13
0
livetrax/libs/canvas/table.cc

512 lines
13 KiB
C++

/*
* Copyright (C) 2021 Paul Davis <paul@linuxaudiosystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "pbd/debug.h"
#include "pbd/error.h"
#include "pbd/i18n.h"
#include "pbd/unwind.h"
#include "canvas/debug.h"
#include "canvas/table.h"
using namespace ArdourCanvas;
using namespace PBD;
using std::cerr;
using std::endl;
Table::Table (Canvas* canvas)
: Rectangle (canvas)
, collapse_on_hide (false)
, homogenous (true)
, draw_hgrid (false)
, draw_vgrid (false)
{
set_layout_sensitive (true);
}
Table::Table (Item* item)
: Rectangle (item)
, collapse_on_hide (false)
, homogenous (true)
, draw_hgrid (false)
, draw_vgrid (false)
{
set_layout_sensitive (true);
}
void
Table::attach (Item* item, Table::Index const & upper_left, Table::Index const & lower_right, PackOptions row_options, PackOptions col_options, FourDimensions pad)
{
/* XXX maybe use z-axis to stack elements if the insert fails? Would
* involve making Index 3D and using an actual hash function
*/
if (cells.insert ({ Index (upper_left.x, upper_left.y), CellInfo (item, row_options, col_options, upper_left, lower_right, pad) }).second) {
_add (item);
} else {
cerr << "Failed to attach at " << upper_left.x << ", " << upper_left.y << " " << lower_right.x << ", " << lower_right.y << endl;
}
}
void
Table::child_changed (bool bbox_changed)
{
if (ignore_child_changes) {
return;
}
Item::child_changed (bbox_changed);
size_allocate_children (_allocation);
}
void
Table::compute_bounding_box() const
{
_bounding_box = Rect();
if (cells.empty()) {
bb_clean ();
return;
}
add_child_bounding_boxes (!collapse_on_hide);
if (_bounding_box) {
#if 0
Rect r = _bounding_box;
_bounding_box = r.expand (top_padding + outline_width() + top_margin,
right_padding + outline_width() + right_margin,
bottom_padding + outline_width() + bottom_margin,
left_padding + outline_width() + left_margin);
#endif
}
DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("bounding box computed as %1\n", _bounding_box));
bb_clean ();
}
void
Table::set_row_size (uint32_t row, Distance size)
{
if (row_info.size() <= row) {
row_info.resize (row+1);
}
row_info[row].user_size = size;
}
void
Table::set_col_size (uint32_t col, Distance size)
{
if (col_info.size() <= col) {
col_info.resize (col+1);
}
col_info[col].user_size = size;
}
void
Table::size_request (Distance& w, Distance& h) const
{
uint32_t rowmax = 0;
uint32_t colmax = 0;
for (auto& ci : cells) {
CellInfo const & c (ci.second);
if (c.lower_right.x > rowmax) {
rowmax = c.lower_right.x;
}
if (c.lower_right.y > colmax) {
colmax = c.lower_right.y;
}
}
AxisInfos rinfo;
AxisInfos cinfo;
rinfo.resize (rowmax+1);
cinfo.resize (colmax+1);
for (auto& ci : cells) {
Distance cw;
Distance ch;
CellInfo const & c (ci.second);
c.content->size_request (cw, ch);
rinfo[c.upper_left.x].natural_size += cw;
cinfo[c.upper_left.y].natural_size += ch;
}
w = 0;
h = 0;
for (auto& ai : rinfo) {
w = std::max (w, ai.natural_size);
}
for (auto& ai : cinfo) {
h = std::max (h, ai.natural_size);
}
}
void
Table::layout ()
{
cerr << "\n\nLAYOUT\n\n";
size_allocate_children (_allocation);
}
void
Table::size_allocate_children (Rect const & within)
{
(void) compute (within);
}
Duple
Table::compute (Rect const & within)
{
DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("\n\nCompute table within rect: %1\n", within));
/* step 1: traverse all current cells and determine how many rows and
* columns we need. While doing that, get the current natural size of
* each cell.
*/
uint32_t rowmax = 0;
uint32_t colmax = 0;
row_info.clear ();
col_info.clear ();
for (auto& ci : cells) {
CellInfo const & c (ci.second);
if (c.lower_right.x > colmax) {
colmax = c.lower_right.x;
}
if (c.lower_right.y > rowmax) {
rowmax = c.lower_right.y;
}
}
DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("cell coordinates indicate rowmax %1 colmax %2 from %3 cells\n", rowmax, colmax, cells.size()));
row_info.resize (rowmax);
col_info.resize (colmax);
for (auto& ci : cells) {
CellInfo & c (ci.second);
c.content->size_request (c.natural_size.x, c.natural_size.y);
const float hspan = c.lower_right.x - c.upper_left.x;
const float vspan = c.lower_right.y - c.upper_left.y;
for (uint32_t row = c.upper_left.x; row != c.lower_right.x; ++row) {
if (c.row_options & PackExpand) {
row_info[row].expanders++;
}
if (c.row_options & PackShrink) {
row_info[row].shrinkers++;
}
row_info[row].natural_size += c.natural_size.x / hspan;
col_info[row].natural_size += c.padding.left + c.padding.right;
col_info[row].natural_size += col_info[row].spacing;
row_info[row].occupied = true;
}
for (uint32_t col = c.upper_left.y; col != c.lower_right.y; ++col) {
if (c.col_options & PackExpand) {
col_info[col].expanders++;
}
if (c.col_options & PackShrink) {
col_info[col].shrinkers++;
}
col_info[col].natural_size += c.natural_size.y / vspan;
col_info[col].natural_size += c.padding.up + c.padding.down;
col_info[col].natural_size += col_info[c.lower_right.y].spacing;
col_info[col].occupied = true;
}
}
#ifndef NDEBUG
if (DEBUG_ENABLED(DEBUG::CanvasTable)) {
DEBUG_STR_DECL(a);
int n = 0;
for (auto& ai : row_info) {
DEBUG_STR_APPEND(a, string_compose ("row %1: nwidth %2\n", n+1, ai.natural_size));
++n;
}
DEBUG_TRACE (DEBUG::CanvasTable, DEBUG_STR(a).str());
DEBUG_STR_DECL(b);
n = 0;
for (auto& ai : col_info) {
DEBUG_STR_APPEND(b, string_compose ("col %1: nheight %2\n", n, ai.natural_size));
++n;
}
DEBUG_TRACE (DEBUG::CanvasTable, DEBUG_STR(b).str());
}
#endif
/* rows with nothing in them are still counted as existing. This is a
* design decision, not a logic inevitability.
*/
const uint32_t rows = rowmax;
const uint32_t cols = colmax;
/* Find the tallest column and widest row. This will give us our
* "natural size"
*/
Distance natural_row_width = 0.;
Distance natural_col_height = 0.;
for (AxisInfos::iterator ai = row_info.begin(); ai != row_info.end(); ++ai) {
natural_row_width = std::max (natural_row_width, ai->natural_size);
}
for (AxisInfos::iterator ai = col_info.begin(); ai != col_info.end(); ++ai) {
natural_col_height = std::max (natural_col_height, ai->natural_size);
}
DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("natural width x height = %1 x %2\n", natural_row_width, natural_col_height));
if (!within) {
/* within is empty, so this is just for a size request */
return Duple (natural_row_width, natural_col_height);
}
/* actually doing allocation, so prevent endless loop between here and
* ::child_changed()
*/
PBD::Unwinder<bool> uw (ignore_child_changes, true);
/* step two: compare the natural size to the size we've been given
*
* If the natural size is less than the allocated size, then find the
* difference, divide it by the number of expanding items per
* (row|col). Divide the total size by the number of (rows|cols), then
* iterate. Allocate expanders the per-cell size plus the extra for
* expansion. Allocate shrinkers/default just the per-cell size.
*
* If the natural size if greated than the allocated size, find the
* difference, divide it by the number of shrinking items per
* (row|col). Divide the total size by the number of (rows|cols), then
* iterate. Allocate shrinkers the per-cell size minus the excess for
* shrinking. Allocate expanders/default just the per-cell size.
*
*/
if (homogenous) {
Distance per_cell_width = within.width() / cols;
Distance per_cell_height = within.height() / rows;
DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("per-cell: %1 x %2 from %3 and %4/%5\n", per_cell_width, per_cell_height, within, cols, rows));
/* compute total expansion or contraction that will be
* distributed across all rows & cols marked for expand/shrink
*/
for (auto & ai : row_info) {
if (natural_row_width < within.width() && ai.expanders) {
Distance delta = within.width() - natural_row_width;
ai.expand = delta / ai.expanders;
} else if (natural_row_width > within.width() && ai.shrinkers) {
Distance delta = within.width() - natural_row_width;
ai.shrink = delta / ai.shrinkers;
}
}
for (auto & ai : col_info) {
if (natural_col_height < within.height() && ai.expanders) {
Distance delta = within.height() - natural_col_height;
ai.expand = delta / ai.expanders;
} else if (natural_col_height > within.height() && ai.shrinkers) {
Distance delta = within.height() - natural_col_height;
ai.shrink = delta / ai.shrinkers;
}
}
for (auto& ci : cells) {
CellInfo & c (ci.second);
const float hspan = c.lower_right.x - c.upper_left.x;
const float vspan = c.lower_right.y - c.upper_left.y;
Distance w;
Distance h;
AxisInfo& col (col_info[c.upper_left.y]);
AxisInfo& row (col_info[c.upper_left.x]);
if (c.row_options & PackExpand) {
w = hspan * (per_cell_width + row.expand);
} else if (c.row_options & PackShrink) {
w = hspan * (per_cell_width + row.shrink); /* note: row_shrink is negative */
} else {
w = hspan * per_cell_width;
}
if (c.col_options & PackExpand) {
h = vspan * (per_cell_height + col.expand);
} else if (c.col_options & PackShrink) {
h = vspan * (per_cell_height + col.shrink); /* note: col_shrink is negative */
} else {
h = vspan * per_cell_height;
}
w -= c.padding.left + c.padding.right;
w -= col.spacing;
h -= c.padding.up + c.padding.down;
h -= row.spacing;
DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("Cell @ %1,%2 - %3,%4 (hspan %7 vspan %8) allocated %5 x %6\n",
ci.first.x, ci.first.y, ci.second.lower_right.x, ci.second.lower_right.y, w, h, hspan, vspan));
c.allocate_size = Duple (w, h);
}
} else {
/* not homogenous */
}
/* final pass: actually allocate position for each cell. Do this in a
* row,col order so that we can set up position based on all cells
* above and left of whichever one we are working on.
*/
Distance hdistance = 0.;
Distance vdistance = 0.;
for (uint32_t r = 0; r < rows; ++r) {
Distance vshift = 0;
hdistance = 0;
for (uint32_t c = 0; c < cols; ++c) {
Index idx (c, r);
Cells::iterator ci = cells.find (idx);
if (ci != cells.end()) {
hdistance += ci->second.padding.left;
Rect rect = Rect (hdistance, vdistance + ci->second.padding.up, hdistance + ci->second.allocate_size.x, vdistance + ci->second.allocate_size.y);
DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("Item @ %1,%2 - %3,%4 size-allocate %5\n",
ci->second.upper_left.x,
ci->second.upper_left.y,
ci->second.lower_right.x,
ci->second.lower_right.y,
rect));
ci->second.content->size_allocate (rect);
hdistance += rect.width() + ci->second.padding.right;
hdistance += col_info[c].spacing;
const Distance total_cell_height = rect.height() + ci->second.padding.up + ci->second.padding.down;
vshift = std::max (vshift, total_cell_height);
} else {
/* this cell (r, c) has no item starting within it */
}
}
vshift += row_info[r].spacing;
vdistance += vshift;
}
return Duple (hdistance, vdistance);
}
void
Table::add (Item*)
{
fatal << _("programming error: add() cannot be used with Canvas::Table; use attach() instead") << endmsg;
}
void
Table::add_front (Item*)
{
fatal << _("programming error: add_front() cannot be used with Canvas::Table; use attach() instead") << endmsg;
}
void
Table::remove (Item*)
{
fatal << _("programming error: remove() cannot be used with Canvas::Table; use detach() instead") << endmsg;
}
void
Table::_add (Item* i)
{
if (!i) {
return;
}
Item::add (i);
queue_resize ();
}
void
Table::_add_front (Item* i)
{
if (!i) {
return;
}
Item::add_front (i);
queue_resize ();
}
void
Table::_remove (Item* i)
{
if (!i) {
return;
}
Item::remove (i);
queue_resize ();
}