507 lines
16 KiB
C
507 lines
16 KiB
C
/*
|
|
* August 24, 1998
|
|
* Copyright (C) 1998 Juergen Mueller And Sundry Contributors
|
|
* This source code is freely redistributable and may be used for
|
|
* any purpose. This copyright notice must be maintained.
|
|
* Juergen Mueller And Sundry Contributors are not responsible for
|
|
* the consequences of using this software.
|
|
*/
|
|
|
|
/*
|
|
|
|
CHANGES
|
|
|
|
- Adapted for fluidsynth, Peter Hanappe, March 2002
|
|
|
|
- Variable delay line implementation using bandlimited
|
|
interpolation, code reorganization: Markus Nentwig May 2002
|
|
|
|
*/
|
|
|
|
|
|
/*
|
|
* Chorus effect.
|
|
*
|
|
* Flow diagram scheme for n delays ( 1 <= n <= MAX_CHORUS ):
|
|
*
|
|
* * gain-in ___
|
|
* ibuff -----+--------------------------------------------->| |
|
|
* | _________ | |
|
|
* | | | * level 1 | |
|
|
* +---->| delay 1 |----------------------------->| |
|
|
* | |_________| | |
|
|
* | /|\ | |
|
|
* : | | |
|
|
* : +-----------------+ +--------------+ | + |
|
|
* : | Delay control 1 |<--| mod. speed 1 | | |
|
|
* : +-----------------+ +--------------+ | |
|
|
* | _________ | |
|
|
* | | | * level n | |
|
|
* +---->| delay n |----------------------------->| |
|
|
* |_________| | |
|
|
* /|\ |___|
|
|
* | |
|
|
* +-----------------+ +--------------+ | * gain-out
|
|
* | Delay control n |<--| mod. speed n | |
|
|
* +-----------------+ +--------------+ +----->obuff
|
|
*
|
|
*
|
|
* The delay i is controlled by a sine or triangle modulation i ( 1 <= i <= n).
|
|
*
|
|
* The delay of each block is modulated between 0..depth ms
|
|
*
|
|
*/
|
|
|
|
|
|
/* Variable delay line implementation
|
|
* ==================================
|
|
*
|
|
* The modulated delay needs the value of the delayed signal between
|
|
* samples. A lowpass filter is used to obtain intermediate values
|
|
* between samples (bandlimited interpolation). The sample pulse
|
|
* train is convoluted with the impulse response of the low pass
|
|
* filter (sinc function). To make it work with a small number of
|
|
* samples, the sinc function is windowed (Hamming window).
|
|
*
|
|
*/
|
|
|
|
#include "fluid_chorus.h"
|
|
#include "fluid_sys.h"
|
|
|
|
#define MAX_CHORUS 99
|
|
#define MAX_DELAY 100
|
|
#define MAX_DEPTH 10
|
|
#define MIN_SPEED_HZ 0.29
|
|
#define MAX_SPEED_HZ 5
|
|
|
|
/* Length of one delay line in samples:
|
|
* Set through MAX_SAMPLES_LN2.
|
|
* For example:
|
|
* MAX_SAMPLES_LN2=12
|
|
* => MAX_SAMPLES=pow(2,12)=4096
|
|
* => MAX_SAMPLES_ANDMASK=4095
|
|
*/
|
|
#define MAX_SAMPLES_LN2 12
|
|
|
|
#define MAX_SAMPLES (1 << (MAX_SAMPLES_LN2-1))
|
|
#define MAX_SAMPLES_ANDMASK (MAX_SAMPLES-1)
|
|
|
|
|
|
/* Interpolate how many steps between samples? Must be power of two
|
|
For example: 8 => use a resolution of 256 steps between any two
|
|
samples
|
|
*/
|
|
#define INTERPOLATION_SUBSAMPLES_LN2 8
|
|
#define INTERPOLATION_SUBSAMPLES (1 << (INTERPOLATION_SUBSAMPLES_LN2-1))
|
|
#define INTERPOLATION_SUBSAMPLES_ANDMASK (INTERPOLATION_SUBSAMPLES-1)
|
|
|
|
/* Use how many samples for interpolation? Must be odd. '7' sounds
|
|
relatively clean, when listening to the modulated delay signal
|
|
alone. For a demo on aliasing try '1' With '3', the aliasing is
|
|
still quite pronounced for some input frequencies
|
|
*/
|
|
#define INTERPOLATION_SAMPLES 5
|
|
|
|
/* Private data for SKEL file */
|
|
struct _fluid_chorus_t {
|
|
int type;
|
|
fluid_real_t depth_ms;
|
|
fluid_real_t level;
|
|
fluid_real_t speed_Hz;
|
|
int number_blocks;
|
|
|
|
fluid_real_t *chorusbuf;
|
|
int counter;
|
|
long phase[MAX_CHORUS];
|
|
long modulation_period_samples;
|
|
int *lookup_tab;
|
|
fluid_real_t sample_rate;
|
|
|
|
/* sinc lookup table */
|
|
fluid_real_t sinc_table[INTERPOLATION_SAMPLES][INTERPOLATION_SUBSAMPLES];
|
|
};
|
|
|
|
static void fluid_chorus_triangle(int *buf, int len, int depth);
|
|
static void fluid_chorus_sine(int *buf, int len, int depth);
|
|
|
|
|
|
fluid_chorus_t*
|
|
new_fluid_chorus(fluid_real_t sample_rate)
|
|
{
|
|
int i; int ii;
|
|
fluid_chorus_t* chorus;
|
|
|
|
chorus = FLUID_NEW(fluid_chorus_t);
|
|
if (chorus == NULL) {
|
|
fluid_log(FLUID_PANIC, "chorus: Out of memory");
|
|
return NULL;
|
|
}
|
|
|
|
FLUID_MEMSET(chorus, 0, sizeof(fluid_chorus_t));
|
|
|
|
chorus->sample_rate = sample_rate;
|
|
|
|
/* Lookup table for the SI function (impulse response of an ideal low pass) */
|
|
|
|
/* i: Offset in terms of whole samples */
|
|
for (i = 0; i < INTERPOLATION_SAMPLES; i++){
|
|
|
|
/* ii: Offset in terms of fractional samples ('subsamples') */
|
|
for (ii = 0; ii < INTERPOLATION_SUBSAMPLES; ii++){
|
|
/* Move the origin into the center of the table */
|
|
double i_shifted = ((double) i- ((double) INTERPOLATION_SAMPLES) / 2.
|
|
+ (double) ii / (double) INTERPOLATION_SUBSAMPLES);
|
|
if (fabs(i_shifted) < 0.000001) {
|
|
/* sinc(0) cannot be calculated straightforward (limit needed
|
|
for 0/0) */
|
|
chorus->sinc_table[i][ii] = (fluid_real_t)1.;
|
|
|
|
} else {
|
|
chorus->sinc_table[i][ii] = (fluid_real_t)sin(i_shifted * M_PI) / (M_PI * i_shifted);
|
|
/* Hamming window */
|
|
chorus->sinc_table[i][ii] *= (fluid_real_t)0.5 * (1.0 + cos(2.0 * M_PI * i_shifted / (fluid_real_t)INTERPOLATION_SAMPLES));
|
|
};
|
|
};
|
|
};
|
|
|
|
/* allocate lookup tables */
|
|
chorus->lookup_tab = FLUID_ARRAY(int, (int) (chorus->sample_rate / MIN_SPEED_HZ));
|
|
if (chorus->lookup_tab == NULL) {
|
|
fluid_log(FLUID_PANIC, "chorus: Out of memory");
|
|
goto error_recovery;
|
|
}
|
|
|
|
/* allocate sample buffer */
|
|
|
|
chorus->chorusbuf = FLUID_ARRAY(fluid_real_t, MAX_SAMPLES);
|
|
if (chorus->chorusbuf == NULL) {
|
|
fluid_log(FLUID_PANIC, "chorus: Out of memory");
|
|
goto error_recovery;
|
|
}
|
|
|
|
if (fluid_chorus_init(chorus) != FLUID_OK){
|
|
goto error_recovery;
|
|
};
|
|
|
|
return chorus;
|
|
|
|
error_recovery:
|
|
delete_fluid_chorus(chorus);
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
delete_fluid_chorus(fluid_chorus_t* chorus)
|
|
{
|
|
if (chorus == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (chorus->chorusbuf != NULL) {
|
|
FLUID_FREE(chorus->chorusbuf);
|
|
}
|
|
|
|
if (chorus->lookup_tab != NULL) {
|
|
FLUID_FREE(chorus->lookup_tab);
|
|
}
|
|
|
|
FLUID_FREE(chorus);
|
|
}
|
|
|
|
int
|
|
fluid_chorus_init(fluid_chorus_t* chorus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_SAMPLES; i++) {
|
|
chorus->chorusbuf[i] = 0.0;
|
|
}
|
|
|
|
/* initialize the chorus with the default settings */
|
|
fluid_chorus_set (chorus, FLUID_CHORUS_SET_ALL, FLUID_CHORUS_DEFAULT_N,
|
|
FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED,
|
|
FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_MOD_SINE);
|
|
return FLUID_OK;
|
|
}
|
|
|
|
void
|
|
fluid_chorus_reset(fluid_chorus_t* chorus)
|
|
{
|
|
fluid_chorus_init(chorus);
|
|
}
|
|
|
|
/**
|
|
* Set one or more chorus parameters.
|
|
* @param chorus Chorus instance
|
|
* @param set Flags indicating which chorus parameters to set (#fluid_chorus_set_t)
|
|
* @param nr Chorus voice count (0-99, CPU time consumption proportional to
|
|
* this value)
|
|
* @param level Chorus level (0.0-10.0)
|
|
* @param speed Chorus speed in Hz (0.29-5.0)
|
|
* @param depth_ms Chorus depth (max value depends on synth sample rate,
|
|
* 0.0-21.0 is safe for sample rate values up to 96KHz)
|
|
* @param type Chorus waveform type (#fluid_chorus_mod)
|
|
*/
|
|
void
|
|
fluid_chorus_set(fluid_chorus_t* chorus, int set, int nr, float level,
|
|
float speed, float depth_ms, int type)
|
|
{
|
|
int modulation_depth_samples;
|
|
int i;
|
|
|
|
if (set & FLUID_CHORUS_SET_NR) chorus->number_blocks = nr;
|
|
if (set & FLUID_CHORUS_SET_LEVEL) chorus->level = level;
|
|
if (set & FLUID_CHORUS_SET_SPEED) chorus->speed_Hz = speed;
|
|
if (set & FLUID_CHORUS_SET_DEPTH) chorus->depth_ms = depth_ms;
|
|
if (set & FLUID_CHORUS_SET_TYPE) chorus->type = type;
|
|
|
|
if (chorus->number_blocks < 0) {
|
|
fluid_log(FLUID_WARN, "chorus: number blocks must be >=0! Setting value to 0.");
|
|
chorus->number_blocks = 0;
|
|
} else if (chorus->number_blocks > MAX_CHORUS) {
|
|
fluid_log(FLUID_WARN, "chorus: number blocks larger than max. allowed! Setting value to %d.",
|
|
MAX_CHORUS);
|
|
chorus->number_blocks = MAX_CHORUS;
|
|
}
|
|
|
|
if (chorus->speed_Hz < MIN_SPEED_HZ) {
|
|
fluid_log(FLUID_WARN, "chorus: speed is too low (min %f)! Setting value to min.",
|
|
(double) MIN_SPEED_HZ);
|
|
chorus->speed_Hz = MIN_SPEED_HZ;
|
|
} else if (chorus->speed_Hz > MAX_SPEED_HZ) {
|
|
fluid_log(FLUID_WARN, "chorus: speed must be below %f Hz! Setting value to max.",
|
|
(double) MAX_SPEED_HZ);
|
|
chorus->speed_Hz = MAX_SPEED_HZ;
|
|
}
|
|
|
|
if (chorus->depth_ms < 0.0) {
|
|
fluid_log(FLUID_WARN, "chorus: depth must be positive! Setting value to 0.");
|
|
chorus->depth_ms = 0.0;
|
|
}
|
|
/* Depth: Check for too high value through modulation_depth_samples. */
|
|
|
|
if (chorus->level < 0.0) {
|
|
fluid_log(FLUID_WARN, "chorus: level must be positive! Setting value to 0.");
|
|
chorus->level = 0.0;
|
|
} else if (chorus->level > 10) {
|
|
fluid_log(FLUID_WARN, "chorus: level must be < 10. A reasonable level is << 1! "
|
|
"Setting it to 0.1.");
|
|
chorus->level = 0.1;
|
|
}
|
|
|
|
/* The modulating LFO goes through a full period every x samples: */
|
|
chorus->modulation_period_samples = chorus->sample_rate / chorus->speed_Hz;
|
|
|
|
/* The variation in delay time is x: */
|
|
modulation_depth_samples = (int)
|
|
(chorus->depth_ms / 1000.0 /* convert modulation depth in ms to s*/
|
|
* chorus->sample_rate);
|
|
|
|
if (modulation_depth_samples > MAX_SAMPLES) {
|
|
fluid_log(FLUID_WARN, "chorus: Too high depth. Setting it to max (%d).", MAX_SAMPLES);
|
|
modulation_depth_samples = MAX_SAMPLES;
|
|
}
|
|
|
|
/* initialize LFO table */
|
|
if (chorus->type == FLUID_CHORUS_MOD_SINE) {
|
|
fluid_chorus_sine(chorus->lookup_tab, chorus->modulation_period_samples,
|
|
modulation_depth_samples);
|
|
} else if (chorus->type == FLUID_CHORUS_MOD_TRIANGLE) {
|
|
fluid_chorus_triangle(chorus->lookup_tab, chorus->modulation_period_samples,
|
|
modulation_depth_samples);
|
|
} else {
|
|
fluid_log(FLUID_WARN, "chorus: Unknown modulation type. Using sinewave.");
|
|
chorus->type = FLUID_CHORUS_MOD_SINE;
|
|
fluid_chorus_sine(chorus->lookup_tab, chorus->modulation_period_samples,
|
|
modulation_depth_samples);
|
|
}
|
|
|
|
for (i = 0; i < chorus->number_blocks; i++) {
|
|
/* Set the phase of the chorus blocks equally spaced */
|
|
chorus->phase[i] = (int) ((double) chorus->modulation_period_samples
|
|
* (double) i / (double) chorus->number_blocks);
|
|
}
|
|
|
|
/* Start of the circular buffer */
|
|
chorus->counter = 0;
|
|
}
|
|
|
|
|
|
void fluid_chorus_processmix(fluid_chorus_t* chorus, fluid_real_t *in,
|
|
fluid_real_t *left_out, fluid_real_t *right_out)
|
|
{
|
|
int sample_index;
|
|
int i;
|
|
fluid_real_t d_in, d_out;
|
|
|
|
for (sample_index = 0; sample_index < FLUID_BUFSIZE; sample_index++) {
|
|
|
|
d_in = in[sample_index];
|
|
d_out = 0.0f;
|
|
|
|
# if 0
|
|
/* Debug: Listen to the chorus signal only */
|
|
left_out[sample_index]=0;
|
|
right_out[sample_index]=0;
|
|
#endif
|
|
|
|
/* Write the current sample into the circular buffer */
|
|
chorus->chorusbuf[chorus->counter] = d_in;
|
|
|
|
for (i = 0; i < chorus->number_blocks; i++) {
|
|
int ii;
|
|
/* Calculate the delay in subsamples for the delay line of chorus block nr. */
|
|
|
|
/* The value in the lookup table is so, that this expression
|
|
* will always be positive. It will always include a number of
|
|
* full periods of MAX_SAMPLES*INTERPOLATION_SUBSAMPLES to
|
|
* remain positive at all times. */
|
|
int pos_subsamples = (INTERPOLATION_SUBSAMPLES * chorus->counter
|
|
- chorus->lookup_tab[chorus->phase[i]]);
|
|
|
|
int pos_samples = pos_subsamples/INTERPOLATION_SUBSAMPLES;
|
|
|
|
/* modulo divide by INTERPOLATION_SUBSAMPLES */
|
|
pos_subsamples &= INTERPOLATION_SUBSAMPLES_ANDMASK;
|
|
|
|
for (ii = 0; ii < INTERPOLATION_SAMPLES; ii++){
|
|
/* Add the delayed signal to the chorus sum d_out Note: The
|
|
* delay in the delay line moves backwards for increasing
|
|
* delay!*/
|
|
|
|
/* The & in chorusbuf[...] is equivalent to a division modulo
|
|
MAX_SAMPLES, only faster. */
|
|
d_out += chorus->chorusbuf[pos_samples & MAX_SAMPLES_ANDMASK]
|
|
* chorus->sinc_table[ii][pos_subsamples];
|
|
|
|
pos_samples--;
|
|
};
|
|
/* Cycle the phase of the modulating LFO */
|
|
chorus->phase[i]++;
|
|
chorus->phase[i] %= (chorus->modulation_period_samples);
|
|
} /* foreach chorus block */
|
|
|
|
d_out *= chorus->level;
|
|
|
|
/* Add the chorus sum d_out to output */
|
|
left_out[sample_index] += d_out;
|
|
right_out[sample_index] += d_out;
|
|
|
|
/* Move forward in circular buffer */
|
|
chorus->counter++;
|
|
chorus->counter %= MAX_SAMPLES;
|
|
|
|
} /* foreach sample */
|
|
}
|
|
|
|
/* Duplication of code ... (replaces sample data instead of mixing) */
|
|
void fluid_chorus_processreplace(fluid_chorus_t* chorus, fluid_real_t *in,
|
|
fluid_real_t *left_out, fluid_real_t *right_out)
|
|
{
|
|
int sample_index;
|
|
int i;
|
|
fluid_real_t d_in, d_out;
|
|
|
|
for (sample_index = 0; sample_index < FLUID_BUFSIZE; sample_index++) {
|
|
|
|
d_in = in[sample_index];
|
|
d_out = 0.0f;
|
|
|
|
# if 0
|
|
/* Debug: Listen to the chorus signal only */
|
|
left_out[sample_index]=0;
|
|
right_out[sample_index]=0;
|
|
#endif
|
|
|
|
/* Write the current sample into the circular buffer */
|
|
chorus->chorusbuf[chorus->counter] = d_in;
|
|
|
|
for (i = 0; i < chorus->number_blocks; i++) {
|
|
int ii;
|
|
/* Calculate the delay in subsamples for the delay line of chorus block nr. */
|
|
|
|
/* The value in the lookup table is so, that this expression
|
|
* will always be positive. It will always include a number of
|
|
* full periods of MAX_SAMPLES*INTERPOLATION_SUBSAMPLES to
|
|
* remain positive at all times. */
|
|
int pos_subsamples = (INTERPOLATION_SUBSAMPLES * chorus->counter
|
|
- chorus->lookup_tab[chorus->phase[i]]);
|
|
|
|
int pos_samples = pos_subsamples / INTERPOLATION_SUBSAMPLES;
|
|
|
|
/* modulo divide by INTERPOLATION_SUBSAMPLES */
|
|
pos_subsamples &= INTERPOLATION_SUBSAMPLES_ANDMASK;
|
|
|
|
for (ii = 0; ii < INTERPOLATION_SAMPLES; ii++){
|
|
/* Add the delayed signal to the chorus sum d_out Note: The
|
|
* delay in the delay line moves backwards for increasing
|
|
* delay!*/
|
|
|
|
/* The & in chorusbuf[...] is equivalent to a division modulo
|
|
MAX_SAMPLES, only faster. */
|
|
d_out += chorus->chorusbuf[pos_samples & MAX_SAMPLES_ANDMASK]
|
|
* chorus->sinc_table[ii][pos_subsamples];
|
|
|
|
pos_samples--;
|
|
};
|
|
/* Cycle the phase of the modulating LFO */
|
|
chorus->phase[i]++;
|
|
chorus->phase[i] %= (chorus->modulation_period_samples);
|
|
} /* foreach chorus block */
|
|
|
|
d_out *= chorus->level;
|
|
|
|
/* Store the chorus sum d_out to output */
|
|
left_out[sample_index] = d_out;
|
|
right_out[sample_index] = d_out;
|
|
|
|
/* Move forward in circular buffer */
|
|
chorus->counter++;
|
|
chorus->counter %= MAX_SAMPLES;
|
|
|
|
} /* foreach sample */
|
|
}
|
|
|
|
/* Purpose:
|
|
*
|
|
* Calculates a modulation waveform (sine) Its value ( modulo
|
|
* MAXSAMPLES) varies between 0 and depth*INTERPOLATION_SUBSAMPLES.
|
|
* Its period length is len. The waveform data will be used modulo
|
|
* MAXSAMPLES only. Since MAXSAMPLES is substracted from the waveform
|
|
* a couple of times here, the resulting (current position in
|
|
* buffer)-(waveform sample) will always be positive.
|
|
*/
|
|
static void
|
|
fluid_chorus_sine(int *buf, int len, int depth)
|
|
{
|
|
int i;
|
|
double val;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
val = sin((double) i / (double)len * 2.0 * M_PI);
|
|
buf[i] = (int) ((1.0 + val) * (double) depth / 2.0 * (double) INTERPOLATION_SUBSAMPLES);
|
|
buf[i] -= 3* MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
|
|
// printf("%i %i\n",i,buf[i]);
|
|
}
|
|
}
|
|
|
|
/* Purpose:
|
|
* Calculates a modulation waveform (triangle)
|
|
* See fluid_chorus_sine for comments.
|
|
*/
|
|
static void
|
|
fluid_chorus_triangle(int *buf, int len, int depth)
|
|
{
|
|
int i=0;
|
|
int ii=len-1;
|
|
double val;
|
|
double val2;
|
|
|
|
while (i <= ii){
|
|
val = i * 2.0 / len * (double)depth * (double) INTERPOLATION_SUBSAMPLES;
|
|
val2= (int) (val + 0.5) - 3 * MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
|
|
buf[i++] = (int) val2;
|
|
buf[ii--] = (int) val2;
|
|
}
|
|
}
|