13
0
livetrax/libs/ardour/pi_controller.cc
Paul Davis ede4ecbb00 megaopus patch #2 for today: remove nframes64_t and sframes_t from source
git-svn-id: svn://localhost/ardour2/branches/3.0@7792 d708f5d6-7413-0410-9779-e7cbd77b26cf
2010-09-17 18:20:37 +00:00

232 lines
7.0 KiB
C++

/*
Copyright (C) 2008 Torben Hohn
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <iostream>
#include <cmath>
#include <cstdlib>
#include "ardour/pi_controller.h"
static inline double hann(double x) {
return 0.5 * (1.0 - cos(2 * M_PI * x));
}
PIController::PIController (double resample_factor, int fir_size)
{
resample_mean = resample_factor;
static_resample_factor = resample_factor;
offset_array = new double[fir_size];
window_array = new double[fir_size];
offset_differential_index = 0;
offset_integral = 0.0;
smooth_size = fir_size;
for (int i = 0; i < fir_size; i++) {
offset_array[i] = 0.0;
window_array[i] = hann(double(i) / (double(fir_size) - 1.0));
}
// These values could be configurable
catch_factor = 20000;
catch_factor2 = 4000;
pclamp = 150.0;
controlquant = 10000.0;
fir_empty = false;
}
PIController::~PIController ()
{
delete [] offset_array;
delete [] window_array;
}
double
PIController::get_ratio (int fill_level, int period_size)
{
double offset = fill_level;
double this_catch_factor = catch_factor;
double this_catch_factor2 = catch_factor2 * 4096.0/(double)period_size;
// Save offset.
if( fir_empty ) {
for (int i = 0; i < smooth_size; i++) {
offset_array[i] = offset;
}
fir_empty = false;
} else {
offset_array[(offset_differential_index++) % smooth_size] = offset;
}
// Build the mean of the windowed offset array basically fir lowpassing.
smooth_offset = 0.0;
for (int i = 0; i < smooth_size; i++) {
smooth_offset += offset_array[(i + offset_differential_index - 1) % smooth_size] * window_array[i];
}
smooth_offset /= double(smooth_size);
// This is the integral of the smoothed_offset
offset_integral += smooth_offset;
std::cerr << smooth_offset << " ";
// Clamp offset : the smooth offset still contains unwanted noise which would go straigth onto the resample coeff.
// It only used in the P component and the I component is used for the fine tuning anyways.
if (fabs(smooth_offset) < pclamp)
smooth_offset = 0.0;
smooth_offset += (static_resample_factor - resample_mean) * this_catch_factor;
// Ok, now this is the PI controller.
// u(t) = K * (e(t) + 1/T \int e(t') dt')
// Kp = 1/catch_factor and T = catch_factor2 Ki = Kp/T
current_resample_factor
= static_resample_factor - smooth_offset / this_catch_factor - offset_integral / this_catch_factor / this_catch_factor2;
// Now quantize this value around resample_mean, so that the noise which is in the integral component doesnt hurt.
current_resample_factor = floor((current_resample_factor - resample_mean) * controlquant + 0.5) / controlquant + resample_mean;
// Calculate resample_mean so we can init ourselves to saner values.
// resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
resample_mean = (1.0-0.01) * resample_mean + 0.01 * current_resample_factor;
std::cerr << fill_level << " " << smooth_offset << " " << offset_integral << " " << current_resample_factor << " " << resample_mean << "\n";
return current_resample_factor;
}
void
PIController::out_of_bounds()
{
int i;
// Set the resample_rate... we need to adjust the offset integral, to do this.
// first look at the PI controller, this code is just a special case, which should never execute once
// everything is swung in.
offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
// Also clear the array. we are beginning a new control cycle.
for (i = 0; i < smooth_size; i++) {
offset_array[i] = 0.0;
}
fir_empty = false;
}
PIChaser::PIChaser() {
pic = new PIController( 1.0, 16 );
array_index = 0;
for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
realtime_stamps[i] = 0;
chasetime_stamps[i] = 0;
}
speed_threshold = 0.2;
pos_threshold = 4000;
want_locate_val = 0;
}
void
PIChaser::reset() {
array_index = 0;
for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
realtime_stamps[i] = 0;
chasetime_stamps[i] = 0;
}
pic->reset(1.0);
}
PIChaser::~PIChaser() {
delete pic;
}
double
PIChaser::get_ratio(framepos_t chasetime_measured, framepos_t chasetime, framepos_t slavetime_measured, framepos_t slavetime, bool in_control, int period_size ) {
feed_estimator( chasetime_measured, chasetime );
std::cerr << (double)chasetime_measured/48000.0 << " " << chasetime << " " << slavetime << " ";
double crude = get_estimate();
double fine;
framepos_t massaged_chasetime = chasetime + (framepos_t)( (double)(slavetime_measured - chasetime_measured) * crude );
fine = pic->get_ratio (slavetime - massaged_chasetime, period_size);
if (in_control) {
if (fabs(fine-crude) > crude*speed_threshold) {
std::cout << "reset to " << crude << " fine = " << fine << "\n";
pic->reset( crude );
speed = crude;
} else {
speed = fine;
}
if (abs(chasetime-slavetime) > pos_threshold) {
pic->reset( crude );
speed = crude;
want_locate_val = chasetime;
std::cout << "we are off by " << chasetime-slavetime << " want_locate:" << chasetime << "\n";
} else {
want_locate_val = 0;
}
} else {
std::cout << "not in control..." << crude << "\n";
speed = crude;
pic->reset( crude );
}
return speed;
}
void
PIChaser::feed_estimator (framepos_t realtime, framepos_t chasetime ) {
array_index += 1;
realtime_stamps [ array_index%ESTIMATOR_SIZE ] = realtime;
chasetime_stamps[ array_index%ESTIMATOR_SIZE ] = chasetime;
}
double
PIChaser::get_estimate() {
double est = 0;
int num=0;
int i;
framepos_t n1_realtime;
framepos_t n1_chasetime;
for( i=(array_index + 1); i<=(array_index + ESTIMATOR_SIZE); i++ ) {
if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
n1_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
n1_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
i+=1;
break;
}
}
for( ; i<=(array_index + ESTIMATOR_SIZE); i++ ) {
if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
if( (realtime_stamps[(i)%ESTIMATOR_SIZE] - n1_realtime) > 200 ) {
framepos_t n_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
framepos_t n_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
est += ((double)( n_chasetime - n1_chasetime ))
/ ((double)( n_realtime - n1_realtime ));
n1_realtime = n_realtime;
n1_chasetime = n_chasetime;
num += 1;
}
}
}
if(num)
return est/(double)num;
else
return 0.0;
}