13
0
livetrax/libs/canvas/wave_view.cc
Robin Gareus 5aa834e1d8 fix windows debug builds:
undefined reference to `std::basic_ostream >& boost::operator<< , ArdourCanvas::Rect>(std::basic_ostream >&, boost::optional const&)'
2015-06-25 14:33:45 +02:00

1830 lines
51 KiB
C++

/*
Copyright (C) 2011-2013 Paul Davis
Author: Carl Hetherington <cth@carlh.net>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <cmath>
#include <cairomm/cairomm.h>
#include <glibmm/threads.h>
#include "gtkmm2ext/utils.h"
#include "gtkmm2ext/gui_thread.h"
#include "pbd/base_ui.h"
#include "pbd/compose.h"
#include "pbd/convert.h"
#include "pbd/signals.h"
#include "pbd/stacktrace.h"
#include "ardour/types.h"
#include "ardour/dB.h"
#include "ardour/lmath.h"
#include "ardour/audioregion.h"
#include "ardour/audiosource.h"
#include "ardour/session.h"
#include "canvas/canvas.h"
#include "canvas/colors.h"
#include "canvas/debug.h"
#include "canvas/utils.h"
#include "canvas/wave_view.h"
#include "evoral/Range.hpp"
#include <gdkmm/general.h>
#include "gtkmm2ext/gui_thread.h"
using namespace std;
using namespace ARDOUR;
using namespace PBD;
using namespace ArdourCanvas;
double WaveView::_global_gradient_depth = 0.6;
bool WaveView::_global_logscaled = false;
WaveView::Shape WaveView::_global_shape = WaveView::Normal;
bool WaveView::_global_show_waveform_clipping = true;
double WaveView::_clip_level = 0.98853;
WaveViewCache* WaveView::images = 0;
gint WaveView::drawing_thread_should_quit = 0;
Glib::Threads::Mutex WaveView::request_queue_lock;
Glib::Threads::Cond WaveView::request_cond;
Glib::Threads::Thread* WaveView::_drawing_thread = 0;
WaveView::DrawingRequestQueue WaveView::request_queue;
PBD::Signal0<void> WaveView::VisualPropertiesChanged;
PBD::Signal0<void> WaveView::ClipLevelChanged;
WaveView::WaveView (Canvas* c, boost::shared_ptr<ARDOUR::AudioRegion> region)
: Item (c)
, _region (region)
, _channel (0)
, _samples_per_pixel (0)
, _height (64)
, _show_zero (false)
, _zero_color (0xff0000ff)
, _clip_color (0xff0000ff)
, _logscaled (_global_logscaled)
, _shape (_global_shape)
, _gradient_depth (_global_gradient_depth)
, _shape_independent (false)
, _logscaled_independent (false)
, _gradient_depth_independent (false)
, _amplitude_above_axis (1.0)
, _region_amplitude (region->scale_amplitude ())
, _start_shift (0.0)
, _region_start (region->start())
, get_image_in_thread (false)
, always_get_image_in_thread (false)
, rendered (false)
{
if (!images) {
images = new WaveViewCache;
}
VisualPropertiesChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_visual_property_change, this));
ClipLevelChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_clip_level_change, this));
ImageReady.connect (image_ready_connection, invalidator (*this), boost::bind (&WaveView::image_ready, this), gui_context());
}
WaveView::WaveView (Item* parent, boost::shared_ptr<ARDOUR::AudioRegion> region)
: Item (parent)
, _region (region)
, _channel (0)
, _samples_per_pixel (0)
, _height (64)
, _show_zero (false)
, _zero_color (0xff0000ff)
, _clip_color (0xff0000ff)
, _logscaled (_global_logscaled)
, _shape (_global_shape)
, _gradient_depth (_global_gradient_depth)
, _shape_independent (false)
, _logscaled_independent (false)
, _gradient_depth_independent (false)
, _amplitude_above_axis (1.0)
, _region_amplitude (region->scale_amplitude ())
, _start_shift (0.0)
, _region_start (region->start())
, get_image_in_thread (false)
, always_get_image_in_thread (false)
, rendered (false)
{
if (!images) {
images = new WaveViewCache;
}
VisualPropertiesChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_visual_property_change, this));
ClipLevelChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_clip_level_change, this));
ImageReady.connect (image_ready_connection, invalidator (*this), boost::bind (&WaveView::image_ready, this), gui_context());
}
WaveView::~WaveView ()
{
invalidate_image_cache ();
}
string
WaveView::debug_name() const
{
return _region->name() + string (":") + PBD::to_string (_channel+1, std::dec);
}
void
WaveView::image_ready ()
{
DEBUG_TRACE (DEBUG::WaveView, string_compose ("queue draw for %1 at %2 (vis = %3 CR %4)\n", this, g_get_monotonic_time(), visible(), current_request));
redraw ();
}
void
WaveView::set_always_get_image_in_thread (bool yn)
{
always_get_image_in_thread = yn;
}
void
WaveView::handle_visual_property_change ()
{
bool changed = false;
if (!_shape_independent && (_shape != global_shape())) {
_shape = global_shape();
changed = true;
}
if (!_logscaled_independent && (_logscaled != global_logscaled())) {
_logscaled = global_logscaled();
changed = true;
}
if (!_gradient_depth_independent && (_gradient_depth != global_gradient_depth())) {
_gradient_depth = global_gradient_depth();
changed = true;
}
if (changed) {
begin_visual_change ();
invalidate_image_cache ();
end_visual_change ();
}
}
void
WaveView::handle_clip_level_change ()
{
begin_visual_change ();
invalidate_image_cache ();
end_visual_change ();
}
void
WaveView::set_fill_color (Color c)
{
if (c != _fill_color) {
begin_visual_change ();
invalidate_image_cache ();
Fill::set_fill_color (c);
end_visual_change ();
}
}
void
WaveView::set_outline_color (Color c)
{
if (c != _outline_color) {
begin_visual_change ();
invalidate_image_cache ();
Outline::set_outline_color (c);
end_visual_change ();
}
}
void
WaveView::set_samples_per_pixel (double samples_per_pixel)
{
if (samples_per_pixel != _samples_per_pixel) {
begin_change ();
invalidate_image_cache ();
_samples_per_pixel = samples_per_pixel;
_bounding_box_dirty = true;
end_change ();
}
}
static inline float
_log_meter (float power, double lower_db, double upper_db, double non_linearity)
{
return (power < lower_db ? 0.0 : pow((power-lower_db)/(upper_db-lower_db), non_linearity));
}
static inline float
alt_log_meter (float power)
{
return _log_meter (power, -192.0, 0.0, 8.0);
}
void
WaveView::set_clip_level (double dB)
{
const double clip_level = dB_to_coefficient (dB);
if (clip_level != _clip_level) {
_clip_level = clip_level;
ClipLevelChanged ();
}
}
void
WaveView::invalidate_image_cache ()
{
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 invalidates image cache and cancels current request\n", this));
cancel_my_render_request ();
_current_image.reset ();
}
void
WaveView::compute_tips (PeakData const & peak, WaveView::LineTips& tips) const
{
const double effective_height = _height;
/* remember: canvas (and cairo) coordinate space puts the origin at the upper left.
So, a sample value of 1.0 (0dbFS) will be computed as:
(1.0 - 1.0) * 0.5 * effective_height
which evaluates to 0, or the top of the image.
A sample value of -1.0 will be computed as
(1.0 + 1.0) * 0.5 * effective height
which evaluates to effective height, or the bottom of the image.
*/
const double pmax = (1.0 - peak.max) * 0.5 * effective_height;
const double pmin = (1.0 - peak.min) * 0.5 * effective_height;
/* remember that the bottom of the image (pmin) has larger y-coordinates
than the top (pmax).
*/
double spread = (pmin - pmax) * 0.5;
/* find the nearest pixel to the nominal center. */
const double center = round (pmin - spread);
if (spread < 1.0) {
/* minimum distance between line ends is 1 pixel, and we want it "centered" on a pixel,
as per cairo single-pixel line issues.
NOTE: the caller will not draw a line between these two points if the spread is
less than 2 pixels. So only the tips.top value matters, which is where we will
draw a single pixel as part of the outline.
*/
tips.top = center;
tips.bot = center + 1.0;
} else {
/* round spread above and below center to an integer number of pixels */
spread = round (spread);
/* top and bottom are located equally either side of the center */
tips.top = center - spread;
tips.bot = center + spread;
}
tips.top = min (effective_height, max (0.0, tips.top));
tips.bot = min (effective_height, max (0.0, tips.bot));
}
Coord
WaveView::y_extent (double s) const
{
assert (_shape == Rectified);
return floor ((1.0 - s) * _height);
}
void
WaveView::draw_absent_image (Cairo::RefPtr<Cairo::ImageSurface>& image, PeakData* _peaks, int n_peaks) const
{
Cairo::RefPtr<Cairo::ImageSurface> stripe = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height);
Cairo::RefPtr<Cairo::Context> stripe_context = Cairo::Context::create (stripe);
stripe_context->set_antialias (Cairo::ANTIALIAS_NONE);
uint32_t stripe_separation = 150;
double start = - floor (_height / stripe_separation) * stripe_separation;
int stripe_x = 0;
while (start < n_peaks) {
stripe_context->move_to (start, 0);
stripe_x = start + _height;
stripe_context->line_to (stripe_x, _height);
start += stripe_separation;
}
stripe_context->set_source_rgba (1.0, 1.0, 1.0, 1.0);
stripe_context->set_line_cap (Cairo::LINE_CAP_SQUARE);
stripe_context->set_line_width(50);
stripe_context->stroke();
Cairo::RefPtr<Cairo::Context> context = Cairo::Context::create (image);
context->set_source_rgba (1.0, 1.0, 0.0, 0.3);
context->mask (stripe, 0, 0);
context->fill ();
}
struct ImageSet {
Cairo::RefPtr<Cairo::ImageSurface> wave;
Cairo::RefPtr<Cairo::ImageSurface> outline;
Cairo::RefPtr<Cairo::ImageSurface> clip;
Cairo::RefPtr<Cairo::ImageSurface> zero;
ImageSet() :
wave (0), outline (0), clip (0), zero (0) {}
};
void
WaveView::draw_image (Cairo::RefPtr<Cairo::ImageSurface>& image, PeakData* _peaks, int n_peaks, boost::shared_ptr<WaveViewThreadRequest> req) const
{
ImageSet images;
images.wave = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height);
images.outline = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height);
images.clip = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height);
images.zero = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height);
Cairo::RefPtr<Cairo::Context> wave_context = Cairo::Context::create (images.wave);
Cairo::RefPtr<Cairo::Context> outline_context = Cairo::Context::create (images.outline);
Cairo::RefPtr<Cairo::Context> clip_context = Cairo::Context::create (images.clip);
Cairo::RefPtr<Cairo::Context> zero_context = Cairo::Context::create (images.zero);
wave_context->set_antialias (Cairo::ANTIALIAS_NONE);
outline_context->set_antialias (Cairo::ANTIALIAS_NONE);
clip_context->set_antialias (Cairo::ANTIALIAS_NONE);
zero_context->set_antialias (Cairo::ANTIALIAS_NONE);
boost::scoped_array<LineTips> tips (new LineTips[n_peaks]);
/* Clip level nominally set to -0.9dBFS to account for inter-sample
interpolation possibly clipping (value may be too low).
We adjust by the region's own gain (but note: not by any gain
automation or its gain envelope) so that clip indicators are closer
to providing data about on-disk data. This multiplication is
needed because the data we get from AudioRegion::read_peaks()
has been scaled by scale_amplitude() already.
*/
const double clip_level = _clip_level * _region_amplitude;
if (_shape == WaveView::Rectified) {
/* each peak is a line from the bottom of the waveview
* to a point determined by max (_peaks[i].max,
* _peaks[i].min)
*/
if (_logscaled) {
for (int i = 0; i < n_peaks; ++i) {
tips[i].bot = height() - 1.0;
const double p = alt_log_meter (fast_coefficient_to_dB (max (fabs (_peaks[i].max), fabs (_peaks[i].min))));
tips[i].top = y_extent (p);
tips[i].spread = p * _height;
if (_peaks[i].max >= clip_level) {
tips[i].clip_max = true;
}
if (-(_peaks[i].min) >= clip_level) {
tips[i].clip_min = true;
}
}
} else {
for (int i = 0; i < n_peaks; ++i) {
tips[i].bot = height() - 1.0;
const double p = max(fabs (_peaks[i].max), fabs (_peaks[i].min));
tips[i].top = y_extent (p);
tips[i].spread = p * _height;
if (p >= clip_level) {
tips[i].clip_max = true;
}
}
}
} else {
if (_logscaled) {
for (int i = 0; i < n_peaks; ++i) {
PeakData p;
p.max = _peaks[i].max;
p.min = _peaks[i].min;
if (_peaks[i].max >= clip_level) {
tips[i].clip_max = true;
}
if (-(_peaks[i].min) >= clip_level) {
tips[i].clip_min = true;
}
if (p.max > 0.0) {
p.max = alt_log_meter (fast_coefficient_to_dB (p.max));
} else if (p.max < 0.0) {
p.max =-alt_log_meter (fast_coefficient_to_dB (-p.max));
} else {
p.max = 0.0;
}
if (p.min > 0.0) {
p.min = alt_log_meter (fast_coefficient_to_dB (p.min));
} else if (p.min < 0.0) {
p.min = -alt_log_meter (fast_coefficient_to_dB (-p.min));
} else {
p.min = 0.0;
}
compute_tips (p, tips[i]);
tips[i].spread = tips[i].bot - tips[i].top;
}
} else {
for (int i = 0; i < n_peaks; ++i) {
if (_peaks[i].max >= clip_level) {
tips[i].clip_max = true;
}
if (-(_peaks[i].min) >= clip_level) {
tips[i].clip_min = true;
}
compute_tips (_peaks[i], tips[i]);
tips[i].spread = tips[i].bot - tips[i].top;
}
}
}
if (req->should_stop()) {
return;
}
Color alpha_one = rgba_to_color (0, 0, 0, 1.0);
set_source_rgba (wave_context, alpha_one);
set_source_rgba (outline_context, alpha_one);
set_source_rgba (clip_context, alpha_one);
set_source_rgba (zero_context, alpha_one);
/* ensure single-pixel lines */
wave_context->set_line_width (1.0);
wave_context->translate (0.5, 0.5);
outline_context->set_line_width (1.0);
outline_context->translate (0.5, 0.5);
clip_context->set_line_width (1.0);
clip_context->translate (0.5, 0.5);
zero_context->set_line_width (1.0);
zero_context->translate (0.5, 0.5);
/* the height of the clip-indicator should be at most 7 pixels,
* or 5% of the height of the waveview item.
*/
const double clip_height = min (7.0, ceil (_height * 0.05));
/* There are 3 possible components to draw at each x-axis position: the
waveform "line", the zero line and an outline/clip indicator. We
have to decide which of the 3 to draw at each position, pixel by
pixel. This makes the rendering less efficient but it is the only
way I can see to do this correctly.
To avoid constant source swapping and stroking, we draw the components separately
onto four alpha only image surfaces for use as a mask.
With only 1 pixel of spread between the top and bottom of the line,
we just draw the upper outline/clip indicator.
With 2 pixels of spread, we draw the upper and lower outline clip
indicators.
With 3 pixels of spread we draw the upper and lower outline/clip
indicators and at least 1 pixel of the waveform line.
With 5 pixels of spread, we draw all components.
We can do rectified as two separate passes because we have a much
easier decision regarding whether to draw the waveform line. We
always draw the clip/outline indicators.
*/
if (_shape == WaveView::Rectified) {
for (int i = 0; i < n_peaks; ++i) {
/* waveform line */
if (tips[i].spread >= 1.0) {
wave_context->move_to (i, tips[i].top);
wave_context->line_to (i, tips[i].bot);
}
/* clip indicator */
if (_global_show_waveform_clipping && (tips[i].clip_max || tips[i].clip_min)) {
clip_context->move_to (i, tips[i].top);
/* clip-indicating upper terminal line */
clip_context->rel_line_to (0, min (clip_height, ceil(tips[i].spread + .5)));
} else {
outline_context->move_to (i, tips[i].top);
/* normal upper terminal dot */
outline_context->rel_line_to (0, -1.0);
}
}
wave_context->stroke ();
clip_context->stroke ();
outline_context->stroke ();
} else {
const int height_zero = floor( _height * .5);
for (int i = 0; i < n_peaks; ++i) {
/* waveform line */
if (tips[i].spread >= 2.0) {
wave_context->move_to (i, tips[i].top);
wave_context->line_to (i, tips[i].bot);
}
/* draw square waves and other discontiguous points clearly */
if (i > 0) {
if (tips[i-1].top + 2 < tips[i].top) {
wave_context->move_to (i-1, tips[i-1].top);
wave_context->line_to (i-1, (tips[i].bot + tips[i-1].top)/2);
wave_context->move_to (i, (tips[i].bot + tips[i-1].top)/2);
wave_context->line_to (i, tips[i].top);
} else if (tips[i-1].bot > tips[i].bot + 2) {
wave_context->move_to (i-1, tips[i-1].bot);
wave_context->line_to (i-1, (tips[i].top + tips[i-1].bot)/2);
wave_context->move_to (i, (tips[i].top + tips[i-1].bot)/2);
wave_context->line_to (i, tips[i].bot);
}
}
/* zero line, show only if there is enough spread
or the waveform line does not cross zero line */
if (show_zero_line() && ((tips[i].spread >= 5.0) || (tips[i].top > height_zero ) || (tips[i].bot < height_zero)) ) {
zero_context->move_to (i, height_zero);
zero_context->rel_line_to (1.0, 0);
}
if (tips[i].spread > 1.0) {
bool clipped = false;
/* outline/clip indicators */
if (_global_show_waveform_clipping && tips[i].clip_max) {
clip_context->move_to (i, tips[i].top);
/* clip-indicating upper terminal line */
clip_context->rel_line_to (0, min (clip_height, ceil(tips[i].spread + 0.5)));
clipped = true;
}
if (_global_show_waveform_clipping && tips[i].clip_min) {
clip_context->move_to (i, tips[i].bot);
/* clip-indicating lower terminal line */
clip_context->rel_line_to (0, - min (clip_height, ceil(tips[i].spread + 0.5)));
clipped = true;
}
if (!clipped && tips[i].spread > 2.0) {
/* only draw the outline if the spread
implies 3 or more pixels (so that we see 1
white pixel in the middle).
*/
outline_context->move_to (i, tips[i].bot);
/* normal lower terminal dot; line moves up */
outline_context->rel_line_to (0, -1.0);
outline_context->move_to (i, tips[i].top);
/* normal upper terminal dot, line moves down */
outline_context->rel_line_to (0, 1.0);
}
} else {
bool clipped = false;
/* outline/clip indicator */
if (_global_show_waveform_clipping && (tips[i].clip_max || tips[i].clip_min)) {
clip_context->move_to (i, tips[i].top);
/* clip-indicating upper / lower terminal line */
clip_context->rel_line_to (0, 1.0);
clipped = true;
}
if (!clipped) {
/* special case where only 1 pixel of
* the waveform line is drawn (and
* nothing else).
*
* we draw a 1px "line", pretending
* that the span is 1.0 (whether it is
* zero or 1.0)
*/
wave_context->move_to (i, tips[i].top);
wave_context->rel_line_to (0, 1.0);
}
}
}
wave_context->stroke ();
outline_context->stroke ();
clip_context->stroke ();
zero_context->stroke ();
}
if (req->should_stop()) {
return;
}
Cairo::RefPtr<Cairo::Context> context = Cairo::Context::create (image);
/* Here we set a source colour and use the various components as a mask. */
if (gradient_depth() != 0.0) {
Cairo::RefPtr<Cairo::LinearGradient> gradient (Cairo::LinearGradient::create (0, 0, 0, _height));
double stops[3];
double r, g, b, a;
if (_shape == Rectified) {
stops[0] = 0.1;
stops[1] = 0.3;
stops[2] = 0.9;
} else {
stops[0] = 0.1;
stops[1] = 0.5;
stops[2] = 0.9;
}
color_to_rgba (_fill_color, r, g, b, a);
gradient->add_color_stop_rgba (stops[1], r, g, b, a);
/* generate a new color for the middle of the gradient */
double h, s, v;
color_to_hsv (_fill_color, h, s, v);
/* change v towards white */
v *= 1.0 - gradient_depth();
Color center = hsva_to_color (h, s, v, a);
color_to_rgba (center, r, g, b, a);
gradient->add_color_stop_rgba (stops[0], r, g, b, a);
gradient->add_color_stop_rgba (stops[2], r, g, b, a);
context->set_source (gradient);
} else {
set_source_rgba (context, _fill_color);
}
if (req->should_stop()) {
return;
}
context->mask (images.wave, 0, 0);
context->fill ();
set_source_rgba (context, _outline_color);
context->mask (images.outline, 0, 0);
context->fill ();
set_source_rgba (context, _clip_color);
context->mask (images.clip, 0, 0);
context->fill ();
set_source_rgba (context, _zero_color);
context->mask (images.zero, 0, 0);
context->fill ();
}
boost::shared_ptr<WaveViewCache::Entry>
WaveView::cache_request_result (boost::shared_ptr<WaveViewThreadRequest> req) const
{
boost::shared_ptr<WaveViewCache::Entry> ret (new WaveViewCache::Entry (req->channel,
req->height,
req->amplitude,
req->fill_color,
req->samples_per_pixel,
req->start,
req->end,
req->image));
images->add (_region->audio_source (_channel), ret);
/* consolidate cache first (removes fully-contained
* duplicate images)
*/
images->consolidate_image_cache (_region->audio_source (_channel),
req->channel, req->height, req->amplitude,
req->fill_color, req->samples_per_pixel);
return ret;
}
boost::shared_ptr<WaveViewCache::Entry>
WaveView::get_image (framepos_t start, framepos_t end, bool& full_image) const
{
boost::shared_ptr<WaveViewCache::Entry> ret;
full_image = true;
/* this is called from a ::render() call, when we need an image to
draw with.
*/
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 needs image from %2 .. %3\n", name, start, end));
{
Glib::Threads::Mutex::Lock lmq (request_queue_lock);
/* if there's a draw request outstanding, check to see if we
* have an image there. if so, use it (and put it in the cache
* while we're here.
*/
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 CR %2 stop? %3 image %4\n", this, current_request,
(current_request ? current_request->should_stop() : false),
(current_request ? current_request->image : 0)));
if (current_request && !current_request->should_stop() && current_request->image) {
/* put the image into the cache so that other
* WaveViews can use it if it is useful
*/
if (current_request->start <= start && current_request->end >= end) {
ret.reset (new WaveViewCache::Entry (current_request->channel,
current_request->height,
current_request->amplitude,
current_request->fill_color,
current_request->samples_per_pixel,
current_request->start,
current_request->end,
current_request->image));
cache_request_result (current_request);
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1: got image from completed request, spans %2..%3\n",
name, current_request->start, current_request->end));
}
/* drop our handle on the current request */
current_request.reset ();
}
}
if (!ret) {
/* no current image draw request, so look in the cache */
ret = get_image_from_cache (start, end, full_image);
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1: lookup from cache gave %2 (full %3)\n",
name, ret, full_image));
}
if (!ret || !full_image) {
if ((rendered && get_image_in_thread) || always_get_image_in_thread) {
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1: generating image in caller thread\n", name));
boost::shared_ptr<WaveViewThreadRequest> req (new WaveViewThreadRequest);
req->type = WaveViewThreadRequest::Draw;
req->start = start;
req->end = end;
req->samples_per_pixel = _samples_per_pixel;
req->region = _region; /* weak ptr, to avoid storing a reference in the request queue */
req->channel = _channel;
req->height = _height;
req->fill_color = _fill_color;
req->amplitude = _region_amplitude * _amplitude_above_axis;
req->width = desired_image_width ();
/* draw image in this (the GUI thread) */
generate_image (req, false);
/* cache the result */
ret = cache_request_result (req);
/* reset this so that future missing images are
* generated in a a worker thread.
*/
get_image_in_thread = false;
} else {
queue_get_image (_region, start, end);
}
}
if (ret) {
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 got an image from %2 .. %3 (full ? %4)\n", name, ret->start, ret->end, full_image));
} else {
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 no useful image available\n", name));
}
return ret;
}
boost::shared_ptr<WaveViewCache::Entry>
WaveView::get_image_from_cache (framepos_t start, framepos_t end, bool& full) const
{
if (!images) {
return boost::shared_ptr<WaveViewCache::Entry>();
}
return images->lookup_image (_region->audio_source (_channel), start, end, _channel,
_height, _region_amplitude * _amplitude_above_axis, _fill_color, _samples_per_pixel, full);
}
framecnt_t
WaveView::desired_image_width () const
{
/* compute how wide the image should be, in samples.
*
* We want at least 1 canvas width's worth, but if that
* represents less than 1/10th of a second, use 1/10th of
* a second instead.
*/
framecnt_t canvas_width_samples = _canvas->visible_area().width() * _samples_per_pixel;
const framecnt_t one_tenth_of_second = _region->session().frame_rate() / 10;
if (canvas_width_samples > one_tenth_of_second) {
return canvas_width_samples;
}
return one_tenth_of_second;
}
void
WaveView::queue_get_image (boost::shared_ptr<const ARDOUR::Region> region, framepos_t start, framepos_t end) const
{
boost::shared_ptr<WaveViewThreadRequest> req (new WaveViewThreadRequest);
req->type = WaveViewThreadRequest::Draw;
req->start = start;
req->end = end;
req->samples_per_pixel = _samples_per_pixel;
req->region = _region; /* weak ptr, to avoid storing a reference in the request queue */
req->channel = _channel;
req->height = _height;
req->fill_color = _fill_color;
req->amplitude = _region_amplitude * _amplitude_above_axis;
req->width = desired_image_width ();
if (current_request) {
/* this will stop rendering in progress (which might otherwise
be long lived) for any current request.
*/
current_request->cancel ();
}
start_drawing_thread ();
/* swap requests (protected by lock) */
{
Glib::Threads::Mutex::Lock lm (request_queue_lock);
current_request = req;
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 now has current request %2\n", this, req));
if (request_queue.insert (this).second) {
/* this waveview was not already in the request queue, make sure we wake
the rendering thread in case it is asleep.
*/
request_cond.signal ();
}
}
}
void
WaveView::generate_image (boost::shared_ptr<WaveViewThreadRequest> req, bool in_render_thread) const
{
if (!req->should_stop()) {
/* sample position is canonical here, and we want to generate
* an image that spans about 3x the canvas width. We get to that
* width by using an image sample count of the screen width added
* on each side of the desired image center.
*/
const framepos_t center = req->start + ((req->end - req->start) / 2);
const framecnt_t image_samples = req->width;
/* we can request data from anywhere in the Source, between 0 and its length
*/
framepos_t sample_start = max (_region_start, (center - image_samples));
framepos_t sample_end = min (center + image_samples, region_end());
const int n_peaks = llrintf ((sample_end - sample_start)/ (req->samples_per_pixel));
boost::scoped_array<ARDOUR::PeakData> peaks (new PeakData[n_peaks]);
/* Note that Region::read_peaks() takes a start position based on an
offset into the Region's **SOURCE**, rather than an offset into
the Region itself.
*/
framecnt_t peaks_read = _region->read_peaks (peaks.get(), n_peaks,
sample_start, sample_end - sample_start,
req->channel,
req->samples_per_pixel);
req->image = Cairo::ImageSurface::create (Cairo::FORMAT_ARGB32, n_peaks, req->height);
/* make sure we record the sample positions that were actually used */
req->start = sample_start;
req->end = sample_end;
if (peaks_read > 0) {
if (_amplitude_above_axis != 1.0) {
for (framecnt_t i = 0; i < n_peaks; ++i) {
peaks[i].max *= _amplitude_above_axis;
peaks[i].min *= _amplitude_above_axis;
}
}
draw_image (req->image, peaks.get(), n_peaks, req);
} else {
draw_absent_image (req->image, peaks.get(), n_peaks);
}
}
if (in_render_thread && !req->should_stop()) {
DEBUG_TRACE (DEBUG::WaveView, string_compose ("done with request for %1 at %2 CR %3 req %4 range %5 .. %6\n", this, g_get_monotonic_time(), current_request, req, req->start, req->end));
const_cast<WaveView*>(this)->ImageReady (); /* emit signal */
}
return;
}
/** Given a waveform that starts at window x-coordinate @param wave_origin
* and the first pixel that we will actually draw @param draw_start, return
* the offset into an image of the entire waveform that we will need to use.
*
* Note: most of our cached images are NOT of the entire waveform, this is just
* computationally useful when determining which the sample range span for
* the image we need.
*/
static inline double
window_to_image (double wave_origin, double image_start)
{
return image_start - wave_origin;
}
void
WaveView::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
{
assert (_samples_per_pixel != 0);
if (!_region) {
return;
}
DEBUG_TRACE (DEBUG::WaveView, string_compose ("render %1 at %2\n", this, g_get_monotonic_time()));
/* a WaveView is intimately connected to an AudioRegion. It will
* display the waveform within the region, anywhere from the start of
* the region to its end.
*
* the area we've been aked to render may overlap with area covered
* by the region in any of the normal ways:
*
* - it may begin and end within the area covered by the region
* - it may start before and end after the area covered by region
* - it may start before and end within the area covered by the region
* - it may start within and end after the area covered by the region
* - it may be precisely coincident with the area covered by region.
*
* So let's start by determining the area covered by the region, in
* window coordinates. It begins at zero (in item coordinates for this
* waveview, and extends to region_length() / _samples_per_pixel.
*/
Rect self = item_to_window (Rect (0.0, 0.0, region_length() / _samples_per_pixel, _height));
// cerr << name << " RENDER " << area << " self = " << self << endl;
/* Now lets get the intersection with the area we've been asked to draw */
boost::optional<Rect> d = self.intersection (area);
if (!d) {
return;
}
Rect draw = d.get();
/* "draw" is now a rectangle that defines the rectangle we need to
* update/render the waveview into, in window coordinate space.
*/
/* window coordinates - pixels where x=0 is the left edge of the canvas
* window. We round down in case we were asked to
* draw "between" pixels at the start and/or end.
*/
double draw_start = floor (draw.x0);
const double draw_end = floor (draw.x1);
// cerr << "Need to draw " << draw_start << " .. " << draw_end << " vs. " << area << " and self = " << self << endl;
/* image coordnates: pixels where x=0 is the start of this waveview,
* wherever it may be positioned. thus image_start=N means "an image
* that begins N pixels after the start of region that this waveview is
* representing.
*/
const framepos_t image_start = window_to_image (self.x0, draw_start);
const framepos_t image_end = window_to_image (self.x0, draw_end);
// cerr << "Image/WV space: " << image_start << " .. " << image_end << endl;
/* sample coordinates - note, these are not subject to rounding error
*
* "sample_start = N" means "the first sample we need to represent is N
* samples after the first sample of the region"
*/
framepos_t sample_start = _region_start + (image_start * _samples_per_pixel);
framepos_t sample_end = _region_start + (image_end * _samples_per_pixel);
// cerr << "Sample space: " << sample_start << " .. " << sample_end << " @ " << _samples_per_pixel << " rs = " << _region_start << endl;
/* sample_start and sample_end are bounded by the region
* limits. sample_start, because of the was just computed, must already
* be greater than or equal to the _region_start value.
*/
sample_end = min (region_end(), sample_end);
// cerr << debug_name() << " will need image spanning " << sample_start << " .. " << sample_end << " region spans " << _region_start << " .. " << region_end() << endl;
double image_origin_in_self_coordinates;
boost::shared_ptr<WaveViewCache::Entry> image_to_draw;
if (_current_image) {
/* check it covers the right sample range */
if (_current_image->start > sample_start || _current_image->end < sample_end) {
/* doesn't cover the area we need ... reset */
_current_image.reset ();
} else {
/* timestamp our continuing use of this image/cache entry */
images->use (_region->audio_source (_channel), _current_image);
image_to_draw = _current_image;
}
}
if (!image_to_draw) {
/* look it up */
bool full_image;
image_to_draw = get_image (sample_start, sample_end, full_image);
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 image to draw = %2 (full? %3)\n", name, image_to_draw, full_image));
if (!image_to_draw) {
/* image not currently available. A redraw will be scheduled
when it is ready.
*/
return;
}
if (full_image) {
/* found an image that covers our entire sample range,
* so keep a reference to it.
*/
_current_image = image_to_draw;
}
}
/* compute the first pixel of the image that should be used when we
* render the specified range.
*/
image_origin_in_self_coordinates = (image_to_draw->start - _region_start) / _samples_per_pixel;
if (_start_shift && (sample_start == _region_start) && (self.x0 == draw.x0)) {
/* we are going to draw the first pixel for this region, but
we may not want this to overlap a border around the
waveform. If so, _start_shift will be set.
*/
//cerr << name.substr (23) << " ss = " << sample_start << " rs = " << _region_start << " sf = " << _start_shift << " ds = " << draw_start << " self = " << self << " draw = " << draw << endl;
//draw_start += _start_shift;
//image_origin_in_self_coordinates += _start_shift;
}
/* the image may only be a best-effort ... it may not span the entire
* range requested, though it is guaranteed to cover the start. So
* determine how many pixels we can actually draw.
*/
double draw_width;
if (image_to_draw != _current_image) {
/* the image is guaranteed to start at or before
* draw_start. But if it starts before draw_start, that reduces
* the maximum available width we can render with.
*
* so .. clamp the draw width to the smaller of what we need to
* draw or the available width of the image.
*/
draw_width = min ((double) image_to_draw->image->get_width() - (draw_start - image_to_draw->start),
(draw_end - draw_start));
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 draw just %2 of %3 (iwidth %4 off %5 img @ %6 rs @ %7)\n", name, draw_width, (draw_end - draw_start),
image_to_draw->image->get_width(), image_origin_in_self_coordinates,
image_to_draw->start, _region_start));
} else {
draw_width = draw_end - draw_start;
DEBUG_TRACE (DEBUG::WaveView, string_compose ("use current image, span entire render width %1..%2\n", draw_start, draw_end));
}
context->rectangle (draw_start, draw.y0, draw_width, draw.height());
/* round image origin position to an exact pixel in device space to
* avoid blurring
*/
double x = self.x0 + image_origin_in_self_coordinates;
double y = self.y0;
context->user_to_device (x, y);
x = round (x);
y = round (y);
context->device_to_user (x, y);
/* the coordinates specify where in "user coordinates" (i.e. what we
* generally call "canvas coordinates" in this code) the image origin
* will appear. So specifying (10,10) will put the upper left corner of
* the image at (10,10) in user space.
*/
context->set_source (image_to_draw->image, x, y);
context->fill ();
/* image obtained, some of it painted to display: we are rendered.
Future calls to get_image_in_thread are now meaningful.
*/
rendered = true;
}
void
WaveView::compute_bounding_box () const
{
if (_region) {
_bounding_box = Rect (0.0, 0.0, region_length() / _samples_per_pixel, _height);
} else {
_bounding_box = boost::optional<Rect> ();
}
_bounding_box_dirty = false;
}
void
WaveView::set_height (Distance height)
{
if (height != _height) {
begin_change ();
invalidate_image_cache ();
_height = height;
get_image_in_thread = true;
_bounding_box_dirty = true;
end_change ();
}
}
void
WaveView::set_channel (int channel)
{
if (channel != _channel) {
begin_change ();
invalidate_image_cache ();
_channel = channel;
_bounding_box_dirty = true;
end_change ();
}
}
void
WaveView::set_logscaled (bool yn)
{
if (_logscaled != yn) {
begin_visual_change ();
invalidate_image_cache ();
_logscaled = yn;
end_visual_change ();
}
}
void
WaveView::gain_changed ()
{
begin_visual_change ();
invalidate_image_cache ();
_region_amplitude = _region->scale_amplitude ();
get_image_in_thread = true;
end_visual_change ();
}
void
WaveView::set_zero_color (Color c)
{
if (_zero_color != c) {
begin_visual_change ();
invalidate_image_cache ();
_zero_color = c;
end_visual_change ();
}
}
void
WaveView::set_clip_color (Color c)
{
if (_clip_color != c) {
begin_visual_change ();
invalidate_image_cache ();
_clip_color = c;
end_visual_change ();
}
}
void
WaveView::set_show_zero_line (bool yn)
{
if (_show_zero != yn) {
begin_visual_change ();
invalidate_image_cache ();
_show_zero = yn;
end_visual_change ();
}
}
void
WaveView::set_shape (Shape s)
{
if (_shape != s) {
begin_visual_change ();
invalidate_image_cache ();
_shape = s;
end_visual_change ();
}
}
void
WaveView::set_amplitude_above_axis (double a)
{
if (fabs (_amplitude_above_axis - a) > 0.01) {
begin_visual_change ();
invalidate_image_cache ();
_amplitude_above_axis = a;
get_image_in_thread = true;
end_visual_change ();
}
}
void
WaveView::set_global_shape (Shape s)
{
if (_global_shape != s) {
_global_shape = s;
VisualPropertiesChanged (); /* EMIT SIGNAL */
}
}
void
WaveView::set_global_logscaled (bool yn)
{
if (_global_logscaled != yn) {
_global_logscaled = yn;
VisualPropertiesChanged (); /* EMIT SIGNAL */
}
}
framecnt_t
WaveView::region_length() const
{
return _region->length() - (_region_start - _region->start());
}
framepos_t
WaveView::region_end() const
{
return _region_start + region_length();
}
void
WaveView::set_region_start (frameoffset_t start)
{
if (!_region) {
return;
}
if (_region_start == start) {
return;
}
begin_change ();
_region_start = start;
_bounding_box_dirty = true;
end_change ();
}
void
WaveView::region_resized ()
{
/* Called when the region start or end (thus length) has changed.
*/
if (!_region) {
return;
}
begin_change ();
_region_start = _region->start();
_bounding_box_dirty = true;
end_change ();
}
void
WaveView::set_global_gradient_depth (double depth)
{
if (_global_gradient_depth != depth) {
_global_gradient_depth = depth;
VisualPropertiesChanged (); /* EMIT SIGNAL */
}
}
void
WaveView::set_global_show_waveform_clipping (bool yn)
{
if (_global_show_waveform_clipping != yn) {
_global_show_waveform_clipping = yn;
ClipLevelChanged ();
}
}
void
WaveView::set_start_shift (double pixels)
{
if (pixels < 0) {
return;
}
begin_visual_change ();
_start_shift = pixels;
end_visual_change ();
}
void
WaveView::cancel_my_render_request () const
{
if (!images) {
return;
}
/* try to stop any current rendering of the request, or prevent it from
* ever starting up.
*/
if (current_request) {
current_request->cancel ();
}
Glib::Threads::Mutex::Lock lm (request_queue_lock);
/* now remove it from the queue and reset our request pointer so that
have no outstanding request (that we know about)
*/
request_queue.erase (this);
current_request.reset ();
DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 now has no request %2\n", this));
}
void
WaveView::set_image_cache_size (uint64_t sz)
{
if (!images) {
images = new WaveViewCache;
}
images->set_image_cache_threshold (sz);
}
/*-------------------------------------------------*/
void
WaveView::start_drawing_thread ()
{
if (!_drawing_thread) {
_drawing_thread = Glib::Threads::Thread::create (sigc::ptr_fun (WaveView::drawing_thread));
}
}
void
WaveView::stop_drawing_thread ()
{
if (_drawing_thread) {
Glib::Threads::Mutex::Lock lm (request_queue_lock);
g_atomic_int_set (&drawing_thread_should_quit, 1);
request_cond.signal ();
}
}
void
WaveView::drawing_thread ()
{
using namespace Glib::Threads;
WaveView const * requestor;
Mutex::Lock lm (request_queue_lock);
bool run = true;
while (run) {
/* remember that we hold the lock at this point, no matter what */
if (g_atomic_int_get (&drawing_thread_should_quit)) {
break;
}
if (request_queue.empty()) {
request_cond.wait (request_queue_lock);
}
/* remove the request from the queue (remember: the "request"
* is just a pointer to a WaveView object)
*/
requestor = *(request_queue.begin());
request_queue.erase (request_queue.begin());
DEBUG_TRACE (DEBUG::WaveView, string_compose ("start request for %1 at %2\n", requestor, g_get_monotonic_time()));
boost::shared_ptr<WaveViewThreadRequest> req = requestor->current_request;
if (!req) {
continue;
}
/* Generate an image. Unlock the request queue lock
* while we do this, so that other things can happen
* as we do rendering.
*/
request_queue_lock.unlock (); /* some RAII would be good here */
try {
requestor->generate_image (req, true);
} catch (...) {
req->image.clear(); /* just in case it was set before the exception, whatever it was */
}
request_queue_lock.lock ();
req.reset (); /* drop/delete request as appropriate */
}
/* thread is vanishing */
_drawing_thread = 0;
}
/*-------------------------------------------------*/
WaveViewCache::WaveViewCache ()
: image_cache_size (0)
, _image_cache_threshold (100 * 1048576) /* bytes */
{
}
WaveViewCache::~WaveViewCache ()
{
}
boost::shared_ptr<WaveViewCache::Entry>
WaveViewCache::lookup_image (boost::shared_ptr<ARDOUR::AudioSource> src,
framepos_t start, framepos_t end,
int channel,
Coord height,
float amplitude,
Color fill_color,
double samples_per_pixel,
bool& full_coverage)
{
ImageCache::iterator x;
if ((x = cache_map.find (src)) == cache_map.end ()) {
/* nothing in the cache for this audio source at all */
return boost::shared_ptr<WaveViewCache::Entry> ();
}
CacheLine& caches = x->second;
boost::shared_ptr<Entry> best_partial;
framecnt_t max_coverage = 0;
/* Find a suitable ImageSurface, if it exists.
*/
for (CacheLine::iterator c = caches.begin(); c != caches.end(); ++c) {
boost::shared_ptr<Entry> e (*c);
if (channel != e->channel
|| height != e->height
|| amplitude != e->amplitude
|| samples_per_pixel != e->samples_per_pixel
|| fill_color != e->fill_color) {
continue;
}
switch (Evoral::coverage (start, end, e->start, e->end)) {
case Evoral::OverlapExternal: /* required range is inside image range */
DEBUG_TRACE (DEBUG::WaveView, string_compose ("found image spanning %1..%2 covers %3..%4\n",
e->start, e->end, start, end));
use (src, e);
full_coverage = true;
return e;
case Evoral::OverlapStart: /* required range start is covered by image range */
if ((e->end - start) > max_coverage) {
best_partial = e;
max_coverage = e->end - start;
}
break;
case Evoral::OverlapNone:
case Evoral::OverlapEnd:
case Evoral::OverlapInternal:
break;
}
}
if (best_partial) {
DEBUG_TRACE (DEBUG::WaveView, string_compose ("found PARTIAL image spanning %1..%2 partially covers %3..%4\n",
best_partial->start, best_partial->end, start, end));
use (src, best_partial);
full_coverage = false;
return best_partial;
}
return boost::shared_ptr<Entry> ();
}
void
WaveViewCache::consolidate_image_cache (boost::shared_ptr<ARDOUR::AudioSource> src,
int channel,
Coord height,
float amplitude,
Color fill_color,
double samples_per_pixel)
{
list <uint32_t> deletion_list;
uint32_t other_entries = 0;
ImageCache::iterator x;
/* MUST BE CALLED FROM (SINGLE) GUI THREAD */
if ((x = cache_map.find (src)) == cache_map.end ()) {
return;
}
CacheLine& caches = x->second;
for (CacheLine::iterator c1 = caches.begin(); c1 != caches.end(); ) {
CacheLine::iterator nxt = c1;
++nxt;
boost::shared_ptr<Entry> e1 (*c1);
if (channel != e1->channel
|| height != e1->height
|| amplitude != e1->amplitude
|| samples_per_pixel != e1->samples_per_pixel
|| fill_color != e1->fill_color) {
/* doesn't match current properties, ignore and move on
* to the next one.
*/
other_entries++;
c1 = nxt;
continue;
}
/* c1 now points to a cached image entry that matches current
* properties. Check all subsequent cached imaged entries to
* see if there are others that also match but represent
* subsets of the range covered by this one.
*/
for (CacheLine::iterator c2 = c1; c2 != caches.end(); ) {
CacheLine::iterator nxt2 = c2;
++nxt2;
boost::shared_ptr<Entry> e2 (*c2);
if (e1 == e2 || channel != e2->channel
|| height != e2->height
|| amplitude != e2->amplitude
|| samples_per_pixel != e2->samples_per_pixel
|| fill_color != e2->fill_color) {
/* properties do not match, ignore for the
* purposes of consolidation.
*/
c2 = nxt2;
continue;
}
if (e2->start >= e1->start && e2->end <= e1->end) {
/* c2 is fully contained by c1, so delete it */
caches.erase (c2);
/* and re-start the whole iteration */
nxt = caches.begin ();
break;
}
c2 = nxt2;
}
c1 = nxt;
}
}
void
WaveViewCache::use (boost::shared_ptr<ARDOUR::AudioSource> src, boost::shared_ptr<Entry> ce)
{
ce->timestamp = g_get_monotonic_time ();
}
void
WaveViewCache::add (boost::shared_ptr<ARDOUR::AudioSource> src, boost::shared_ptr<Entry> ce)
{
/* MUST BE CALLED FROM (SINGLE) GUI THREAD */
Cairo::RefPtr<Cairo::ImageSurface> img (ce->image);
image_cache_size += img->get_height() * img->get_width () * 4; /* 4 = bytes per FORMAT_ARGB32 pixel */
if (cache_full()) {
cache_flush ();
}
ce->timestamp = g_get_monotonic_time ();
cache_map[src].push_back (ce);
}
uint64_t
WaveViewCache::compute_image_cache_size()
{
uint64_t total = 0;
for (ImageCache::iterator s = cache_map.begin(); s != cache_map.end(); ++s) {
CacheLine& per_source_cache (s->second);
for (CacheLine::iterator c = per_source_cache.begin(); c != per_source_cache.end(); ++c) {
Cairo::RefPtr<Cairo::ImageSurface> img ((*c)->image);
total += img->get_height() * img->get_width() * 4; /* 4 = bytes per FORMAT_ARGB32 pixel */
}
}
return total;
}
bool
WaveViewCache::cache_full()
{
return image_cache_size > _image_cache_threshold;
}
void
WaveViewCache::cache_flush ()
{
/* Build a sortable list of all cache entries */
CacheList cache_list;
for (ImageCache::const_iterator cm = cache_map.begin(); cm != cache_map.end(); ++cm) {
for (CacheLine::const_iterator cl = cm->second.begin(); cl != cm->second.end(); ++cl) {
cache_list.push_back (make_pair (cm->first, *cl));
}
}
/* sort list in LRU order */
SortByTimestamp sorter;
sort (cache_list.begin(), cache_list.end(), sorter);
while (image_cache_size > _image_cache_threshold && !cache_map.empty() && !cache_list.empty()) {
ListEntry& le (cache_list.front());
ImageCache::iterator x;
if ((x = cache_map.find (le.first)) != cache_map.end ()) {
CacheLine& cl = x->second;
for (CacheLine::iterator c = cl.begin(); c != cl.end(); ++c) {
if (*c == le.second) {
DEBUG_TRACE (DEBUG::WaveView, string_compose ("Removing cache line entry for %1\n", x->first->name()));
/* Remove this entry from this cache line */
cl.erase (c);
if (cl.empty()) {
/* remove cache line from main cache: no more entries */
cache_map.erase (x);
}
break;
}
}
Cairo::RefPtr<Cairo::ImageSurface> img (le.second->image);
uint64_t size = img->get_height() * img->get_width() * 4; /* 4 = bytes per FORMAT_ARGB32 pixel */
if (image_cache_size > size) {
image_cache_size -= size;
} else {
image_cache_size = 0;
}
DEBUG_TRACE (DEBUG::WaveView, string_compose ("cache shrunk to %1\n", image_cache_size));
}
/* Remove from the linear list, even if we didn't find it in
* the actual cache_mao
*/
cache_list.erase (cache_list.begin());
}
}
void
WaveViewCache::set_image_cache_threshold (uint64_t sz)
{
DEBUG_TRACE (DEBUG::WaveView, string_compose ("new image cache size \n", sz));
_image_cache_threshold = sz;
cache_flush ();
}