13
0
livetrax/gtk2_ardour/automation_line.cc
Paul Davis 2afdeb519f refactor rubberband drags to take a functor for the no-drag condition
Also move code for adding automation line control points into automation line, rather
than in AutomationTimeAxisView (some work still required to finalize this)
2024-10-17 07:44:32 -06:00

1571 lines
41 KiB
C++

/*
* Copyright (C) 2005-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2005 Karsten Wiese <fzuuzf@googlemail.com>
* Copyright (C) 2005 Taybin Rutkin <taybin@taybin.com>
* Copyright (C) 2006 Hans Fugal <hans@fugal.net>
* Copyright (C) 2007-2012 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2007-2015 David Robillard <d@drobilla.net>
* Copyright (C) 2007 Doug McLain <doug@nostar.net>
* Copyright (C) 2013-2017 Robin Gareus <robin@gareus.org>
* Copyright (C) 2014-2016 Nick Mainsbridge <mainsbridge@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <cmath>
#ifdef COMPILER_MSVC
#include <float.h>
// 'std::isnan()' is not available in MSVC.
#define isnan_local(val) (bool)_isnan((double)val)
#else
#define isnan_local std::isnan
#endif
#include <climits>
#include <vector>
#include "boost/shared_ptr.hpp"
#include "pbd/floating.h"
#include "pbd/memento_command.h"
#include "pbd/stl_delete.h"
#include "ardour/automation_list.h"
#include "ardour/dB.h"
#include "ardour/debug.h"
#include "ardour/parameter_types.h"
#include "ardour/tempo.h"
#include "temporal/range.h"
#include "evoral/Curve.h"
#include "canvas/debug.h"
#include "automation_line.h"
#include "control_point.h"
#include "editing_context.h"
#include "gui_thread.h"
#include "rgb_macros.h"
#include "public_editor.h"
#include "selection.h"
#include "time_axis_view.h"
#include "point_selection.h"
#include "automation_time_axis.h"
#include "ui_config.h"
#include "ardour/event_type_map.h"
#include "ardour/session.h"
#include "ardour/value_as_string.h"
#include "pbd/i18n.h"
using namespace std;
using namespace ARDOUR;
using namespace PBD;
using namespace Editing;
using namespace Temporal;
#define SAMPLES_TO_TIME(x) (get_origin().distance (x))
/** @param converter A TimeConverter whose origin_b is the start time of the AutomationList in session samples.
* This will not be deleted by EditorAutomationLine.
*/
AutomationLine::AutomationLine (const string& name,
EditingContext& ec,
ArdourCanvas::Item& parent,
ArdourCanvas::Rectangle* drag_base,
std::shared_ptr<AutomationList> al,
const ParameterDescriptor& desc)
:_name (name)
, _height (0)
, _line_color ("automation line")
, _view_index_offset (0)
, alist (al)
, _visible (Line)
, terminal_points_can_slide (true)
, update_pending (false)
, have_reset_timeout (false)
, no_draw (false)
, _is_boolean (false)
, _editing_context (ec)
, _parent_group (parent)
, _drag_base (drag_base)
, _offset (0)
, _maximum_time (timepos_t::max (al->time_domain()))
, _fill (false)
, _desc (desc)
{
group = new ArdourCanvas::Container (&parent, ArdourCanvas::Duple(0, 1.5));
CANVAS_DEBUG_NAME (group, "automation line group");
line = new ArdourCanvas::PolyLine (group);
CANVAS_DEBUG_NAME (line, "automation line");
line->set_data ("line", this);
line->set_data ("drag-base", _drag_base);
line->set_outline_width (2.0);
line->set_covers_threshold (4.0);
line->Event.connect (sigc::mem_fun (*this, &AutomationLine::event_handler));
_editing_context.session()->register_with_memento_command_factory(alist->id(), this);
interpolation_changed (alist->interpolation ());
connect_to_list ();
}
AutomationLine::~AutomationLine ()
{
delete group; // deletes child items
for (std::vector<ControlPoint *>::iterator i = control_points.begin(); i != control_points.end(); i++) {
(*i)->unset_item ();
delete *i;
}
control_points.clear ();
}
timepos_t
AutomationLine::get_origin() const
{
/* this is the default for all non-derived EditorAutomationLine classes: the
origin is zero, in whatever time domain the list we represent uses.
*/
return timepos_t (the_list()->time_domain());
}
bool
AutomationLine::is_stepped() const
{
return (_desc.toggled || (alist && alist->interpolation() == AutomationList::Discrete));
}
void
AutomationLine::update_visibility ()
{
if (_visible & Line) {
/* Only show the line when there are some points, otherwise we may show an out-of-date line
when automation points have been removed (the line will still follow the shape of the
old points).
*/
if (line_points.size() >= 2) {
line->show();
} else {
line->hide ();
}
if (_visible & ControlPoints) {
for (auto & cp : control_points) {
cp->show ();
}
} else if (_visible & SelectedControlPoints) {
for (auto & cp : control_points) {
if (cp->selected()) {
cp->show ();
} else {
cp->hide ();
}
}
} else {
for (auto & cp : control_points) {
cp->hide ();
}
}
} else {
line->hide ();
for (auto & cp : control_points) {
if (_visible & ControlPoints) {
cp->show ();
} else {
cp->hide ();
}
}
}
}
bool
AutomationLine::get_uses_gain_mapping () const
{
switch (_desc.type) {
case GainAutomation:
case BusSendLevel:
case EnvelopeAutomation:
case TrimAutomation:
case SurroundSendLevel:
case InsertReturnLevel:
return true;
default:
return false;
}
}
void
AutomationLine::hide ()
{
/* leave control points setting unchanged, we are just hiding the
overall line
*/
set_visibility (AutomationLine::VisibleAspects (_visible & ~Line));
}
double
AutomationLine::control_point_box_size ()
{
float uiscale = UIConfiguration::instance().get_ui_scale();
uiscale = std::max<float> (1.f, powf (uiscale, 1.71));
if (_height > TimeAxisView::preset_height (HeightLarger)) {
return rint (8.0 * uiscale);
} else if (_height > (guint32) TimeAxisView::preset_height (HeightNormal)) {
return rint (6.0 * uiscale);
}
return rint (12.0 * uiscale);
}
void
AutomationLine::set_height (guint32 h)
{
if (h != _height) {
_height = h;
double bsz = control_point_box_size();
for (vector<ControlPoint*>::iterator i = control_points.begin(); i != control_points.end(); ++i) {
(*i)->set_size (bsz);
}
if (_fill) {
line->set_fill_y1 (_height);
} else {
line->set_fill_y1 (0);
}
reset ();
}
}
void
AutomationLine::set_line_color (string color_name, std::string color_mod)
{
_line_color = color_name;
_line_color_mod = color_mod;
uint32_t color = UIConfiguration::instance().color (color_name);
line->set_outline_color (color);
Gtkmm2ext::SVAModifier mod = UIConfiguration::instance().modifier (color_mod.empty () ? "automation line fill" : color_mod);
line->set_fill_color ((color & 0xffffff00) + mod.a() * 255);
}
uint32_t
AutomationLine::get_line_color() const
{
return UIConfiguration::instance().color (_line_color);
}
ControlPoint*
AutomationLine::nth (uint32_t n)
{
if (n < control_points.size()) {
return control_points[n];
} else {
return 0;
}
}
ControlPoint const *
AutomationLine::nth (uint32_t n) const
{
if (n < control_points.size()) {
return control_points[n];
} else {
return 0;
}
}
void
AutomationLine::modify_points_y (std::vector<ControlPoint*> const& cps, double y)
{
/* clamp y-coord appropriately. y is supposed to be a normalized fraction (0.0-1.0),
and needs to be converted to a canvas unit distance.
*/
y = max (0.0, y);
y = min (1.0, y);
y = _height - (y * _height);
_editing_context.begin_reversible_command (_("automation event move"));
_editing_context.add_command (new MementoCommand<AutomationList> (memento_command_binder(), &get_state(), 0));
alist->freeze ();
for (auto const& cp : cps) {
cp->move_to (cp->get_x(), y, ControlPoint::Full);
sync_model_with_view_point (*cp);
}
alist->thaw ();
for (auto const& cp : cps) {
reset_line_coords (*cp);
}
if (line_points.size() > 1) {
line->set_steps (line_points, is_stepped());
}
update_pending = false;
_editing_context.add_command (new MementoCommand<AutomationList> (memento_command_binder(), 0, &alist->get_state()));
_editing_context.commit_reversible_command ();
_editing_context.session()->set_dirty ();
}
void
AutomationLine::reset_line_coords (ControlPoint& cp)
{
if (cp.view_index() < line_points.size()) {
line_points[cp.view_index() + _view_index_offset].x = cp.get_x ();
line_points[cp.view_index() + _view_index_offset].y = cp.get_y ();
}
}
bool
AutomationLine::sync_model_with_view_points (list<ControlPoint*> cp)
{
update_pending = true;
bool moved = false;
for (auto const & vp : cp) {
moved = sync_model_with_view_point (*vp) || moved;
}
return moved;
}
string
AutomationLine::get_verbose_cursor_string (double fraction) const
{
return fraction_to_string (fraction);
}
string
AutomationLine::get_verbose_cursor_relative_string (double fraction, double delta) const
{
std::string s = fraction_to_string (fraction);
std::string d = delta_to_string (delta);
return s + " (" + d + ")";
}
/**
* @param fraction y fraction
* @return string representation of this value, using dB if appropriate.
*/
string
AutomationLine::fraction_to_string (double fraction) const
{
view_to_model_coord_y (fraction);
return ARDOUR::value_as_string (_desc, fraction);
}
string
AutomationLine::delta_to_string (double delta) const
{
if (!get_uses_gain_mapping () && _desc.logarithmic) {
return "x " + ARDOUR::value_as_string (_desc, delta);
} else {
return u8"\u0394 " + ARDOUR::value_as_string (_desc, delta);
}
}
/**
* @param s Value string in the form as returned by fraction_to_string.
* @return Corresponding y fraction.
*/
double
AutomationLine::string_to_fraction (string const & s) const
{
double v;
sscanf (s.c_str(), "%lf", &v);
switch (_desc.type) {
case GainAutomation:
case BusSendLevel:
case EnvelopeAutomation:
case TrimAutomation:
case SurroundSendLevel:
case InsertReturnLevel:
if (s == "-inf") { /* translation */
v = 0;
} else {
v = dB_to_coefficient (v);
}
break;
default:
break;
}
return model_to_view_coord_y (v);
}
/** Start dragging a single point, possibly adding others if the supplied point is selected and there
* are other selected points.
*
* @param cp Point to drag.
* @param x Initial x position (units).
* @param fraction Initial y position (as a fraction of the track height, where 0 is the bottom and 1 the top)
*/
void
AutomationLine::start_drag_single (ControlPoint* cp, double x, float fraction)
{
_editing_context.add_command (new MementoCommand<AutomationList> (memento_command_binder(), &get_state(), 0));
_drag_points.clear ();
_drag_points.push_back (cp);
if (cp->selected ()) {
for (vector<ControlPoint*>::iterator i = control_points.begin(); i != control_points.end(); ++i) {
if (*i != cp && (*i)->selected()) {
_drag_points.push_back (*i);
}
}
}
start_drag_common (x, fraction);
}
/** Start dragging a line vertically (with no change in x)
* @param i1 Control point index of the `left' point on the line.
* @param i2 Control point index of the `right' point on the line.
* @param fraction Initial y position (as a fraction of the track height, where 0 is the bottom and 1 the top)
*/
void
AutomationLine::start_drag_line (uint32_t i1, uint32_t i2, float fraction)
{
_editing_context.add_command (new MementoCommand<AutomationList> (memento_command_binder (), &get_state(), 0));
_drag_points.clear ();
for (uint32_t i = i1; i <= i2; i++) {
_drag_points.push_back (nth (i));
}
start_drag_common (0, fraction);
}
/** Start dragging multiple points (with no change in x)
* @param cp Points to drag.
* @param fraction Initial y position (as a fraction of the track height, where 0 is the bottom and 1 the top)
*/
void
AutomationLine::start_drag_multiple (list<ControlPoint*> cp, float fraction, XMLNode* state)
{
_editing_context.add_command (new MementoCommand<AutomationList> (memento_command_binder(), state, 0));
_drag_points = cp;
start_drag_common (0, fraction);
}
struct ControlPointSorter
{
bool operator() (ControlPoint const * a, ControlPoint const * b) const {
if (floateq (a->get_x(), b->get_x(), 1)) {
return a->view_index() < b->view_index();
}
return a->get_x() < b->get_x();
}
};
AutomationLine::ContiguousControlPoints::ContiguousControlPoints (AutomationLine& al)
: line (al), before_x (timepos_t (line.the_list()->time_domain())), after_x (timepos_t::max (line.the_list()->time_domain()))
{
}
void
AutomationLine::ContiguousControlPoints::compute_x_bounds ()
{
uint32_t sz = size();
if (sz > 0 && sz < line.npoints()) {
const TempoMap::SharedPtr map (TempoMap::use());
/* determine the limits on x-axis motion for this
contiguous range of control points
*/
if (front()->view_index() > 0) {
before_x = (*line.nth (front()->view_index() - 1)->model())->when;
before_x += timepos_t (64);
}
/* if our last point has a point after it in the line,
we have an "after" bound
*/
if (back()->view_index() < (line.npoints() - 1)) {
after_x = (*line.nth (back()->view_index() + 1)->model())->when;
after_x.shift_earlier (timepos_t (64));
}
}
}
Temporal::timecnt_t
AutomationLine::ContiguousControlPoints::clamp_dt (timecnt_t const & dt, timepos_t const & line_limit)
{
if (empty()) {
return dt;
}
/* get the maximum distance we can move any of these points along the x-axis
*/
ControlPoint* reference_point;
if (dt.magnitude() > 0) {
/* check the last point, since we're moving later in time */
reference_point = back();
} else {
/* check the first point, since we're moving earlier in time */
reference_point = front();
}
/* possible position the "reference" point would move to, given dx */
Temporal::timepos_t possible_pos = (*reference_point->model())->when + dt; // new possible position if we just add the motion
/* Now clamp that position so that:
*
* - it is not before the origin (zero)
* - it is not beyond the line's own limit (e.g. for region automation)
* - it is not before the preceding point
* - it is not after the following point
*/
possible_pos = max (possible_pos, Temporal::timepos_t (possible_pos.time_domain()));
possible_pos = min (possible_pos, line_limit);
possible_pos = max (possible_pos, before_x); // can't move later than following point
possible_pos = min (possible_pos, after_x); // can't move earlier than preceding point
return (*reference_point->model())->when.distance (possible_pos);
}
void
AutomationLine::ContiguousControlPoints::move (timecnt_t const & dt, double dvalue)
{
for (auto & cp : *this) {
// compute y-axis delta
double view_y = 1.0 - cp->get_y() / line.height();
line.view_to_model_coord_y (view_y);
line.apply_delta (view_y, dvalue);
view_y = line.model_to_view_coord_y (view_y);
view_y = (1.0 - view_y) * line.height();
cp->move_to (line.dt_to_dx ((*cp->model())->when, dt), view_y, ControlPoint::Full);
line.reset_line_coords (*cp);
}
}
/** Common parts of starting a drag.
* @param x Starting x position in units, or 0 if x is being ignored.
* @param fraction Starting y position (as a fraction of the track height, where 0 is the bottom and 1 the top)
*/
void
AutomationLine::start_drag_common (double x, float fraction)
{
_last_drag_fraction = fraction;
_drag_had_movement = false;
did_push = false;
/* they are probably ordered already, but we have to make sure */
_drag_points.sort (ControlPointSorter());
}
/** Takes a relative-to-origin position, moves it by dt, and returns a
* relative-to-origin pixel count.
*/
double
AutomationLine::dt_to_dx (timepos_t const & pos, timecnt_t const & dt)
{
/* convert a shift of pos by dt into an absolute timepos */
timepos_t const new_pos ((pos + dt + get_origin()).shift_earlier (offset()));
/* convert to pixels */
double px = _editing_context.time_to_pixel_unrounded (new_pos);
/* convert back to pixels-relative-to-origin */
px -= _editing_context.time_to_pixel_unrounded (get_origin());
return px;
}
/** Should be called to indicate motion during a drag.
* @param x New x position of the drag in canvas units relative to origin, or undefined if ignore_x == true.
* @param fraction New y fraction.
* @return x position and y fraction that were actually used (once clamped).
*/
pair<float, float>
AutomationLine::drag_motion (timecnt_t const & pdt, float fraction, bool ignore_x, bool with_push, uint32_t& final_index)
{
if (_drag_points.empty()) {
return pair<double,float> (fraction, _desc.is_linear () ? 0 : 1);
}
timecnt_t dt (pdt);
if (ignore_x) {
dt = timecnt_t (pdt.time_domain());
}
double dy = fraction - _last_drag_fraction;
if (!_drag_had_movement) {
/* "first move" ... do some stuff that we don't want to do if
no motion ever took place, but need to do before we handle
motion.
*/
/* partition the points we are dragging into (potentially several)
* set(s) of contiguous points. this will not happen with a normal
* drag, but if the user does a discontiguous selection, it can.
*/
uint32_t expected_view_index = 0;
CCP contig;
for (list<ControlPoint*>::iterator i = _drag_points.begin(); i != _drag_points.end(); ++i) {
if (i == _drag_points.begin() || (*i)->view_index() != expected_view_index) {
contig.reset (new ContiguousControlPoints (*this));
contiguous_points.push_back (contig);
}
contig->push_back (*i);
expected_view_index = (*i)->view_index() + 1;
}
if (contiguous_points.back()->empty()) {
contiguous_points.pop_back ();
}
for (auto const & ccp : contiguous_points) {
ccp->compute_x_bounds ();
}
_drag_had_movement = true;
}
/* OK, now on to the stuff related to *this* motion event. First, for
* each contiguous range, figure out the maximum x-axis motion we are
* allowed (because of neighbouring points that are not moving.
*
* if we are moving forwards with push, we don't need to do this,
* since all later points will move too.
*/
if (dt.is_negative() || (dt.is_positive() && !with_push)) {
const timepos_t line_limit = get_origin() + maximum_time() + _offset;
for (auto const & ccp : contiguous_points){
dt = ccp->clamp_dt (dt, line_limit);
}
}
/* compute deflection */
double delta_value;
{
double value0 = _last_drag_fraction;
double value1 = _last_drag_fraction + dy;
view_to_model_coord_y (value0);
view_to_model_coord_y (value1);
delta_value = compute_delta (value0, value1);
}
/* special case -inf */
if (delta_value == 0 && dy > 0 && !_desc.is_linear ()) {
assert (_desc.lower == 0);
delta_value = 1.0;
}
/* clamp y */
for (list<ControlPoint*>::iterator i = _drag_points.begin(); i != _drag_points.end(); ++i) {
double vy = 1.0 - (*i)->get_y() / _height;
view_to_model_coord_y (vy);
const double orig = vy;
apply_delta (vy, delta_value);
if (vy < _desc.lower) {
delta_value = compute_delta (orig, _desc.lower);
}
if (vy > _desc.upper) {
delta_value = compute_delta (orig, _desc.upper);
}
}
if (!dt.is_zero() || dy) {
/* and now move each section */
for (vector<CCP>::iterator ccp = contiguous_points.begin(); ccp != contiguous_points.end(); ++ccp) {
(*ccp)->move (dt, delta_value);
}
if (with_push) {
final_index = contiguous_points.back()->back()->view_index () + 1;
ControlPoint* p;
uint32_t i = final_index;
while ((p = nth (i)) != 0 && p->can_slide()) {
p->move_to (dt_to_dx ((*p->model())->when, dt), p->get_y(), ControlPoint::Full);
reset_line_coords (*p);
++i;
}
}
/* update actual line coordinates (will queue a redraw) */
if (line_points.size() > 1) {
line->set_steps (line_points, is_stepped());
}
}
/* calculate effective delta */
ControlPoint* cp = _drag_points.front();
double vy = 1.0 - cp->get_y() / (double)_height;
view_to_model_coord_y (vy);
float val = (*(cp->model ()))->value;
float effective_delta = _desc.compute_delta (val, vy);
/* special case recovery from -inf */
if (val == 0 && effective_delta == 0 && vy > 0) {
assert (!_desc.is_linear ());
effective_delta = HUGE_VAL; // +Infinity
}
double const result_frac = _last_drag_fraction + dy;
_last_drag_fraction = result_frac;
did_push = with_push;
return pair<float, float> (result_frac, effective_delta);
}
/** Should be called to indicate the end of a drag */
void
AutomationLine::end_drag (bool with_push, uint32_t final_index)
{
if (!_drag_had_movement) {
return;
}
alist->freeze ();
bool moved = sync_model_with_view_points (_drag_points);
if (with_push) {
ControlPoint* p;
uint32_t i = final_index;
while ((p = nth (i)) != 0 && p->can_slide()) {
moved = sync_model_with_view_point (*p) || moved;
++i;
}
}
alist->thaw ();
update_pending = false;
if (moved) {
/* A point has moved as a result of sync (clamped to integer or boolean
value), update line accordingly. */
line->set_steps (line_points, is_stepped());
}
_editing_context.add_command (new MementoCommand<AutomationList>(memento_command_binder (), 0, &alist->get_state()));
_editing_context.session()->set_dirty ();
did_push = false;
contiguous_points.clear ();
}
/**
*
* get model coordinates synced with (possibly changed) view coordinates.
*
* For example, we call this in ::end_drag(), when we have probably moved a
* point in the view, and now want to "push" that change back into the
* corresponding model point.
*/
bool
AutomationLine::sync_model_with_view_point (ControlPoint& cp)
{
/* find out where the visual control point is.
* ControlPoint uses canvas-units. The origin
* is the RegionView's top-left corner.
*/
double view_x = cp.get_x();
/* model time is relative to the Region (regardless of region->start offset) */
timepos_t model_time = (*cp.model())->when;
const timepos_t origin (get_origin());
/* convert to absolute time on timeline */
const timepos_t absolute_time = model_time + origin;
/* now convert to pixels relative to start of region, which matches view_x */
const double model_x = _editing_context.time_to_pixel_unrounded (absolute_time) - _editing_context.time_to_pixel_unrounded (origin);
if (view_x != model_x) {
/* convert the current position in the view (units:
* region-relative pixels) into samples, then use that to
* create a timecnt_t that measures the distance from the
* origin for this line.
*
* Note that the offset and origin is irrelevant here,
* pixel_to_sample() islinear only depending on zoom level.
*/
const timepos_t view_samples (_editing_context.pixel_to_sample (view_x));
/* measure distance from RegionView origin (this preserves time domain) */
if (model_time.time_domain() == Temporal::AudioTime) {
model_time = timepos_t (timecnt_t (view_samples, origin).samples());
} else {
model_time = timepos_t (timecnt_t (view_samples, origin).beats());
}
/* convert RegionView to Region position (account for region->start() _offset) */
model_time += _offset;
}
update_pending = true;
double view_y = 1.0 - cp.get_y() / (double)_height;
view_to_model_coord_y (view_y);
alist->modify (cp.model(), model_time, view_y);
/* convert back from model to view y for clamping position (for integer/boolean/etc) */
view_y = model_to_view_coord_y (view_y);
const double point_y = _height - (view_y * _height);
if (point_y != cp.get_y()) {
cp.move_to (cp.get_x(), point_y, ControlPoint::Full);
reset_line_coords (cp);
return true;
}
return false;
}
bool
AutomationLine::control_points_adjacent (double xval, uint32_t & before, uint32_t& after)
{
ControlPoint *bcp = 0;
ControlPoint *acp = 0;
double unit_xval;
unit_xval = _editing_context.sample_to_pixel_unrounded (xval);
for (vector<ControlPoint*>::iterator i = control_points.begin(); i != control_points.end(); ++i) {
if ((*i)->get_x() <= unit_xval) {
if (!bcp || (*i)->get_x() > bcp->get_x()) {
bcp = *i;
before = bcp->view_index();
}
} else if ((*i)->get_x() > unit_xval) {
acp = *i;
after = acp->view_index();
break;
}
}
return bcp && acp;
}
bool
AutomationLine::is_last_point (ControlPoint& cp)
{
// If the list is not empty, and the point is the last point in the list
if (alist->empty()) {
return false;
}
AutomationList::const_iterator i = alist->end();
--i;
if (cp.model() == i) {
return true;
}
return false;
}
bool
AutomationLine::is_first_point (ControlPoint& cp)
{
// If the list is not empty, and the point is the first point in the list
if (!alist->empty() && cp.model() == alist->begin()) {
return true;
}
return false;
}
// This is copied into AudioRegionGainLine
void
AutomationLine::remove_point (ControlPoint& cp)
{
_editing_context.begin_reversible_command (_("remove control point"));
XMLNode &before = alist->get_state();
_editing_context.get_selection ().clear_points ();
alist->erase (cp.model());
_editing_context.add_command (new MementoCommand<AutomationList> (memento_command_binder (), &before, &alist->get_state()));
_editing_context.commit_reversible_command ();
_editing_context.session()->set_dirty ();
}
/** Get selectable points within an area.
* @param start Start position in session samples.
* @param end End position in session samples.
* @param bot Bottom y range, as a fraction of line height, where 0 is the bottom of the line.
* @param top Top y range, as a fraction of line height, where 0 is the bottom of the line.
* @param result Filled in with selectable things; in this case, ControlPoints.
*/
void
AutomationLine::_get_selectables (timepos_t const & start, timepos_t const & end, double botfrac, double topfrac, list<Selectable*>& results, bool /*within*/)
{
/* convert fractions to display coordinates with 0 at the top of the track */
double const bot_track = (1 - topfrac) * _height; // this should StreamView::child_height () for RegionGain
double const top_track = (1 - botfrac) * _height; // --"--
for (auto const & cp : control_points) {
const timepos_t w = session_position ((*cp->model())->when);
if (w >= start && w <= end && cp->get_y() >= bot_track && cp->get_y() <= top_track) {
results.push_back (cp);
}
}
}
void
AutomationLine::get_inverted_selectables (Selection&, list<Selectable*>& /*results*/)
{
// hmmm ....
}
void
AutomationLine::set_selected_points (PointSelection const & points)
{
for (vector<ControlPoint*>::iterator i = control_points.begin(); i != control_points.end(); ++i) {
(*i)->set_selected (false);
}
for (PointSelection::const_iterator i = points.begin(); i != points.end(); ++i) {
(*i)->set_selected (true);
}
if (points.empty()) {
remove_visibility (SelectedControlPoints);
} else {
add_visibility (SelectedControlPoints);
}
set_colors ();
}
void
AutomationLine::set_colors ()
{
set_line_color (_line_color, _line_color_mod);
for (vector<ControlPoint*>::iterator i = control_points.begin(); i != control_points.end(); ++i) {
(*i)->set_color ();
}
}
void
AutomationLine::list_changed ()
{
DEBUG_TRACE (DEBUG::Automation, string_compose ("\tline changed, existing update pending? %1\n", update_pending));
if (!update_pending) {
update_pending = true;
Gtkmm2ext::UI::instance()->call_slot (invalidator (*this), boost::bind (&AutomationLine::queue_reset, this));
}
}
void
AutomationLine::tempo_map_changed ()
{
if (alist->time_domain() != Temporal::BeatTime) {
return;
}
reset ();
}
void
AutomationLine::reset_callback (const Evoral::ControlList& events)
{
uint32_t vp = 0;
uint32_t pi = 0;
uint32_t np;
if (events.empty()) {
for (vector<ControlPoint*>::iterator i = control_points.begin(); i != control_points.end(); ++i) {
delete *i;
}
control_points.clear ();
line->hide();
line_points.clear ();
return;
}
/* hide all existing points, and the line */
for (vector<ControlPoint*>::iterator i = control_points.begin(); i != control_points.end(); ++i) {
(*i)->hide();
}
line->hide ();
np = events.size();
Evoral::ControlList& e (const_cast<Evoral::ControlList&> (events));
AutomationList::iterator preceding (e.end());
AutomationList::iterator following (e.end());
for (AutomationList::iterator ai = e.begin(); ai != e.end(); ++ai, ++pi) {
/* drop points outside our range */
if (((*ai)->when < _offset)) {
preceding = ai;
continue;
}
if ((*ai)->when >= _offset + _maximum_time) {
following = ai;
break;
}
double ty = model_to_view_coord_y ((*ai)->value);
if (isnan_local (ty)) {
warning << string_compose (_("Ignoring illegal points on EditorAutomationLine \"%1\""), _name) << endmsg;
continue;
}
/* convert from canonical view height (0..1.0) to actual
* height coordinates (using X11's top-left rooted system)
*/
ty = _height - (ty * _height);
/* tx is currently the distance of this point from
* _offset, which may be either:
*
* a) zero, for an automation line not connected to a
* region
*
* b) some non-zero value, corresponding to the start
* of the region within its source(s). Remember that
* this start is an offset within the source, not a
* position on the timeline.
*
* We need to convert tx to a global position, and to
* do that we need to measure the distance from the
* result of get_origin(), which tells ut the timeline
* position of _offset
*/
timecnt_t tx = model_to_view_coord_x ((*ai)->when);
/* convert x-coordinate to a canvas unit coordinate (this takes
* zoom and scroll into account).
*/
double px = _editing_context.duration_to_pixels_unrounded (tx);
add_visible_control_point (vp, pi, px, ty, ai, np);
vp++;
}
/* discard extra CP's to avoid confusing ourselves */
while (control_points.size() > vp) {
ControlPoint* cp = control_points.back();
control_points.pop_back ();
delete cp;
}
if (!terminal_points_can_slide && !control_points.empty()) {
control_points.back()->set_can_slide(false);
}
if (vp) {
/* reset the line coordinates given to the CanvasLine */
/* 2 extra in case we need hidden points for line start and end */
line_points.resize (vp + 2, ArdourCanvas::Duple (0, 0));
ArdourCanvas::Points::size_type n = 0;
/* potentially insert front hidden (line) point to make the line draw from
* zero to the first actual point
*/
_view_index_offset = 0;
if (control_points[0]->get_x() != 0 && preceding != e.end()) {
double ty = model_to_view_coord_y (e.unlocked_eval (_offset));
if (isnan_local (ty)) {
warning << string_compose (_("Ignoring illegal points on EditorAutomationLine \"%1\""), _name) << endmsg;
} else {
line_points[n].y = _height - (ty * _height);
line_points[n].x = 0;
_view_index_offset = 1;
++n;
}
}
for (auto const & cp : control_points) {
line_points[n].x = cp->get_x();
line_points[n].y = cp->get_y();
++n;
}
/* potentially insert final hidden (line) point to make the line draw
* from the last point to the very end
*/
double px = _editing_context.duration_to_pixels_unrounded (model_to_view_coord_x (_offset + _maximum_time));
if (control_points[control_points.size() - 1]->get_x() != px && following != e.end()) {
double ty = model_to_view_coord_y (e.unlocked_eval (_offset + _maximum_time));
if (isnan_local (ty)) {
warning << string_compose (_("Ignoring illegal points on EditorAutomationLine \"%1\""), _name) << endmsg;
} else {
line_points[n].y = _height - (ty * _height);
line_points[n].x = px;
++n;
}
}
line_points.resize (n);
line->set_steps (line_points, is_stepped());
update_visibility ();
}
set_selected_points (_editing_context.get_selection().points);
}
void
AutomationLine::reset ()
{
DEBUG_TRACE (DEBUG::Automation, "\t\tLINE RESET\n");
update_pending = false;
have_reset_timeout = false;
if (no_draw) {
return;
}
/* TODO: abort any drags in progress, e.g. dragging points while writing automation
* (the control-point model, used by AutomationLine::drag_motion, will be invalid).
*
* Note: reset() may also be called from an aborted drag (LineDrag::aborted)
* maybe abort in list_changed(), interpolation_changed() and ... ?
* XXX
*/
alist->apply_to_points (*this, &AutomationLine::reset_callback);
}
void
AutomationLine::queue_reset ()
{
/* this must be called from the GUI thread */
if (_editing_context.session()->transport_rolling() && alist->automation_write()) {
/* automation write pass ... defer to a timeout */
/* redraw in 1/4 second */
if (!have_reset_timeout) {
DEBUG_TRACE (DEBUG::Automation, "\tqueue timeout\n");
Glib::signal_timeout().connect (sigc::bind_return (sigc::mem_fun (*this, &AutomationLine::reset), false), 250);
have_reset_timeout = true;
} else {
DEBUG_TRACE (DEBUG::Automation, "\ttimeout already queued, change ignored\n");
}
} else {
reset ();
}
}
void
AutomationLine::clear ()
{
/* parent must create and commit command */
XMLNode &before = alist->get_state();
alist->clear();
_editing_context.add_command (new MementoCommand<AutomationList> (memento_command_binder (), &before, &alist->get_state()));
}
void
AutomationLine::set_list (std::shared_ptr<ARDOUR::AutomationList> list)
{
alist = list;
queue_reset ();
connect_to_list ();
}
void
AutomationLine::add_visibility (VisibleAspects va)
{
VisibleAspects old = _visible;
_visible = VisibleAspects (_visible | va);
if (old != _visible) {
update_visibility ();
}
}
void
AutomationLine::set_visibility (VisibleAspects va)
{
if (_visible != va) {
_visible = va;
update_visibility ();
}
}
void
AutomationLine::remove_visibility (VisibleAspects va)
{
VisibleAspects old = _visible;
_visible = VisibleAspects (_visible & ~va);
if (old != _visible) {
update_visibility ();
}
}
void
AutomationLine::track_entered()
{
add_visibility (ControlPoints);
}
void
AutomationLine::track_exited()
{
remove_visibility (ControlPoints);
}
XMLNode &
AutomationLine::get_state () const
{
/* function as a proxy for the model */
return alist->get_state();
}
int
AutomationLine::set_state (const XMLNode &node, int version)
{
/* function as a proxy for the model */
return alist->set_state (node, version);
}
void
AutomationLine::view_to_model_coord_y (double& y) const
{
if (alist->default_interpolation () != alist->interpolation()) {
switch (alist->interpolation()) {
case AutomationList::Discrete:
/* toggles and MIDI only -- see is_stepped() */
assert (alist->default_interpolation () == AutomationList::Linear);
break;
case AutomationList::Linear:
y = y * (_desc.upper - _desc.lower) + _desc.lower;
return;
default:
/* types that default to linear, can't be use
* Logarithmic or Exponential interpolation.
* "Curved" is invalid for automation (only x-fads)
*/
assert (0);
break;
}
}
y = _desc.from_interface (y);
}
double
AutomationLine::compute_delta (double from, double to) const
{
return _desc.compute_delta (from, to);
}
void
AutomationLine::apply_delta (double& val, double delta) const
{
if (val == 0 && !_desc.is_linear () && delta >= 1.0) {
/* recover from -inf */
val = 1.0 / _height;
view_to_model_coord_y (val);
return;
}
val = _desc.apply_delta (val, delta);
}
double
AutomationLine::model_to_view_coord_y (double y) const
{
if (alist->default_interpolation () != alist->interpolation()) {
switch (alist->interpolation()) {
case AutomationList::Discrete:
/* toggles and MIDI only -- see is_stepped */
assert (alist->default_interpolation () == AutomationList::Linear);
break;
case AutomationList::Linear:
return (y - _desc.lower) / (_desc.upper - _desc.lower);
default:
/* types that default to linear, can't be use
* Logarithmic or Exponential interpolation.
* "Curved" is invalid for automation (only x-fads)
*/
assert (0);
break;
}
}
return _desc.to_interface (y);
}
timecnt_t
AutomationLine::model_to_view_coord_x (timepos_t const & when) const
{
/* @param when is a distance (with implicit origin) from the start of the
* source. So we subtract the offset (from the region if this is
* related to a region; zero otherwise) to get the distance (again,
* implicit origin) from the start of the line.
*
* Then we construct a timecnt_t from this duration, and the origin of
* the line on the timeline.
*/
return timecnt_t (when.earlier (_offset), get_origin());
}
/** Called when our list has announced that its interpolation style has changed */
void
AutomationLine::interpolation_changed (AutomationList::InterpolationStyle style)
{
if (line_points.size() > 1) {
reset ();
line->set_steps(line_points, is_stepped());
}
}
void
AutomationLine::add_visible_control_point (uint32_t view_index, uint32_t pi, double tx, double ty,
AutomationList::iterator model, uint32_t npoints)
{
ControlPoint::ShapeType shape;
if (view_index >= control_points.size()) {
/* make sure we have enough control points */
ControlPoint* ncp = new ControlPoint (*this);
ncp->set_size (control_point_box_size ());
control_points.push_back (ncp);
}
if (!terminal_points_can_slide) {
if (pi == 0) {
control_points[view_index]->set_can_slide (false);
if (tx == 0) {
shape = ControlPoint::Start;
} else {
shape = ControlPoint::Full;
}
} else if (pi == npoints - 1) {
control_points[view_index]->set_can_slide (false);
shape = ControlPoint::End;
} else {
control_points[view_index]->set_can_slide (true);
shape = ControlPoint::Full;
}
} else {
control_points[view_index]->set_can_slide (true);
shape = ControlPoint::Full;
}
control_points[view_index]->reset (tx, ty, model, view_index, shape);
/* finally, control visibility */
if (_visible & ControlPoints) {
control_points[view_index]->show ();
} else {
control_points[view_index]->hide ();
}
}
void
AutomationLine::dump (std::ostream& ostr) const
{
for (auto const & cp : control_points) {
if (cp->model() != alist->end()) {
ostr << '#' << cp->view_index() << " @ " << cp->get_x() << ", " << cp->get_y() << " for " << (*cp->model())->value << " @ " << (*(cp->model()))->when << std::endl;
} else {
ostr << "dead point\n";
}
}
}
void
AutomationLine::connect_to_list ()
{
_list_connections.drop_connections ();
alist->StateChanged.connect (_list_connections, invalidator (*this), boost::bind (&AutomationLine::list_changed, this), gui_context());
alist->InterpolationChanged.connect (
_list_connections, invalidator (*this), boost::bind (&AutomationLine::interpolation_changed, this, _1), gui_context());
}
MementoCommandBinder<AutomationList>*
AutomationLine::memento_command_binder ()
{
return new SimpleMementoCommandBinder<AutomationList> (*alist.get());
}
/** Set the maximum time that points on this line can be at, relative
* to the start of the track or region that it is on.
*/
void
AutomationLine::set_maximum_time (Temporal::timepos_t const & t)
{
if (_maximum_time == t) {
return;
}
_maximum_time = t;
reset ();
}
/** @return min and max x positions of points that are in the list, in session samples */
pair<timepos_t, timepos_t>
AutomationLine::get_point_x_range () const
{
pair<timepos_t, timepos_t> r (timepos_t::max (the_list()->time_domain()), timepos_t::zero (the_list()->time_domain()));
for (auto const & cp : *the_list()) {
const timepos_t w (session_position (cp->when));
r.first = min (r.first, w);
r.second = max (r.second, w);
}
return r;
}
timepos_t
AutomationLine::session_position (timepos_t const & when) const
{
return when + get_origin();
}
void
AutomationLine::set_offset (timepos_t const & off)
{
_offset = off;
reset ();
}
void
AutomationLine::add (std::shared_ptr<AutomationControl> control, GdkEvent* event, timepos_t const & pos, double y, bool with_guard_points)
{
if (alist->in_write_pass()) {
/* do not allow the GUI to add automation events during an
automation write pass.
*/
return;
}
timepos_t when (pos);
Session* session (_editing_context.session());
_editing_context.snap_to_with_modifier (when, event);
if (UIConfiguration::instance().get_new_automation_points_on_lane() || control->list()->size () == 0) {
if (control->list()->size () == 0) {
y = control->get_value ();
} else {
y = control->list()->eval (when);
}
} else {
double x = 0;
grab_item().canvas_to_item (x, y);
/* compute vertical fractional position */
y = 1.0 - (y / height());
/* map using line */
view_to_model_coord_y (y);
}
XMLNode& before = alist->get_state();
std::list<Selectable*> results;
if (alist->editor_add (when, y, with_guard_points)) {
if (control->automation_state () == ARDOUR::Off) {
#warning paul make this work again .. call back to ATV or similar
// set_automation_state (ARDOUR::Play);
}
if (UIConfiguration::instance().get_automation_edit_cancels_auto_hide () && control == session->recently_touched_controllable ()) {
RouteTimeAxisView::signal_ctrl_touched (false);
}
XMLNode& after = alist->get_state();
_editing_context.begin_reversible_command (_("add automation event"));
_editing_context.add_command (new MementoCommand<ARDOUR::AutomationList> (*alist.get (), &before, &after));
get_selectables (when, when, 0.0, 1.0, results);
_editing_context.get_selection ().set (results);
_editing_context.commit_reversible_command ();
session->set_dirty ();
}
}