David Robillard
6fa6514cfd
It's slightly possible that this causes trivial build failures on different configurations, but otherwise shouldn't cause any problems (i.e. no actual changes other than include/naming/namespace stuff). I deliberately avoided removing libardour-config.h since this can mysteriously break things, though a few of those do seem to be unnecessary. This commit only targets includes of ardour/*.h. There is also a very large number of unnecessary includes of stuff in gtk2_ardour; tackling that should also give a big improvement in build time when things are modified. git-svn-id: svn://localhost/ardour2/branches/3.0@12420 d708f5d6-7413-0410-9779-e7cbd77b26cf
209 lines
5.0 KiB
C++
209 lines
5.0 KiB
C++
/*
|
|
Copyright (C) 2006 Paul Davis
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at your option)
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include "ardour/audio_buffer.h"
|
|
#include "ardour/buffer_set.h"
|
|
#include "ardour/dB.h"
|
|
#include "ardour/meter.h"
|
|
#include "ardour/midi_buffer.h"
|
|
#include "ardour/rc_configuration.h"
|
|
#include "ardour/runtime_functions.h"
|
|
|
|
using namespace std;
|
|
|
|
using namespace ARDOUR;
|
|
|
|
PBD::Signal0<void> Metering::Meter;
|
|
|
|
/** Get peaks from @a bufs
|
|
* Input acceptance is lenient - the first n buffers from @a bufs will
|
|
* be metered, where n was set by the last call to setup(), excess meters will
|
|
* be set to 0.
|
|
*/
|
|
void
|
|
PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool)
|
|
{
|
|
if (!_active && !_pending_active) {
|
|
return;
|
|
}
|
|
|
|
// cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n";
|
|
|
|
const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio());
|
|
const uint32_t n_midi = min (current_meters.n_midi(), bufs.count().n_midi());
|
|
|
|
uint32_t n = 0;
|
|
|
|
// Meter MIDI in to the first n_midi peaks
|
|
for (uint32_t i = 0; i < n_midi; ++i, ++n) {
|
|
float val = 0.0f;
|
|
for (MidiBuffer::iterator e = bufs.get_midi(i).begin(); e != bufs.get_midi(i).end(); ++e) {
|
|
const Evoral::MIDIEvent<framepos_t> ev(*e, false);
|
|
if (ev.is_note_on()) {
|
|
const float this_vel = log(ev.buffer()[2] / 127.0 * (M_E*M_E-M_E) + M_E) - 1.0;
|
|
if (this_vel > val) {
|
|
val = this_vel;
|
|
}
|
|
} else {
|
|
val += 1.0 / bufs.get_midi(n).capacity();
|
|
if (val > 1.0) {
|
|
val = 1.0;
|
|
}
|
|
}
|
|
}
|
|
_peak_power[n] = max (val, _peak_power[n]);
|
|
}
|
|
|
|
// Meter audio in to the rest of the peaks
|
|
for (uint32_t i = 0; i < n_audio; ++i, ++n) {
|
|
_peak_power[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_power[n]);
|
|
}
|
|
|
|
// Zero any excess peaks
|
|
for (uint32_t i = n; i < _peak_power.size(); ++i) {
|
|
_peak_power[i] = 0.0f;
|
|
}
|
|
|
|
_active = _pending_active;
|
|
}
|
|
|
|
void
|
|
PeakMeter::reset ()
|
|
{
|
|
for (size_t i = 0; i < _peak_power.size(); ++i) {
|
|
_peak_power[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
void
|
|
PeakMeter::reset_max ()
|
|
{
|
|
for (size_t i = 0; i < _max_peak_power.size(); ++i) {
|
|
_max_peak_power[i] = -INFINITY;
|
|
}
|
|
}
|
|
|
|
bool
|
|
PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) const
|
|
{
|
|
out = in;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
PeakMeter::configure_io (ChanCount in, ChanCount out)
|
|
{
|
|
if (out != in) { // always 1:1
|
|
return false;
|
|
}
|
|
|
|
current_meters = in;
|
|
|
|
reset_max_channels (in);
|
|
|
|
return Processor::configure_io (in, out);
|
|
}
|
|
|
|
void
|
|
PeakMeter::reflect_inputs (const ChanCount& in)
|
|
{
|
|
current_meters = in;
|
|
|
|
ConfigurationChanged (in, in); /* EMIT SIGNAL */
|
|
}
|
|
|
|
void
|
|
PeakMeter::reset_max_channels (const ChanCount& chn)
|
|
{
|
|
uint32_t const limit = chn.n_total();
|
|
|
|
while (_peak_power.size() > limit) {
|
|
_peak_power.pop_back();
|
|
_visible_peak_power.pop_back();
|
|
_max_peak_power.pop_back();
|
|
}
|
|
|
|
while (_peak_power.size() < limit) {
|
|
_peak_power.push_back(0);
|
|
_visible_peak_power.push_back(minus_infinity());
|
|
_max_peak_power.push_back(minus_infinity());
|
|
}
|
|
|
|
assert(_peak_power.size() == limit);
|
|
assert(_visible_peak_power.size() == limit);
|
|
assert(_max_peak_power.size() == limit);
|
|
}
|
|
|
|
/** To be driven by the Meter signal from IO.
|
|
* Caller MUST hold its own processor_lock to prevent reconfiguration
|
|
* of meter size during this call.
|
|
*/
|
|
|
|
void
|
|
PeakMeter::meter ()
|
|
{
|
|
if (!_active) {
|
|
return;
|
|
}
|
|
|
|
assert(_visible_peak_power.size() == _peak_power.size());
|
|
|
|
const size_t limit = min (_peak_power.size(), (size_t) current_meters.n_total ());
|
|
|
|
for (size_t n = 0; n < limit; ++n) {
|
|
|
|
/* grab peak since last read */
|
|
|
|
float new_peak = _peak_power[n]; /* XXX we should use atomic exchange from here ... */
|
|
_peak_power[n] = 0; /* ... to here */
|
|
|
|
/* compute new visible value using falloff */
|
|
|
|
if (new_peak > 0.0) {
|
|
new_peak = fast_coefficient_to_dB (new_peak);
|
|
} else {
|
|
new_peak = minus_infinity();
|
|
}
|
|
|
|
/* update max peak */
|
|
|
|
_max_peak_power[n] = std::max (new_peak, _max_peak_power[n]);
|
|
|
|
if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) {
|
|
_visible_peak_power[n] = new_peak;
|
|
} else {
|
|
// do falloff
|
|
new_peak = _visible_peak_power[n] - (Config->get_meter_falloff() * 0.01f);
|
|
_visible_peak_power[n] = std::max (new_peak, -INFINITY);
|
|
}
|
|
}
|
|
}
|
|
|
|
XMLNode&
|
|
PeakMeter::state (bool full_state)
|
|
{
|
|
XMLNode& node (Processor::state (full_state));
|
|
node.add_property("type", "meter");
|
|
return node;
|
|
}
|
|
|
|
|