424 lines
9.8 KiB
C++
424 lines
9.8 KiB
C++
/*
|
|
Copyright (C) 2013 Paul Davis
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
#include <exception>
|
|
#include <algorithm>
|
|
|
|
#include "canvas/curve.h"
|
|
|
|
using namespace ArdourCanvas;
|
|
using std::min;
|
|
using std::max;
|
|
|
|
Curve::Curve (Group* parent)
|
|
: Item (parent)
|
|
, PolyItem (parent)
|
|
, Fill (parent)
|
|
, n_samples (0)
|
|
, n_segments (512)
|
|
{
|
|
set_n_samples (256);
|
|
}
|
|
|
|
/** Set the number of points to compute when we smooth the data points into a
|
|
* curve.
|
|
*/
|
|
void
|
|
Curve::set_n_samples (Points::size_type n)
|
|
{
|
|
/* this only changes our appearance rather than the bounding box, so we
|
|
just need to schedule a redraw rather than notify the parent of any
|
|
changes
|
|
*/
|
|
n_samples = n;
|
|
samples.assign (n_samples, Duple (0.0, 0.0));
|
|
interpolate ();
|
|
}
|
|
|
|
/** When rendering the curve, we will always draw a fixed number of straight
|
|
* line segments to span the x-axis extent of the curve. More segments:
|
|
* smoother visual rendering. Less rendering: closer to a visibily poly-line
|
|
* render.
|
|
*/
|
|
void
|
|
Curve::set_n_segments (uint32_t n)
|
|
{
|
|
/* this only changes our appearance rather than the bounding box, so we
|
|
just need to schedule a redraw rather than notify the parent of any
|
|
changes
|
|
*/
|
|
n_segments = n;
|
|
redraw ();
|
|
}
|
|
|
|
void
|
|
Curve::compute_bounding_box () const
|
|
{
|
|
PolyItem::compute_bounding_box ();
|
|
|
|
/* possibly add extents of any point indicators here if we ever do that */
|
|
}
|
|
|
|
void
|
|
Curve::set (Points const& p)
|
|
{
|
|
PolyItem::set (p);
|
|
interpolate ();
|
|
}
|
|
|
|
void
|
|
Curve::interpolate ()
|
|
{
|
|
Points::size_type npoints = _points.size ();
|
|
|
|
if (npoints < 3) {
|
|
return;
|
|
}
|
|
|
|
Duple p;
|
|
double boundary;
|
|
|
|
const double xfront = _points.front().x;
|
|
const double xextent = _points.back().x - xfront;
|
|
|
|
/* initialize boundary curve points */
|
|
|
|
p = _points.front();
|
|
boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));
|
|
|
|
for (Points::size_type i = 0; i < boundary; ++i) {
|
|
samples[i] = Duple (i, p.y);
|
|
}
|
|
|
|
p = _points.back();
|
|
boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));
|
|
|
|
for (Points::size_type i = boundary; i < n_samples; ++i) {
|
|
samples[i] = Duple (i, p.y);
|
|
}
|
|
|
|
for (int i = 0; i < (int) npoints - 1; ++i) {
|
|
|
|
Points::size_type p1, p2, p3, p4;
|
|
|
|
p1 = max (i - 1, 0);
|
|
p2 = i;
|
|
p3 = i + 1;
|
|
p4 = min (i + 2, (int) npoints - 1);
|
|
|
|
smooth (p1, p2, p3, p4, xfront, xextent);
|
|
}
|
|
|
|
/* make sure that actual data points are used with their exact values */
|
|
|
|
for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
|
|
uint32_t idx = (((*p).x - xfront)/xextent) * (n_samples - 1);
|
|
samples[idx].y = (*p).y;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function calculates the curve values between the control points
|
|
* p2 and p3, taking the potentially existing neighbors p1 and p4 into
|
|
* account.
|
|
*
|
|
* This function uses a cubic bezier curve for the individual segments and
|
|
* calculates the necessary intermediate control points depending on the
|
|
* neighbor curve control points.
|
|
*
|
|
*/
|
|
|
|
void
|
|
Curve::smooth (Points::size_type p1, Points::size_type p2, Points::size_type p3, Points::size_type p4,
|
|
double xfront, double xextent)
|
|
{
|
|
int i;
|
|
double x0, x3;
|
|
double y0, y1, y2, y3;
|
|
double dx, dy;
|
|
double slope;
|
|
|
|
/* the outer control points for the bezier curve. */
|
|
|
|
x0 = _points[p2].x;
|
|
y0 = _points[p2].y;
|
|
x3 = _points[p3].x;
|
|
y3 = _points[p3].y;
|
|
|
|
/*
|
|
* the x values of the inner control points are fixed at
|
|
* x1 = 2/3*x0 + 1/3*x3 and x2 = 1/3*x0 + 2/3*x3
|
|
* this ensures that the x values increase linearily with the
|
|
* parameter t and enables us to skip the calculation of the x
|
|
* values altogehter - just calculate y(t) evenly spaced.
|
|
*/
|
|
|
|
dx = x3 - x0;
|
|
dy = y3 - y0;
|
|
|
|
if (dx <= 0) {
|
|
/* error? */
|
|
return;
|
|
}
|
|
|
|
if (p1 == p2 && p3 == p4) {
|
|
/* No information about the neighbors,
|
|
* calculate y1 and y2 to get a straight line
|
|
*/
|
|
y1 = y0 + dy / 3.0;
|
|
y2 = y0 + dy * 2.0 / 3.0;
|
|
|
|
} else if (p1 == p2 && p3 != p4) {
|
|
|
|
/* only the right neighbor is available. Make the tangent at the
|
|
* right endpoint parallel to the line between the left endpoint
|
|
* and the right neighbor. Then point the tangent at the left towards
|
|
* the control handle of the right tangent, to ensure that the curve
|
|
* does not have an inflection point.
|
|
*/
|
|
slope = (_points[p4].y - y0) / (_points[p4].x - x0);
|
|
|
|
y2 = y3 - slope * dx / 3.0;
|
|
y1 = y0 + (y2 - y0) / 2.0;
|
|
|
|
} else if (p1 != p2 && p3 == p4) {
|
|
|
|
/* see previous case */
|
|
slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);
|
|
|
|
y1 = y0 + slope * dx / 3.0;
|
|
y2 = y3 + (y1 - y3) / 2.0;
|
|
|
|
|
|
} else /* (p1 != p2 && p3 != p4) */ {
|
|
|
|
/* Both neighbors are available. Make the tangents at the endpoints
|
|
* parallel to the line between the opposite endpoint and the adjacent
|
|
* neighbor.
|
|
*/
|
|
|
|
slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);
|
|
|
|
y1 = y0 + slope * dx / 3.0;
|
|
|
|
slope = (_points[p4].y - y0) / (_points[p4].x - x0);
|
|
|
|
y2 = y3 - slope * dx / 3.0;
|
|
}
|
|
|
|
/*
|
|
* finally calculate the y(t) values for the given bezier values. We can
|
|
* use homogenously distributed values for t, since x(t) increases linearily.
|
|
*/
|
|
|
|
dx = dx / xextent;
|
|
|
|
int limit = round (dx * (n_samples - 1));
|
|
const int idx_offset = round (((x0 - xfront)/xextent) * (n_samples - 1));
|
|
|
|
for (i = 0; i <= limit; i++) {
|
|
double y, t;
|
|
Points::size_type index;
|
|
|
|
t = i / dx / (n_samples - 1);
|
|
|
|
y = y0 * (1-t) * (1-t) * (1-t) +
|
|
3 * y1 * (1-t) * (1-t) * t +
|
|
3 * y2 * (1-t) * t * t +
|
|
y3 * t * t * t;
|
|
|
|
index = i + idx_offset;
|
|
|
|
if (index < n_samples) {
|
|
Duple d (i, max (y, 0.0));
|
|
samples[index] = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Given a position within the x-axis range of the
|
|
* curve, return the corresponding y-axis value
|
|
*/
|
|
|
|
double
|
|
Curve::map_value (double x) const
|
|
{
|
|
if (x > 0.0 && x < 1.0) {
|
|
|
|
double f;
|
|
Points::size_type index;
|
|
|
|
/* linearly interpolate between two of our smoothed "samples"
|
|
*/
|
|
|
|
x = x * (n_samples - 1);
|
|
index = (Points::size_type) x; // XXX: should we explicitly use floor()?
|
|
f = x - index;
|
|
|
|
return (1.0 - f) * samples[index].y + f * samples[index+1].y;
|
|
|
|
} else if (x >= 1.0) {
|
|
return samples.back().y;
|
|
} else {
|
|
return samples.front().y;
|
|
}
|
|
}
|
|
|
|
void
|
|
Curve::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
|
|
{
|
|
if (!_outline || _points.size() < 2) {
|
|
return;
|
|
}
|
|
|
|
/* Our approach is to always draw n_segments across our total size.
|
|
*
|
|
* This is very inefficient if we are asked to only draw a small
|
|
* section of the curve. For now we rely on cairo clipping to help
|
|
* with this.
|
|
*/
|
|
|
|
double x;
|
|
double y;
|
|
|
|
context->save ();
|
|
context->rectangle (area.x0, area.y0, area.width(),area.height());
|
|
context->clip ();
|
|
|
|
setup_outline_context (context);
|
|
|
|
if (_points.size() == 2) {
|
|
|
|
/* straight line */
|
|
|
|
Duple window_space;
|
|
|
|
window_space = item_to_window (_points.front());
|
|
context->move_to (window_space.x, window_space.y);
|
|
window_space = item_to_window (_points.back());
|
|
context->line_to (window_space.x, window_space.y);
|
|
|
|
} else {
|
|
|
|
/* curve of at least 3 points */
|
|
|
|
const double xfront = _points.front().x;
|
|
const double xextent = _points.back().x - xfront;
|
|
|
|
/* move through points to find the first one inside the
|
|
* rendering area
|
|
*/
|
|
|
|
Points::const_iterator edge = _points.end();
|
|
bool edge_found = false;
|
|
|
|
for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
|
|
Duple w (item_to_window (Duple ((*p).x, 0.0)));
|
|
if (w.x >= area.x0) {
|
|
edge_found = true;
|
|
break;
|
|
}
|
|
edge = p;
|
|
|
|
}
|
|
|
|
if (edge == _points.end()) {
|
|
if (edge_found) {
|
|
edge = _points.begin();
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::cerr << "Start drawing " << distance (_points.begin(), edge) << " into points\n";
|
|
|
|
x = (*edge).x;
|
|
y = map_value (0.0);
|
|
|
|
Duple window_space = item_to_window (Duple (x, y));
|
|
context->move_to (window_space.x, window_space.y);
|
|
|
|
/* if the extent of this curve (in pixels) is small, then we don't need
|
|
* many segments.
|
|
*/
|
|
|
|
uint32_t nsegs = area.width();
|
|
double last_x = 0;
|
|
double xoffset = (x-xfront)/xextent;
|
|
|
|
// std::cerr << " draw " << nsegs << " segments\n";
|
|
|
|
for (uint32_t n = 1; n < nsegs; ++n) {
|
|
|
|
/* compute item space x coordinate of the start of this segment */
|
|
|
|
x = xoffset + (n / (double) nsegs);
|
|
y = map_value (x);
|
|
|
|
x += xfront + (xextent * x);
|
|
|
|
// std::cerr << "hspan @ " << x << ' ' << x - last_x << std::endl;
|
|
last_x = x;
|
|
|
|
window_space = item_to_window (Duple (x, y));
|
|
context->line_to (window_space.x, window_space.y);
|
|
|
|
if (window_space.x > area.x1) {
|
|
/* we're done - the last point was outside the redraw area along the x-axis */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
context->stroke ();
|
|
|
|
/* add points */
|
|
|
|
setup_fill_context (context);
|
|
for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
|
|
Duple window_space (item_to_window (*p));
|
|
context->arc (window_space.x, window_space.y, 5.0, 0.0, 2 * M_PI);
|
|
context->stroke ();
|
|
}
|
|
|
|
context->restore ();
|
|
}
|
|
|
|
bool
|
|
Curve::covers (Duple const & pc) const
|
|
{
|
|
Duple point = canvas_to_item (pc);
|
|
|
|
/* O(N) N = number of points, and not accurate */
|
|
|
|
for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
|
|
|
|
const Coord dx = point.x - (*p).x;
|
|
const Coord dy = point.y - (*p).y;
|
|
const Coord dx2 = dx * dx;
|
|
const Coord dy2 = dy * dy;
|
|
|
|
if ((dx2 < 2.0 && dy2 < 2.0) || (dx2 + dy2 < 4.0)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|