines
21 KiB
C++
783 lines
21 KiB
C++
/*
|
|
* Copyright (C) 2020 Paul Davis <paul@linuxaudiosystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <iostream>
|
|
|
|
#include "pbd/i18n.h"
|
|
#include "pbd/unwind.h"
|
|
#include "pbd/stacktrace.h"
|
|
|
|
#include "kiwi/kiwi.h"
|
|
|
|
#include "canvas/canvas.h"
|
|
#include "canvas/constraint_packer.h"
|
|
#include "canvas/constrained_item.h"
|
|
#include "canvas/item.h"
|
|
#include "canvas/rectangle.h"
|
|
|
|
using namespace ArdourCanvas;
|
|
|
|
using std::cerr;
|
|
using std::endl;
|
|
using std::vector;
|
|
using kiwi::Constraint;
|
|
using namespace kiwi;
|
|
|
|
ConstraintPacker::ConstraintPacker (Canvas* canvas, Orientation o)
|
|
: Container (canvas)
|
|
, width (X_("packer width"))
|
|
, height (X_("packer height"))
|
|
, _orientation (o)
|
|
, _spacing (0)
|
|
, _top_padding (0)
|
|
, _bottom_padding (0)
|
|
, _left_padding (0)
|
|
, _right_padding (0)
|
|
, _top_margin (0)
|
|
, _bottom_margin (0)
|
|
, _left_margin (0)
|
|
, _right_margin (0)
|
|
, in_alloc (false)
|
|
, _need_constraint_update (false)
|
|
{
|
|
set_fill (false);
|
|
set_outline (false);
|
|
set_layout_sensitive (true);
|
|
|
|
_solver.addEditVariable (width, kiwi::strength::strong);
|
|
_solver.addEditVariable (height, kiwi::strength::strong);
|
|
}
|
|
|
|
ConstraintPacker::ConstraintPacker (Item* parent, Orientation o)
|
|
: Container (parent)
|
|
, width (X_("packer width"))
|
|
, height (X_("packer height"))
|
|
, _orientation (o)
|
|
, _spacing (0)
|
|
, _top_padding (0)
|
|
, _bottom_padding (0)
|
|
, _left_padding (0)
|
|
, _right_padding (0)
|
|
, _top_margin (0)
|
|
, _bottom_margin (0)
|
|
, _left_margin (0)
|
|
, _right_margin (0)
|
|
, in_alloc (false)
|
|
, _need_constraint_update (false)
|
|
{
|
|
set_fill (false);
|
|
set_outline (false);
|
|
set_layout_sensitive (true);
|
|
|
|
_solver.addEditVariable (width, kiwi::strength::strong);
|
|
_solver.addEditVariable (height, kiwi::strength::strong);
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::compute_bounding_box () const
|
|
{
|
|
_bounding_box = _allocation;
|
|
_bounding_box_dirty = false;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::child_changed (bool bbox_changed)
|
|
{
|
|
Item::child_changed (bbox_changed);
|
|
|
|
if (in_alloc || !bbox_changed) {
|
|
return;
|
|
}
|
|
#if 0
|
|
cerr << "CP, child bbox changed\n";
|
|
|
|
for (ConstrainedItemMap::iterator x = constrained_map.begin(); x != constrained_map.end(); ++x) {
|
|
|
|
Duple i = x->first->intrinsic_size();
|
|
|
|
if (r) {
|
|
|
|
// cerr << x->first->whatami() << '/' << x->first->name << " has instrinsic size " << r << endl;
|
|
|
|
kiwi::Variable& w (x->second->intrinsic_width());
|
|
if (!r.width()) {
|
|
if (_solver.hasEditVariable (w)) {
|
|
_solver.removeEditVariable (w);
|
|
cerr << "\tremoved inttrinsic-width edit var\n";
|
|
}
|
|
} else {
|
|
if (!_solver.hasEditVariable (w)) {
|
|
cerr << "\tadding intrinsic width constraints\n";
|
|
_solver.addEditVariable (w, kiwi::strength::strong);
|
|
_solver.addConstraint (Constraint {x->second->width() >= w } | kiwi::strength::strong);
|
|
_solver.addConstraint (Constraint (x->second->width() <= w) | kiwi::strength::weak);
|
|
}
|
|
}
|
|
|
|
kiwi::Variable& h (x->second->intrinsic_height());
|
|
if (!r.height()) {
|
|
if (_solver.hasEditVariable (h)) {
|
|
_solver.removeEditVariable (h);
|
|
cerr << "\tremoved inttrinsic-height edit var\n";
|
|
}
|
|
} else {
|
|
if (!_solver.hasEditVariable (h)) {
|
|
cerr << "\tadding intrinsic height constraints\n";
|
|
_solver.addEditVariable (h, kiwi::strength::strong);
|
|
_solver.addConstraint (Constraint {x->second->height() >= h } | kiwi::strength::strong);
|
|
_solver.addConstraint (Constraint (x->second->height() <= h) | kiwi::strength::weak);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::constrain (kiwi::Constraint const &c)
|
|
{
|
|
constraint_list.push_back (c);
|
|
_need_constraint_update = true;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::preferred_size (Duple& minimum, Duple& natural) const
|
|
{
|
|
const_cast<ConstraintPacker*>(this)->non_const_preferred_size (minimum, natural);
|
|
}
|
|
|
|
|
|
void
|
|
ConstraintPacker::box_preferred_size (Duple& min, Duple& natural) const
|
|
{
|
|
BoxPackedItems::size_type n_expanding = 0;
|
|
BoxPackedItems::size_type n_nonexpanding = 0;
|
|
BoxPackedItems::size_type total = 0;
|
|
Distance non_expanding_used = 0;
|
|
Distance largest = 0;
|
|
Distance largest_opposite = 0;
|
|
Duple i_min, i_natural;
|
|
|
|
for (BoxPackedItems::const_iterator o = packed.begin(); o != packed.end(); ++o) {
|
|
|
|
(*o)->item().preferred_size (i_min, i_natural);
|
|
|
|
// cerr << '\t' << (*o)->item().whoami() << " min " << i_min << " nat " << i_natural << endl;
|
|
|
|
if ((*o)->primary_axis_pack_options() & PackExpand) {
|
|
n_expanding++;
|
|
|
|
if (_orientation == Vertical) {
|
|
if (i_natural.height() > largest) {
|
|
largest = i_natural.height();
|
|
}
|
|
} else {
|
|
if (i_natural.width() > largest) {
|
|
largest = i_natural.width();
|
|
}
|
|
if (i_natural.height() > largest) {
|
|
largest_opposite = i_natural.height();
|
|
}
|
|
}
|
|
|
|
} else {
|
|
n_nonexpanding++;
|
|
|
|
if (_orientation == Vertical) {
|
|
non_expanding_used += i_natural.height();
|
|
} else {
|
|
non_expanding_used += i_natural.width();
|
|
}
|
|
}
|
|
|
|
/* determine the maximum size for the opposite axis. All items
|
|
* will be this size or less on this axis
|
|
*/
|
|
|
|
if (_orientation == Vertical) {
|
|
if (i_natural.width() > largest_opposite) {
|
|
largest_opposite = i_natural.width();
|
|
}
|
|
} else {
|
|
if (i_natural.height() > largest_opposite) {
|
|
largest_opposite = i_natural.height();
|
|
}
|
|
}
|
|
|
|
total++;
|
|
}
|
|
|
|
Duple r;
|
|
|
|
if (_orientation == Vertical) {
|
|
// cerr << "+++ vertical box, neu = " << non_expanding_used << " neuo " << non_expanding_used_opposite << " largest = " << largest << " opp " << largest_opposite << " total " << total << endl;
|
|
min.y = non_expanding_used + (n_expanding * largest) + _top_margin + _bottom_margin + ((total - 1) * _spacing);
|
|
min.x = largest_opposite + _left_margin + _right_margin;
|
|
} else {
|
|
// cerr << "+++ horiz box, neu = " << non_expanding_used << " neuo " << non_expanding_used_opposite << " largest = " << largest << " opp " << largest_opposite << " total " << total << endl;
|
|
min.x = non_expanding_used + (n_expanding * largest) + _left_margin + _right_margin + ((total - 1) * _spacing);
|
|
min.y = largest_opposite + _top_margin + _bottom_margin;
|
|
|
|
}
|
|
|
|
// cerr << whoami() << " preferred-size = " << min << endl;
|
|
|
|
natural = min;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::non_const_preferred_size (Duple& minimum, Duple& natural)
|
|
{
|
|
/* our parent wants to know how big we are.
|
|
|
|
We may have some intrinsic size (i.e. "everything in this constraint
|
|
layout should fit into WxH". Just up two constraints on our width
|
|
and height, and solve.
|
|
|
|
We may have one intrinsic dimension (i.e. "everything in this
|
|
constraint layout should fit into this (width|height). Ask all of
|
|
our children for the size-given-(W|H). Add constraints to represent
|
|
those values, and solve.
|
|
|
|
We may have no intrinsic dimensions at all. This is the tricky one.
|
|
*/
|
|
|
|
if (packed.size() == constrained_map.size()) {
|
|
/* All child items were packed using ::pack() */
|
|
Duple m, n;
|
|
box_preferred_size (m, n);
|
|
natural = Duple (std::min (100.0, n.x), std::min (100.0, n.y));
|
|
minimum = natural;
|
|
return;
|
|
}
|
|
|
|
if (_intrinsic_width == 0 && _intrinsic_height == 0) {
|
|
natural = Duple (100.0, 100.0);
|
|
minimum = natural;
|
|
return;
|
|
}
|
|
|
|
if (_need_constraint_update) {
|
|
const_cast<ConstraintPacker*>(this)->update_constraints ();
|
|
}
|
|
|
|
if (_intrinsic_width > 0) {
|
|
_solver.suggestValue (width, _intrinsic_width);
|
|
} else if (_intrinsic_height > 0) {
|
|
_solver.suggestValue (height, _intrinsic_height);
|
|
}
|
|
|
|
_solver.updateVariables ();
|
|
apply (0);
|
|
|
|
Rect bb (bounding_box());
|
|
|
|
Duple ret;
|
|
|
|
natural.x = std::max (bb.width(), _intrinsic_width);
|
|
natural.y = std::max (bb.height(), _intrinsic_width);
|
|
|
|
minimum.x = std::min (bb.width(), _intrinsic_width);
|
|
minimum.y = std::min (bb.height(), _intrinsic_width);
|
|
|
|
/* put solver back to default state */
|
|
|
|
_solver.reset ();
|
|
_need_constraint_update = true;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::size_allocate (Rect const & r)
|
|
{
|
|
PBD::Unwinder<bool> uw (in_alloc, true);
|
|
double expanded_size;
|
|
|
|
if (_layout_sensitive) {
|
|
_position = Duple (r.x0, r.y0);
|
|
_allocation = r;
|
|
}
|
|
|
|
if (!packed.empty()) {
|
|
|
|
BoxPackedItems::size_type n_expanding = 0;
|
|
BoxPackedItems::size_type n_nonexpanding = 0;
|
|
BoxPackedItems::size_type total = 0;
|
|
Distance non_expanding_used = 0;
|
|
|
|
for (BoxPackedItems::iterator o = packed.begin(); o != packed.end(); ++o) {
|
|
if ((*o)->primary_axis_pack_options() & PackExpand) {
|
|
n_expanding++;
|
|
} else {
|
|
n_nonexpanding++;
|
|
|
|
Duple min, natural;
|
|
|
|
(*o)->item().preferred_size (min, natural);
|
|
|
|
if (_orientation == Vertical) {
|
|
non_expanding_used += natural.height();
|
|
} else {
|
|
non_expanding_used += natural.width();
|
|
}
|
|
|
|
}
|
|
total++;
|
|
}
|
|
|
|
if (_orientation == Vertical) {
|
|
expanded_size = (r.height() - _top_margin - _bottom_margin - ((total - 1) * _spacing) - non_expanding_used) / n_expanding;
|
|
} else {
|
|
expanded_size = (r.width() - _left_margin - _right_margin - ((total - 1) * _spacing) - non_expanding_used) / n_expanding;
|
|
}
|
|
}
|
|
|
|
if (_need_constraint_update) {
|
|
update_constraints ();
|
|
}
|
|
|
|
_solver.suggestValue (width, r.width());
|
|
_solver.suggestValue (height, r.height());
|
|
|
|
if (!packed.empty()) {
|
|
_solver.suggestValue (expanded_item_size, expanded_size);
|
|
}
|
|
|
|
_solver.updateVariables ();
|
|
|
|
#if 0
|
|
PBD::stacktrace (cerr, 100);
|
|
// _canvas->dump (cerr);
|
|
// _solver.dump (cerr);
|
|
|
|
for (ConstrainedItemMap::const_iterator o = constrained_map.begin(); o != constrained_map.end(); ++o) {
|
|
o->second->dump (cerr);
|
|
}
|
|
#endif
|
|
|
|
apply (0);
|
|
|
|
_bounding_box_dirty = true;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::add (Item* item)
|
|
{
|
|
(void) add_constrained (item);
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::add_front (Item* item)
|
|
{
|
|
(void) add_constrained (item);
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::add_constraints (Solver& s, ConstrainedItem* ci) const
|
|
{
|
|
/* add any constraints inherent to this item */
|
|
|
|
vector<Constraint> const & vc (ci->constraints());
|
|
|
|
for (vector<Constraint>::const_iterator x = vc.begin(); x != vc.end(); ++x) {
|
|
s.addConstraint (*x);
|
|
}
|
|
}
|
|
|
|
ConstrainedItem*
|
|
ConstraintPacker::add_constrained (Item* item)
|
|
{
|
|
ConstrainedItem* ci = new ConstrainedItem (*item);
|
|
add_constrained_internal (item, ci);
|
|
return ci;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::add_constrained_internal (Item* item, ConstrainedItem* ci)
|
|
{
|
|
Item::add (item);
|
|
item->set_layout_sensitive (true);
|
|
constrained_map.insert (std::make_pair (item, ci));
|
|
_need_constraint_update = true;
|
|
child_changed (true);
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::remove (Item* item)
|
|
{
|
|
Item::remove (item);
|
|
|
|
for (ConstrainedItemMap::iterator x = constrained_map.begin(); x != constrained_map.end(); ++x) {
|
|
|
|
if (x->first == item) {
|
|
|
|
/* remove any non-builtin constraints for this item */
|
|
|
|
for (ConstraintList::iterator c = constraint_list.begin(); c != constraint_list.end(); ++c) {
|
|
if (x->second->involved (*c)) {
|
|
constraint_list.erase (c);
|
|
}
|
|
}
|
|
|
|
item->set_layout_sensitive (false);
|
|
|
|
/* clean up */
|
|
|
|
delete x->second;
|
|
constrained_map.erase (x);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
for (BoxPackedItems::iterator t = packed.begin(); t != packed.end(); ++t) {
|
|
if (&(*t)->item() == item) {
|
|
packed.erase (t);
|
|
break;
|
|
}
|
|
}
|
|
|
|
_need_constraint_update = true;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::apply (Solver* s)
|
|
{
|
|
for (ConstrainedItemMap::iterator x = constrained_map.begin(); x != constrained_map.end(); ++x) {
|
|
x->second->constrained (*this);
|
|
}
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::update_constraints ()
|
|
{
|
|
_solver.reset ();
|
|
_solver.addEditVariable (width, kiwi::strength::strong);
|
|
_solver.addEditVariable (height, kiwi::strength::strong);
|
|
|
|
if (!packed.empty()) {
|
|
_solver.addEditVariable (expanded_item_size, kiwi::strength::strong);
|
|
}
|
|
|
|
try {
|
|
|
|
/* First handle box-packed items */
|
|
|
|
BoxPackedItems::iterator prev = packed.end();
|
|
|
|
for (BoxPackedItems::iterator o = packed.begin(); o != packed.end(); ++o) {
|
|
|
|
Duple min, natural;
|
|
|
|
(*o)->item().preferred_size (min, natural);
|
|
|
|
if (_orientation == Vertical) {
|
|
add_vertical_box_constraints (_solver, *o, prev == packed.end() ? 0 : *prev, natural.height(), natural.width(), width);
|
|
} else {
|
|
add_horizontal_box_constraints (_solver, *o, prev == packed.end() ? 0 : *prev, natural.width(), natural.height(), height);
|
|
}
|
|
|
|
prev = o;
|
|
}
|
|
|
|
/* Now handle all other items (exclude those already dealt with */
|
|
|
|
for (ConstrainedItemMap::iterator x = constrained_map.begin(); x != constrained_map.end(); ++x) {
|
|
|
|
if (std::find (packed.begin(), packed.end(), x->second) != packed.end()) {
|
|
add_constraints (_solver, x->second);
|
|
continue;
|
|
}
|
|
|
|
Duple min, natural;
|
|
ConstrainedItem* ci = x->second;
|
|
|
|
x->first->preferred_size (min, natural);
|
|
|
|
_solver.addConstraint ((ci->width() >= min.width()) | kiwi::strength::required);
|
|
_solver.addConstraint ((ci->height() >= min.height()) | kiwi::strength::required);
|
|
_solver.addConstraint ((ci->width() == natural.width()) | kiwi::strength::medium);
|
|
_solver.addConstraint ((ci->height() == natural.width()) | kiwi::strength::medium);
|
|
|
|
add_constraints (_solver, ci);
|
|
}
|
|
|
|
/* Now add packer-level constraints */
|
|
|
|
for (ConstraintList::const_iterator c = constraint_list.begin(); c != constraint_list.end(); ++c) {
|
|
_solver.addConstraint (*c);
|
|
}
|
|
|
|
_need_constraint_update = false;
|
|
|
|
} catch (std::exception& e) {
|
|
cerr << "Setting up sovler failed: " << e.what() << endl;
|
|
}
|
|
}
|
|
|
|
BoxConstrainedItem*
|
|
ConstraintPacker::pack_start (Item* item, PackOptions primary_axis_opts, PackOptions secondary_axis_opts)
|
|
{
|
|
return pack (item, PackOptions (primary_axis_opts|PackFromStart), secondary_axis_opts);
|
|
}
|
|
|
|
BoxConstrainedItem*
|
|
ConstraintPacker::pack_end (Item* item, PackOptions primary_axis_opts, PackOptions secondary_axis_opts)
|
|
{
|
|
return pack (item, PackOptions (primary_axis_opts|PackFromEnd), secondary_axis_opts);
|
|
}
|
|
|
|
BoxConstrainedItem*
|
|
ConstraintPacker::pack (Item* item, PackOptions primary_axis_opts, PackOptions secondary_axis_opts)
|
|
{
|
|
BoxConstrainedItem* ci = new BoxConstrainedItem (*item, primary_axis_opts, secondary_axis_opts);
|
|
|
|
add_constrained_internal (item, ci);
|
|
packed.push_back (ci);
|
|
|
|
return ci;
|
|
}
|
|
|
|
|
|
/* It would be nice to do this with templates or even by passing ptr-to-method,
|
|
* but both of them interfere with the similarly meta-programming-ish nature of
|
|
* the way that kiwi builds Constraint objects from expressions. So a macro it
|
|
* is ...
|
|
*/
|
|
|
|
#define add_box_constraints(\
|
|
solver, \
|
|
bci, \
|
|
prev, \
|
|
natural_main_dimension, \
|
|
natural_second_dimension, \
|
|
alloc_var, \
|
|
m_main_dimension, \
|
|
m_second_dimension, \
|
|
m_trailing, \
|
|
m_leading, \
|
|
m_trailing_padding, \
|
|
m_leading_padding, \
|
|
m_second_trailing, \
|
|
m_second_leading, \
|
|
m_second_trailing_padding, \
|
|
m_second_leading_padding, \
|
|
m_trailing_margin, \
|
|
m_leading_margin, \
|
|
m_second_trailing_margin, \
|
|
m_second_leading_margin) \
|
|
\
|
|
/* Add constraints that will size the item within this box */ \
|
|
\
|
|
/* set up constraints for expand/fill options, done by \
|
|
* adjusting height and margins of each item \
|
|
*/ \
|
|
\
|
|
if (bci->primary_axis_pack_options() & PackExpand) { \
|
|
\
|
|
/* item will take up more than it's natural \
|
|
* size, if space is available \
|
|
*/ \
|
|
\
|
|
if (bci->primary_axis_pack_options() & PackFill) { \
|
|
\
|
|
/* item is expanding to fill all \
|
|
* available space and wants that space \
|
|
* for itself. \
|
|
*/ \
|
|
\
|
|
solver.addConstraint ({(bci->m_main_dimension() == expanded_item_size) | kiwi::strength::strong}); \
|
|
solver.addConstraint ({(bci->m_trailing_padding() == 0. ) | kiwi::strength::strong}); \
|
|
solver.addConstraint ({(bci->m_leading_padding() == 0. ) | kiwi::strength::strong}); \
|
|
\
|
|
} else { \
|
|
\
|
|
/* item is expanding to fill all \
|
|
* available space and wants that space \
|
|
* as padding \
|
|
*/ \
|
|
\
|
|
solver.addConstraint ({bci->m_main_dimension() == natural_main_dimension}); \
|
|
solver.addConstraint ({(bci->m_trailing_padding() + bci->m_leading_padding() + bci->m_main_dimension() == expanded_item_size) | kiwi::strength::strong}); \
|
|
solver.addConstraint ({(bci->m_leading_padding() == bci->m_trailing_padding()) | kiwi::strength::strong}); \
|
|
} \
|
|
\
|
|
} else { \
|
|
\
|
|
/* item is not going to expand to fill \
|
|
* available space. just give it's preferred \
|
|
* height. \
|
|
*/ \
|
|
\
|
|
/* cerr << bci->item().whoami() << " will usenatural height of " << natural.height() << endl; */ \
|
|
\
|
|
solver.addConstraint ({bci->m_main_dimension() == natural_main_dimension}); \
|
|
solver.addConstraint ({bci->m_trailing_padding() == 0.}); \
|
|
solver.addConstraint ({bci->m_leading_padding() == 0.}); \
|
|
} \
|
|
\
|
|
/* now set upper upper edge of the item */ \
|
|
\
|
|
if (prev == 0) { \
|
|
\
|
|
/* first item */ \
|
|
\
|
|
solver.addConstraint ({(bci->m_trailing() == m_trailing_margin + bci->m_trailing_padding()) | kiwi::strength::strong}); \
|
|
\
|
|
} else { \
|
|
/* subsequent items */ \
|
|
\
|
|
solver.addConstraint ({(bci->m_trailing() == prev->m_leading() + prev->m_leading_padding() + bci->m_trailing_padding() + _spacing) | kiwi::strength::strong}); \
|
|
} \
|
|
\
|
|
solver.addConstraint ({bci->m_leading() == bci->m_trailing() + bci->m_main_dimension()}); \
|
|
\
|
|
/* set the side-effect variables and/or constants */ \
|
|
\
|
|
solver.addConstraint ({(bci->m_second_trailing_padding() == 0) | kiwi::strength::weak}); \
|
|
solver.addConstraint ({(bci->m_second_leading_padding() == 0) | kiwi::strength::weak}); \
|
|
\
|
|
solver.addConstraint ({bci->m_second_trailing() + bci->m_second_dimension() == bci->m_second_leading()}); \
|
|
solver.addConstraint ({(bci->m_second_trailing() == m_second_trailing_margin + bci->m_second_trailing_padding()) | kiwi::strength::strong}); \
|
|
\
|
|
if (!(bci->secondary_axis_pack_options() & PackExpand) && natural_second_dimension > 0) { \
|
|
solver.addConstraint ({bci->m_second_dimension() == natural_second_dimension}); \
|
|
} else { \
|
|
solver.addConstraint ({(bci->m_second_dimension() == alloc_var - (m_second_trailing_margin + m_second_leading_margin + bci->m_second_leading_padding())) | kiwi::strength::strong}); \
|
|
}
|
|
|
|
|
|
void
|
|
ConstraintPacker::add_vertical_box_constraints (kiwi::Solver& solver, BoxConstrainedItem* ci, BoxConstrainedItem* prev, double main_dimension, double second_dimension, kiwi::Variable & alloc_var)
|
|
{
|
|
add_box_constraints (solver, ci, prev, main_dimension, second_dimension, alloc_var,
|
|
height, width,
|
|
top, bottom, top_padding, bottom_padding,
|
|
left, right, left_padding, right_padding,
|
|
_top_margin, _bottom_margin, _left_margin, _right_margin);
|
|
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::add_horizontal_box_constraints (kiwi::Solver& solver, BoxConstrainedItem* ci, BoxConstrainedItem* prev, double main_dimension, double second_dimension, kiwi::Variable& alloc_var)
|
|
{
|
|
add_box_constraints (solver, ci, prev, main_dimension, second_dimension, alloc_var,
|
|
width, height,
|
|
left, right, left_padding, right_padding,
|
|
top, bottom, top_padding, bottom_padding,
|
|
_left_margin, _right_margin, _top_margin, _bottom_margin);
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::set_spacing (double s)
|
|
{
|
|
_spacing = s;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::set_padding (double top, double right, double bottom, double left)
|
|
{
|
|
double last = top;
|
|
|
|
_top_padding = last;
|
|
|
|
if (right >= 0) {
|
|
last = right;
|
|
}
|
|
_right_padding = last;
|
|
|
|
if (bottom >= 0) {
|
|
last = bottom;
|
|
}
|
|
_bottom_padding = last;
|
|
|
|
if (left >= 0) {
|
|
last = left;
|
|
}
|
|
_left_padding = last;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::set_margin (double top, double right, double bottom, double left)
|
|
{
|
|
double last = top;
|
|
|
|
_top_margin = last;
|
|
|
|
if (right >= 0) {
|
|
last = right;
|
|
}
|
|
_right_margin = last;
|
|
|
|
if (bottom >= 0) {
|
|
last = bottom;
|
|
}
|
|
_bottom_margin = last;
|
|
|
|
if (left >= 0) {
|
|
last = left;
|
|
}
|
|
_left_margin = last;
|
|
}
|
|
|
|
void
|
|
ConstraintPacker::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
|
|
{
|
|
if ((fill() || outline()) && _allocation) {
|
|
|
|
Rect contents = _allocation;
|
|
|
|
/* allocation will have been left with (x0,y0) as given by the
|
|
* parent, but _position is set to the same value and will
|
|
* be taken into account by item_to_window()
|
|
*/
|
|
|
|
double width = contents.width() - (_left_margin + _top_margin);
|
|
double height = contents.height() - (_top_margin + _bottom_margin);
|
|
|
|
contents.x0 = _left_margin;
|
|
contents.y0 = _top_margin;
|
|
|
|
contents.x1 = contents.x0 + width;
|
|
contents.y1 = contents.y0 + height;
|
|
|
|
Rect self (item_to_window (contents, false));
|
|
const Rect draw = self.intersection (area);
|
|
|
|
if (fill()) {
|
|
|
|
setup_fill_context (context);
|
|
context->rectangle (draw.x0, draw.y0, draw.width(), draw.height());
|
|
if (outline()) {
|
|
context->fill_preserve ();
|
|
} else {
|
|
context->fill ();
|
|
}
|
|
}
|
|
|
|
if (outline()) {
|
|
if (!fill()) {
|
|
context->rectangle (draw.x0, draw.y0, draw.width(), draw.height());
|
|
}
|
|
setup_outline_context (context);
|
|
context->stroke ();
|
|
}
|
|
}
|
|
|
|
Item::render_children (area, context);
|
|
}
|