13
0
livetrax/libs/soundtouch/TDStretch.cpp
Paul Davis 2aba860ba1 fix errors in multi-range export (and possibly other export styles); compiler warnings patch from Carl
git-svn-id: svn://localhost/ardour2/trunk@1605 d708f5d6-7413-0410-9779-e7cbd77b26cf
2007-03-16 21:44:10 +00:00

917 lines
25 KiB
C++

////////////////////////////////////////////////////////////////////////////////
///
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like
/// method with several performance-increasing tweaks.
///
/// Note : MMX optimized functions reside in a separate, platform-specific
/// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai @ iki.fi
/// SoundTouch WWW: http://www.iki.fi/oparviai/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date$
// File revision : $Revision$
//
// $Id$
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <stdlib.h>
#include <memory.h>
#include <limits.h>
#include <math.h>
#include <assert.h>
#include "STTypes.h"
#include "cpu_detect.h"
#include "TDStretch.h"
using namespace soundtouch;
#ifndef min
#define min(a,b) ((a > b) ? b : a)
#define max(a,b) ((a < b) ? b : a)
#endif
/*****************************************************************************
*
* Constant definitions
*
*****************************************************************************/
#define MAX_SCAN_DELTA 124
// Table for the hierarchical mixing position seeking algorithm
int scanOffsets[4][24]={
{ 124, 186, 248, 310, 372, 434, 496, 558, 620, 682, 744, 806,
868, 930, 992, 1054, 1116, 1178, 1240, 1302, 1364, 1426, 1488, 0},
{-100, -75, -50, -25, 25, 50, 75, 100, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ -20, -15, -10, -5, 5, 10, 15, 20, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ -4, -3, -2, -1, 1, 2, 3, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
/*****************************************************************************
*
* Implementation of the class 'TDStretch'
*
*****************************************************************************/
TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
{
bQuickseek = FALSE;
channels = 2;
bMidBufferDirty = FALSE;
pMidBuffer = NULL;
pRefMidBufferUnaligned = NULL;
overlapLength = 0;
setParameters(44100, DEFAULT_SEQUENCE_MS, DEFAULT_SEEKWINDOW_MS, DEFAULT_OVERLAP_MS);
setTempo(1.0f);
}
TDStretch::~TDStretch()
{
delete[] pMidBuffer;
delete[] pRefMidBufferUnaligned;
}
// Sets routine control parameters. These control are certain time constants
// defining how the sound is stretched to the desired duration.
//
// 'sampleRate' = sample rate of the sound
// 'sequenceMS' = one processing sequence length in milliseconds (default = 82 ms)
// 'seekwindowMS' = seeking window length for scanning the best overlapping
// position (default = 28 ms)
// 'overlapMS' = overlapping length (default = 12 ms)
void TDStretch::setParameters(uint aSampleRate, uint aSequenceMS,
uint aSeekWindowMS, uint aOverlapMS)
{
this->sampleRate = aSampleRate;
this->sequenceMs = aSequenceMS;
this->seekWindowMs = aSeekWindowMS;
this->overlapMs = aOverlapMS;
seekLength = (sampleRate * seekWindowMs) / 1000;
seekWindowLength = (sampleRate * sequenceMs) / 1000;
maxOffset = seekLength;
calculateOverlapLength(overlapMs);
// set tempo to recalculate 'sampleReq'
setTempo(tempo);
}
/// Get routine control parameters, see setParameters() function.
/// Any of the parameters to this function can be NULL, in such case corresponding parameter
/// value isn't returned.
void TDStretch::getParameters(uint *pSampleRate, uint *pSequenceMs, uint *pSeekWindowMs, uint *pOverlapMs)
{
if (pSampleRate)
{
*pSampleRate = sampleRate;
}
if (pSequenceMs)
{
*pSequenceMs = sequenceMs;
}
if (pSeekWindowMs)
{
*pSeekWindowMs = seekWindowMs;
}
if (pOverlapMs)
{
*pOverlapMs = overlapMs;
}
}
// Overlaps samples in 'midBuffer' with the samples in 'input'
void TDStretch::overlapMono(SAMPLETYPE *output, const SAMPLETYPE *input) const
{
int i, itemp;
for (i = 0; i < (int)overlapLength ; i ++)
{
itemp = overlapLength - i;
output[i] = (input[i] * i + pMidBuffer[i] * itemp ) / overlapLength; // >> overlapDividerBits;
}
}
void TDStretch::clearMidBuffer()
{
if (bMidBufferDirty)
{
memset(pMidBuffer, 0, 2 * sizeof(SAMPLETYPE) * overlapLength);
bMidBufferDirty = FALSE;
}
}
void TDStretch::clearInput()
{
inputBuffer.clear();
clearMidBuffer();
}
// Clears the sample buffers
void TDStretch::clear()
{
outputBuffer.clear();
inputBuffer.clear();
clearMidBuffer();
}
// Enables/disables the quick position seeking algorithm. Zero to disable, nonzero
// to enable
void TDStretch::enableQuickSeek(BOOL enable)
{
bQuickseek = enable;
}
// Returns nonzero if the quick seeking algorithm is enabled.
BOOL TDStretch::isQuickSeekEnabled() const
{
return bQuickseek;
}
// Seeks for the optimal overlap-mixing position.
uint TDStretch::seekBestOverlapPosition(const SAMPLETYPE *refPos)
{
if (channels == 2)
{
// stereo sound
if (bQuickseek)
{
return seekBestOverlapPositionStereoQuick(refPos);
}
else
{
return seekBestOverlapPositionStereo(refPos);
}
}
else
{
// mono sound
if (bQuickseek)
{
return seekBestOverlapPositionMonoQuick(refPos);
}
else
{
return seekBestOverlapPositionMono(refPos);
}
}
}
// Overlaps samples in 'midBuffer' with the samples in 'inputBuffer' at position
// of 'ovlPos'.
inline void TDStretch::overlap(SAMPLETYPE *output, const SAMPLETYPE *input, uint ovlPos) const
{
if (channels == 2)
{
// stereo sound
overlapStereo(output, input + 2 * ovlPos);
} else {
// mono sound.
overlapMono(output, input + ovlPos);
}
}
// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
uint TDStretch::seekBestOverlapPositionStereo(const SAMPLETYPE *refPos)
{
uint bestOffs;
LONG_SAMPLETYPE bestCorr, corr;
uint i;
// Slopes the amplitudes of the 'midBuffer' samples
precalcCorrReferenceStereo();
bestCorr = INT_MIN;
bestOffs = 0;
// Scans for the best correlation value by testing each possible position
// over the permitted range.
for (i = 0; i < seekLength; i ++)
{
// Calculates correlation value for the mixing position corresponding
// to 'i'
corr = calcCrossCorrStereo(refPos + 2 * i, pRefMidBuffer);
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = i;
}
}
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
return bestOffs;
}
// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
uint TDStretch::seekBestOverlapPositionStereoQuick(const SAMPLETYPE *refPos)
{
uint j;
uint bestOffs;
LONG_SAMPLETYPE bestCorr, corr;
uint scanCount, corrOffset, tempOffset;
// Slopes the amplitude of the 'midBuffer' samples
precalcCorrReferenceStereo();
bestCorr = INT_MIN;
bestOffs = 0;
corrOffset = 0;
tempOffset = 0;
// Scans for the best correlation value using four-pass hierarchical search.
//
// The look-up table 'scans' has hierarchical position adjusting steps.
// In first pass the routine searhes for the highest correlation with
// relatively coarse steps, then rescans the neighbourhood of the highest
// correlation with better resolution and so on.
for (scanCount = 0;scanCount < 4; scanCount ++)
{
j = 0;
while (scanOffsets[scanCount][j])
{
tempOffset = corrOffset + scanOffsets[scanCount][j];
if (tempOffset >= seekLength) break;
// Calculates correlation value for the mixing position corresponding
// to 'tempOffset'
corr = calcCrossCorrStereo(refPos + 2 * tempOffset, pRefMidBuffer);
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = tempOffset;
}
j ++;
}
corrOffset = bestOffs;
}
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
return bestOffs;
}
// Seeks for the optimal overlap-mixing position. The 'mono' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
uint TDStretch::seekBestOverlapPositionMono(const SAMPLETYPE *refPos)
{
uint bestOffs;
LONG_SAMPLETYPE bestCorr, corr;
uint tempOffset;
const SAMPLETYPE *compare;
// Slopes the amplitude of the 'midBuffer' samples
precalcCorrReferenceMono();
bestCorr = INT_MIN;
bestOffs = 0;
// Scans for the best correlation value by testing each possible position
// over the permitted range.
for (tempOffset = 0; tempOffset < seekLength; tempOffset ++)
{
compare = refPos + tempOffset;
// Calculates correlation value for the mixing position corresponding
// to 'tempOffset'
corr = calcCrossCorrMono(pRefMidBuffer, compare);
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = tempOffset;
}
}
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
return bestOffs;
}
// Seeks for the optimal overlap-mixing position. The 'mono' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
uint TDStretch::seekBestOverlapPositionMonoQuick(const SAMPLETYPE *refPos)
{
uint j;
uint bestOffs;
LONG_SAMPLETYPE bestCorr, corr;
uint scanCount, corrOffset, tempOffset;
// Slopes the amplitude of the 'midBuffer' samples
precalcCorrReferenceMono();
bestCorr = INT_MIN;
bestOffs = 0;
corrOffset = 0;
tempOffset = 0;
// Scans for the best correlation value using four-pass hierarchical search.
//
// The look-up table 'scans' has hierarchical position adjusting steps.
// In first pass the routine searhes for the highest correlation with
// relatively coarse steps, then rescans the neighbourhood of the highest
// correlation with better resolution and so on.
for (scanCount = 0;scanCount < 4; scanCount ++)
{
j = 0;
while (scanOffsets[scanCount][j])
{
tempOffset = corrOffset + scanOffsets[scanCount][j];
if (tempOffset >= seekLength) break;
// Calculates correlation value for the mixing position corresponding
// to 'tempOffset'
corr = calcCrossCorrMono(refPos + tempOffset, pRefMidBuffer);
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = tempOffset;
}
j ++;
}
corrOffset = bestOffs;
}
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
return bestOffs;
}
/// clear cross correlation routine state if necessary
void TDStretch::clearCrossCorrState()
{
// default implementation is empty.
}
// Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower
// tempo, larger faster tempo.
void TDStretch::setTempo(float newTempo)
{
uint intskip;
tempo = newTempo;
// Calculate ideal skip length (according to tempo value)
nominalSkip = tempo * (seekWindowLength - overlapLength);
skipFract = 0;
intskip = (int)(nominalSkip + 0.5f);
// Calculate how many samples are needed in the 'inputBuffer' to
// process another batch of samples
sampleReq = max(intskip + overlapLength, seekWindowLength) + maxOffset;
}
// Sets the number of channels, 1 = mono, 2 = stereo
void TDStretch::setChannels(uint numChannels)
{
if (channels == numChannels) return;
assert(numChannels == 1 || numChannels == 2);
channels = numChannels;
inputBuffer.setChannels(channels);
outputBuffer.setChannels(channels);
}
// nominal tempo, no need for processing, just pass the samples through
// to outputBuffer
void TDStretch::processNominalTempo()
{
assert(tempo == 1.0f);
if (bMidBufferDirty)
{
// If there are samples in pMidBuffer waiting for overlapping,
// do a single sliding overlapping with them in order to prevent a
// clicking distortion in the output sound
if (inputBuffer.numSamples() < overlapLength)
{
// wait until we've got overlapLength input samples
return;
}
// Mix the samples in the beginning of 'inputBuffer' with the
// samples in 'midBuffer' using sliding overlapping
overlap(outputBuffer.ptrEnd(overlapLength), inputBuffer.ptrBegin(), 0);
outputBuffer.putSamples(overlapLength);
inputBuffer.receiveSamples(overlapLength);
clearMidBuffer();
// now we've caught the nominal sample flow and may switch to
// bypass mode
}
// Simply bypass samples from input to output
outputBuffer.moveSamples(inputBuffer);
}
// Processes as many processing frames of the samples 'inputBuffer', store
// the result into 'outputBuffer'
void TDStretch::processSamples()
{
uint ovlSkip, offset;
int temp;
if (tempo == 1.0f)
{
// tempo not changed from the original, so bypass the processing
processNominalTempo();
return;
}
if (bMidBufferDirty == FALSE)
{
// if midBuffer is empty, move the first samples of the input stream
// into it
if (inputBuffer.numSamples() < overlapLength)
{
// wait until we've got overlapLength samples
return;
}
memcpy(pMidBuffer, inputBuffer.ptrBegin(), channels * overlapLength * sizeof(SAMPLETYPE));
inputBuffer.receiveSamples(overlapLength);
bMidBufferDirty = TRUE;
}
// Process samples as long as there are enough samples in 'inputBuffer'
// to form a processing frame.
while (inputBuffer.numSamples() >= sampleReq)
{
// If tempo differs from the normal ('SCALE'), scan for the best overlapping
// position
offset = seekBestOverlapPosition(inputBuffer.ptrBegin());
// Mix the samples in the 'inputBuffer' at position of 'offset' with the
// samples in 'midBuffer' using sliding overlapping
// ... first partially overlap with the end of the previous sequence
// (that's in 'midBuffer')
overlap(outputBuffer.ptrEnd(overlapLength), inputBuffer.ptrBegin(), offset);
outputBuffer.putSamples(overlapLength);
// ... then copy sequence samples from 'inputBuffer' to output
temp = (seekWindowLength - 2 * overlapLength);// & 0xfffffffe;
if (temp > 0)
{
outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * (offset + overlapLength), temp);
}
// Copies the end of the current sequence from 'inputBuffer' to
// 'midBuffer' for being mixed with the beginning of the next
// processing sequence and so on
assert(offset + seekWindowLength <= inputBuffer.numSamples());
memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + seekWindowLength - overlapLength),
channels * sizeof(SAMPLETYPE) * overlapLength);
bMidBufferDirty = TRUE;
// Remove the processed samples from the input buffer. Update
// the difference between integer & nominal skip step to 'skipFract'
// in order to prevent the error from accumulating over time.
skipFract += nominalSkip; // real skip size
ovlSkip = (int)skipFract; // rounded to integer skip
skipFract -= ovlSkip; // maintain the fraction part, i.e. real vs. integer skip
inputBuffer.receiveSamples(ovlSkip);
}
}
// Adds 'numsamples' pcs of samples from the 'samples' memory position into
// the input of the object.
void TDStretch::putSamples(const SAMPLETYPE *samples, uint numSamples)
{
// Add the samples into the input buffer
inputBuffer.putSamples(samples, numSamples);
// Process the samples in input buffer
processSamples();
}
/// Set new overlap length parameter & reallocate RefMidBuffer if necessary.
void TDStretch::acceptNewOverlapLength(uint newOverlapLength)
{
uint prevOvl;
prevOvl = overlapLength;
overlapLength = newOverlapLength;
if (overlapLength > prevOvl)
{
delete[] pMidBuffer;
delete[] pRefMidBufferUnaligned;
pMidBuffer = new SAMPLETYPE[overlapLength * 2];
bMidBufferDirty = TRUE;
clearMidBuffer();
pRefMidBufferUnaligned = new SAMPLETYPE[2 * overlapLength + 16 / sizeof(SAMPLETYPE)];
// ensure that 'pRefMidBuffer' is aligned to 16 byte boundary for efficiency
pRefMidBuffer = (SAMPLETYPE *)((((ulong)pRefMidBufferUnaligned) + 15) & -16);
}
}
TDStretch * TDStretch::newInstance()
{
uint uExtensions;
uExtensions = detectCPUextensions();
// Check if MMX/SSE/3DNow! instruction set extensions supported by CPU
#ifdef ALLOW_MMX
// MMX routines available only with integer sample types
if (uExtensions & SUPPORT_MMX)
{
return ::new TDStretchMMX;
}
else
#endif // ALLOW_MMX
#ifdef ALLOW_SSE
if (uExtensions & SUPPORT_SSE)
{
// SSE support
return ::new TDStretchSSE;
}
else
#endif // ALLOW_SSE
#ifdef ALLOW_3DNOW
if (uExtensions & SUPPORT_3DNOW)
{
// 3DNow! support
return ::new TDStretch3DNow;
}
else
#endif // ALLOW_3DNOW
{
// ISA optimizations not supported, use plain C version
return ::new TDStretch;
}
}
//////////////////////////////////////////////////////////////////////////////
//
// Integer arithmetics specific algorithm implementations.
//
//////////////////////////////////////////////////////////////////////////////
#ifdef INTEGER_SAMPLES
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceStereo()
{
int i, cnt2;
int temp, temp2;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = i * (overlapLength - i);
cnt2 = i * 2;
temp2 = (pMidBuffer[cnt2] * temp) / slopingDivider;
pRefMidBuffer[cnt2] = (short)(temp2);
temp2 = (pMidBuffer[cnt2 + 1] * temp) / slopingDivider;
pRefMidBuffer[cnt2 + 1] = (short)(temp2);
}
}
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceMono()
{
int i;
long temp;
long temp2;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = i * (overlapLength - i);
temp2 = (pMidBuffer[i] * temp) / slopingDivider;
pRefMidBuffer[i] = (short)temp2;
}
}
// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Stereo'
// version of the routine.
void TDStretch::overlapStereo(short *output, const short *input) const
{
int i;
short temp;
uint cnt2;
for (i = 0; i < (int)overlapLength ; i ++)
{
temp = (short)(overlapLength - i);
cnt2 = 2 * i;
output[cnt2] = (input[cnt2] * i + pMidBuffer[cnt2] * temp ) / overlapLength;
output[cnt2 + 1] = (input[cnt2 + 1] * i + pMidBuffer[cnt2 + 1] * temp ) / overlapLength;
}
}
/// Calculates overlap period length in samples.
/// Integer version rounds overlap length to closest power of 2
/// for a divide scaling operation.
void TDStretch::calculateOverlapLength(uint overlapMs)
{
uint newOvl;
overlapDividerBits = _getClosest2Power((sampleRate * overlapMs) / 1000.0);
if (overlapDividerBits > 9) overlapDividerBits = 9;
if (overlapDividerBits < 4) overlapDividerBits = 4;
newOvl = (uint)pow(2, overlapDividerBits);
acceptNewOverlapLength(newOvl);
// calculate sloping divider so that crosscorrelation operation won't
// overflow 32-bit register. Max. sum of the crosscorrelation sum without
// divider would be 2^30*(N^3-N)/3, where N = overlap length
slopingDivider = (newOvl * newOvl - 1) / 3;
}
long TDStretch::calcCrossCorrMono(const short *mixingPos, const short *compare) const
{
long corr;
uint i;
corr = 0;
for (i = 1; i < overlapLength; i ++)
{
corr += (mixingPos[i] * compare[i]) >> overlapDividerBits;
}
return corr;
}
long TDStretch::calcCrossCorrStereo(const short *mixingPos, const short *compare) const
{
long corr;
uint i;
corr = 0;
for (i = 2; i < 2 * overlapLength; i += 2)
{
corr += (mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits;
}
return corr;
}
#endif // INTEGER_SAMPLES
//////////////////////////////////////////////////////////////////////////////
//
// Floating point arithmetics specific algorithm implementations.
//
#ifdef FLOAT_SAMPLES
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceStereo()
{
int i, cnt2;
float temp;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = (float)i * (float)(overlapLength - i);
cnt2 = i * 2;
pRefMidBuffer[cnt2] = (float)(pMidBuffer[cnt2] * temp);
pRefMidBuffer[cnt2 + 1] = (float)(pMidBuffer[cnt2 + 1] * temp);
}
}
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceMono()
{
int i;
float temp;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = (float)i * (float)(overlapLength - i);
pRefMidBuffer[i] = (float)(pMidBuffer[i] * temp);
}
}
// SSE-optimized version of the function overlapStereo
void TDStretch::overlapStereo(float *output, const float *input) const
{
int i;
uint cnt2;
float fTemp;
float fScale;
float fi;
fScale = 1.0f / (float)overlapLength;
for (i = 0; i < (int)overlapLength ; i ++)
{
fTemp = (float)(overlapLength - i) * fScale;
fi = (float)i * fScale;
cnt2 = 2 * i;
output[cnt2 + 0] = input[cnt2 + 0] * fi + pMidBuffer[cnt2 + 0] * fTemp;
output[cnt2 + 1] = input[cnt2 + 1] * fi + pMidBuffer[cnt2 + 1] * fTemp;
}
}
/// Calculates overlap period length in samples.
void TDStretch::calculateOverlapLength(uint overlapMs)
{
uint newOvl;
newOvl = (sampleRate * overlapMs) / 1000;
if (newOvl < 16) newOvl = 16;
acceptNewOverlapLength(newOvl);
}
double TDStretch::calcCrossCorrMono(const float *mixingPos, const float *compare) const
{
double corr;
uint i;
corr = 0;
for (i = 1; i < overlapLength; i ++)
{
corr += mixingPos[i] * compare[i];
}
return corr;
}
double TDStretch::calcCrossCorrStereo(const float *mixingPos, const float *compare) const
{
double corr;
uint i;
corr = 0;
for (i = 2; i < 2 * overlapLength; i += 2)
{
corr += mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1];
}
return corr;
}
#endif // FLOAT_SAMPLES