13
0
livetrax/libs/backends/alsa/alsa_audiobackend.cc

2447 lines
66 KiB
C++

/*
* Copyright (C) 2014-2015 Tim Mayberry <mojofunk@gmail.com>
* Copyright (C) 2014-2018 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2014-2019 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <regex.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <glibmm.h>
#include <boost/foreach.hpp>
#include <boost/tokenizer.hpp>
#include "alsa_audiobackend.h"
#include "pbd/compose.h"
#include "pbd/convert.h"
#include "pbd/error.h"
#include "pbd/file_utils.h"
#include "pbd/pthread_utils.h"
#include "ardour/filesystem_paths.h"
#include "ardour/port_manager.h"
#include "ardouralsautil/devicelist.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
static std::string s_instance_name;
size_t AlsaAudioBackend::_max_buffer_size = 8192;
std::vector<std::string> AlsaAudioBackend::_midi_options;
std::vector<AudioBackend::DeviceStatus> AlsaAudioBackend::_input_audio_device_status;
std::vector<AudioBackend::DeviceStatus> AlsaAudioBackend::_output_audio_device_status;
std::vector<AudioBackend::DeviceStatus> AlsaAudioBackend::_duplex_audio_device_status;
std::vector<AudioBackend::DeviceStatus> AlsaAudioBackend::_midi_device_status;
ALSADeviceInfo AlsaAudioBackend::_input_audio_device_info;
ALSADeviceInfo AlsaAudioBackend::_output_audio_device_info;
AlsaAudioBackend::AlsaAudioBackend (AudioEngine& e, AudioBackendInfo& info)
: AudioBackend (e, info)
, PortEngineSharedImpl (e, s_instance_name)
, _pcmi (0)
, _run (false)
, _active (false)
, _freewheel (false)
, _freewheeling (false)
, _measure_latency (false)
, _last_process_start (0)
, _input_audio_device("")
, _output_audio_device("")
, _midi_driver_option(get_standard_device_name(DeviceNone))
, _samplerate (48000)
, _samples_per_period (1024)
, _periods_per_cycle (2)
, _n_inputs (0)
, _n_outputs (0)
, _systemic_audio_input_latency (0)
, _systemic_audio_output_latency (0)
, _midi_device_thread_active (false)
, _dsp_load (0)
, _processed_samples (0)
{
_instance_name = s_instance_name;
pthread_mutex_init (&_device_port_mutex, 0);
_input_audio_device_info.valid = false;
_output_audio_device_info.valid = false;
_port_connection_queue.reserve (128);
}
AlsaAudioBackend::~AlsaAudioBackend ()
{
clear_ports ();
pthread_mutex_destroy (&_device_port_mutex);
}
/* AUDIOBACKEND API */
std::string
AlsaAudioBackend::name () const
{
return X_("ALSA");
}
bool
AlsaAudioBackend::is_realtime () const
{
return true;
}
std::vector<AudioBackend::DeviceStatus>
AlsaAudioBackend::enumerate_devices () const
{
_duplex_audio_device_status.clear();
std::map<std::string, std::string> devices;
get_alsa_audio_device_names(devices);
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (_input_audio_device == "") _input_audio_device = i->first;
if (_output_audio_device == "") _output_audio_device = i->first;
_duplex_audio_device_status.push_back (DeviceStatus (i->first, true));
}
return _duplex_audio_device_status;
}
std::vector<AudioBackend::DeviceStatus>
AlsaAudioBackend::enumerate_input_devices () const
{
_input_audio_device_status.clear();
std::map<std::string, std::string> devices;
get_alsa_audio_device_names(devices, HalfDuplexIn);
_input_audio_device_status.push_back (DeviceStatus (get_standard_device_name(DeviceNone), true));
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (_input_audio_device == "") _input_audio_device = i->first;
_input_audio_device_status.push_back (DeviceStatus (i->first, true));
}
return _input_audio_device_status;
}
std::vector<AudioBackend::DeviceStatus>
AlsaAudioBackend::enumerate_output_devices () const
{
_output_audio_device_status.clear();
std::map<std::string, std::string> devices;
get_alsa_audio_device_names(devices, HalfDuplexOut);
_output_audio_device_status.push_back (DeviceStatus (get_standard_device_name(DeviceNone), true));
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (_output_audio_device == "") _output_audio_device = i->first;
_output_audio_device_status.push_back (DeviceStatus (i->first, true));
}
return _output_audio_device_status;
}
std::vector<float>
AlsaAudioBackend::available_sample_rates2 (const std::string& input_device, const std::string& output_device) const
{
std::vector<float> sr;
if (input_device == get_standard_device_name(DeviceNone) && output_device == get_standard_device_name(DeviceNone)) {
return sr;
}
else if (input_device == get_standard_device_name(DeviceNone)) {
sr = available_sample_rates (output_device);
}
else if (output_device == get_standard_device_name(DeviceNone)) {
sr = available_sample_rates (input_device);
} else {
std::vector<float> sr_in = available_sample_rates (input_device);
std::vector<float> sr_out = available_sample_rates (output_device);
std::set_intersection (sr_in.begin(), sr_in.end(), sr_out.begin(), sr_out.end(), std::back_inserter(sr));
}
return sr;
}
std::vector<float>
AlsaAudioBackend::available_sample_rates (const std::string& device) const
{
ALSADeviceInfo *nfo = NULL;
std::vector<float> sr;
if (device == get_standard_device_name(DeviceNone)) {
return sr;
}
if (device == _input_audio_device && _input_audio_device_info.valid) {
nfo = &_input_audio_device_info;
}
else if (device == _output_audio_device && _output_audio_device_info.valid) {
nfo = &_output_audio_device_info;
}
static const float avail_rates [] = { 8000, 22050.0, 24000.0, 44100.0, 48000.0, 88200.0, 96000.0, 176400.0, 192000.0 };
for (size_t i = 0 ; i < sizeof(avail_rates) / sizeof(float); ++i) {
if (!nfo || (avail_rates[i] >= nfo->min_rate && avail_rates[i] <= nfo->max_rate)) {
sr.push_back (avail_rates[i]);
}
}
return sr;
}
std::vector<uint32_t>
AlsaAudioBackend::available_buffer_sizes2 (const std::string& input_device, const std::string& output_device) const
{
std::vector<uint32_t> bs;
if (input_device == get_standard_device_name(DeviceNone) && output_device == get_standard_device_name(DeviceNone)) {
return bs;
}
else if (input_device == get_standard_device_name(DeviceNone)) {
bs = available_buffer_sizes (output_device);
}
else if (output_device == get_standard_device_name(DeviceNone)) {
bs = available_buffer_sizes (input_device);
} else {
std::vector<uint32_t> bs_in = available_buffer_sizes (input_device);
std::vector<uint32_t> bs_out = available_buffer_sizes (output_device);
std::set_intersection (bs_in.begin(), bs_in.end(), bs_out.begin(), bs_out.end(), std::back_inserter(bs));
}
return bs;
}
std::vector<uint32_t>
AlsaAudioBackend::available_buffer_sizes (const std::string& device) const
{
ALSADeviceInfo *nfo = NULL;
std::vector<uint32_t> bs;
if (device == get_standard_device_name(DeviceNone)) {
return bs;
}
if (device == _input_audio_device && _input_audio_device_info.valid) {
nfo = &_input_audio_device_info;
}
else if (device == _output_audio_device && _output_audio_device_info.valid) {
nfo = &_output_audio_device_info;
}
static const unsigned long avail_sizes [] = { 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 };
for (size_t i = 0 ; i < sizeof(avail_sizes) / sizeof(unsigned long); ++i) {
if (!nfo || (avail_sizes[i] >= nfo->min_size && avail_sizes[i] <= nfo->max_size)) {
bs.push_back (avail_sizes[i]);
}
}
if (!nfo) {
return bs;
}
static const unsigned long try_msec [] = { 2, 4, 5, 6, 8, 10, 15, 20, 25, 40};
for (size_t i = 0 ; i < sizeof(try_msec) / sizeof(unsigned long); ++i) {
unsigned int msbs = _samplerate * try_msec[i] / 1000;
if (msbs >= nfo->min_size && msbs <= nfo->max_size) {
bs.push_back (msbs);
}
}
std::sort (bs.begin (), bs.end ());
return bs;
}
uint32_t
AlsaAudioBackend::available_input_channel_count (const std::string& device) const
{
if (device == get_standard_device_name(DeviceNone)) {
return 0;
}
if (device == _input_audio_device && _input_audio_device_info.valid) {
return _input_audio_device_info.max_channels;
}
return 128;
}
uint32_t
AlsaAudioBackend::available_output_channel_count (const std::string& device) const
{
if (device == get_standard_device_name(DeviceNone)) {
return 0;
}
if (device == _output_audio_device && _output_audio_device_info.valid) {
return _output_audio_device_info.max_channels;
}
return 128;
}
std::vector<uint32_t>
AlsaAudioBackend::available_period_sizes (const std::string& driver, const std::string& device) const
{
std::vector<uint32_t> ps;
ps.push_back (2);
ALSADeviceInfo* nfo = NULL;
if (device == get_standard_device_name(DeviceNone)) {
return ps;
}
if (device == _output_audio_device && _output_audio_device_info.valid) {
nfo = &_output_audio_device_info;
if (nfo->max_nper > 2) {
ps.push_back (3);
}
if (nfo->min_nper > 3) {
ps.push_back (nfo->min_nper);
}
} else {
ps.push_back (3);
}
return ps;
}
bool
AlsaAudioBackend::can_change_sample_rate_when_running () const
{
return false;
}
bool
AlsaAudioBackend::can_change_buffer_size_when_running () const
{
return false; // why not? :)
}
int
AlsaAudioBackend::set_input_device_name (const std::string& d)
{
if (_input_audio_device == d) {
return 0;
}
_input_audio_device = d;
if (d == get_standard_device_name(DeviceNone)) {
_input_audio_device_info.valid = false;
return 0;
}
std::string alsa_device;
std::map<std::string, std::string> devices;
get_alsa_audio_device_names(devices, HalfDuplexIn);
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (i->first == d) {
alsa_device = i->second;
break;
}
}
if (alsa_device == "") {
_input_audio_device_info.valid = false;
return 1;
}
/* device will be busy once used, hence cache the parameters */
/* return */ get_alsa_device_parameters (alsa_device.c_str(), false, &_input_audio_device_info);
return 0;
}
int
AlsaAudioBackend::set_output_device_name (const std::string& d)
{
if (_output_audio_device == d) {
return 0;
}
_output_audio_device = d;
if (d == get_standard_device_name(DeviceNone)) {
_output_audio_device_info.valid = false;
return 0;
}
std::string alsa_device;
std::map<std::string, std::string> devices;
get_alsa_audio_device_names(devices, HalfDuplexOut);
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (i->first == d) {
alsa_device = i->second;
break;
}
}
if (alsa_device == "") {
_output_audio_device_info.valid = false;
return 1;
}
/* return */ get_alsa_device_parameters (alsa_device.c_str(), true, &_output_audio_device_info);
return 0;
}
int
AlsaAudioBackend::set_device_name (const std::string& d)
{
int rv = 0;
rv |= set_input_device_name (d);
rv |= set_output_device_name (d);
return rv;
}
bool
AlsaAudioBackend::can_measure_systemic_latency () const
{
return _input_audio_device == _output_audio_device && _input_audio_device != get_standard_device_name (DeviceNone);
}
int
AlsaAudioBackend::set_sample_rate (float sr)
{
if (sr <= 0) { return -1; }
_samplerate = sr;
engine.sample_rate_change (sr);
return 0;
}
int
AlsaAudioBackend::set_peridod_size (uint32_t n)
{
if (n == 0) {
return -1;
}
if (_run) {
return -1;
}
_periods_per_cycle = n;
return 0;
}
int
AlsaAudioBackend::set_buffer_size (uint32_t bs)
{
if (bs <= 0 || bs >= _max_buffer_size) {
return -1;
}
if (_run) {
return -1;
}
_samples_per_period = bs;
engine.buffer_size_change (bs);
return 0;
}
int
AlsaAudioBackend::set_interleaved (bool yn)
{
if (!yn) { return 0; }
return -1;
}
int
AlsaAudioBackend::set_input_channels (uint32_t cc)
{
_n_inputs = cc;
return 0;
}
int
AlsaAudioBackend::set_output_channels (uint32_t cc)
{
_n_outputs = cc;
return 0;
}
int
AlsaAudioBackend::set_systemic_input_latency (uint32_t sl)
{
if (_systemic_audio_input_latency == sl) {
return 0;
}
_systemic_audio_input_latency = sl;
if (_run) {
update_systemic_audio_latencies();
}
return 0;
}
int
AlsaAudioBackend::set_systemic_output_latency (uint32_t sl)
{
if (_systemic_audio_output_latency == sl) {
return 0;
}
_systemic_audio_output_latency = sl;
if (_run) {
update_systemic_audio_latencies();
}
return 0;
}
int
AlsaAudioBackend::set_systemic_midi_input_latency (std::string const device, uint32_t sl)
{
struct AlsaMidiDeviceInfo * nfo = midi_device_info(device);
if (!nfo) return -1;
nfo->systemic_input_latency = sl;
if (_run && nfo->enabled) {
update_systemic_midi_latencies ();
}
return 0;
}
int
AlsaAudioBackend::set_systemic_midi_output_latency (std::string const device, uint32_t sl)
{
struct AlsaMidiDeviceInfo * nfo = midi_device_info(device);
if (!nfo) return -1;
nfo->systemic_output_latency = sl;
if (_run && nfo->enabled) {
update_systemic_midi_latencies ();
}
return 0;
}
void
AlsaAudioBackend::update_systemic_audio_latencies ()
{
const uint32_t lcpp = (_periods_per_cycle - 2) * _samples_per_period;
LatencyRange lr;
lr.min = lr.max = lcpp + (_measure_latency ? 0 : _systemic_audio_input_latency);
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
set_latency_range (*it, true, lr);
}
lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_output_latency);
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
set_latency_range (*it, false, lr);
}
update_latencies ();
}
void
AlsaAudioBackend::update_systemic_midi_latencies ()
{
pthread_mutex_lock (&_device_port_mutex);
uint32_t i = 0;
for (std::vector<BackendPortPtr>::iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) {
assert (_rmidi_out.size() > i);
AlsaMidiOut *rm = _rmidi_out.at(i);
struct AlsaMidiDeviceInfo * nfo = midi_device_info (rm->name());
assert (nfo);
LatencyRange lr;
lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_output_latency);
set_latency_range (*it, true, lr);
}
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) {
assert (_rmidi_in.size() > i);
AlsaMidiIO *rm = _rmidi_in.at(i);
struct AlsaMidiDeviceInfo * nfo = midi_device_info (rm->name());
assert (nfo);
LatencyRange lr;
lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_input_latency);
set_latency_range (*it, false, lr);
}
pthread_mutex_unlock (&_device_port_mutex);
update_latencies ();
}
/* Retrieving parameters */
std::string
AlsaAudioBackend::device_name () const
{
if (_input_audio_device != get_standard_device_name(DeviceNone)) {
return _input_audio_device;
}
if (_output_audio_device != get_standard_device_name(DeviceNone)) {
return _output_audio_device;
}
return "";
}
std::string
AlsaAudioBackend::input_device_name () const
{
return _input_audio_device;
}
std::string
AlsaAudioBackend::output_device_name () const
{
return _output_audio_device;
}
float
AlsaAudioBackend::sample_rate () const
{
return _samplerate;
}
uint32_t
AlsaAudioBackend::buffer_size () const
{
return _samples_per_period;
}
uint32_t
AlsaAudioBackend::period_size () const
{
return _periods_per_cycle;
}
bool
AlsaAudioBackend::interleaved () const
{
return false;
}
uint32_t
AlsaAudioBackend::input_channels () const
{
return _n_inputs;
}
uint32_t
AlsaAudioBackend::output_channels () const
{
return _n_outputs;
}
uint32_t
AlsaAudioBackend::systemic_input_latency () const
{
return _systemic_audio_input_latency;
}
uint32_t
AlsaAudioBackend::systemic_output_latency () const
{
return _systemic_audio_output_latency;
}
uint32_t
AlsaAudioBackend::systemic_midi_input_latency (std::string const device) const
{
struct AlsaMidiDeviceInfo * nfo = midi_device_info(device);
if (!nfo) return 0;
return nfo->systemic_input_latency;
}
uint32_t
AlsaAudioBackend::systemic_midi_output_latency (std::string const device) const
{
struct AlsaMidiDeviceInfo * nfo = midi_device_info(device);
if (!nfo) return 0;
return nfo->systemic_output_latency;
}
/* MIDI */
struct AlsaAudioBackend::AlsaMidiDeviceInfo *
AlsaAudioBackend::midi_device_info(std::string const name) const {
for (std::map<std::string, struct AlsaMidiDeviceInfo*>::const_iterator i = _midi_devices.begin (); i != _midi_devices.end(); ++i) {
if (i->first == name) {
return (i->second);
}
}
assert(_midi_driver_option != get_standard_device_name(DeviceNone));
std::map<std::string, std::string> devices;
if (_midi_driver_option == _("ALSA raw devices")) {
get_alsa_rawmidi_device_names(devices);
} else {
get_alsa_sequencer_names (devices);
}
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (i->first == name) {
_midi_devices[name] = new AlsaMidiDeviceInfo();
return _midi_devices[name];
}
}
return 0;
}
std::vector<std::string>
AlsaAudioBackend::enumerate_midi_options () const
{
if (_midi_options.empty()) {
_midi_options.push_back (_("ALSA raw devices"));
_midi_options.push_back (_("ALSA sequencer"));
_midi_options.push_back (get_standard_device_name(DeviceNone));
}
return _midi_options;
}
std::vector<AudioBackend::DeviceStatus>
AlsaAudioBackend::enumerate_midi_devices () const
{
_midi_device_status.clear();
std::map<std::string, std::string> devices;
if (_midi_driver_option == _("ALSA raw devices")) {
get_alsa_rawmidi_device_names (devices);
}
else if (_midi_driver_option == _("ALSA sequencer")) {
get_alsa_sequencer_names (devices);
}
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
_midi_device_status.push_back (DeviceStatus (i->first, true));
}
return _midi_device_status;
}
int
AlsaAudioBackend::set_midi_option (const std::string& opt)
{
if (opt != get_standard_device_name(DeviceNone) && opt != _("ALSA raw devices") && opt != _("ALSA sequencer")) {
return -1;
}
if (_run && _midi_driver_option != opt) {
return -1;
}
_midi_driver_option = opt;
return 0;
}
std::string
AlsaAudioBackend::midi_option () const
{
return _midi_driver_option;
}
int
AlsaAudioBackend::set_midi_device_enabled (std::string const device, bool enable)
{
struct AlsaMidiDeviceInfo * nfo = midi_device_info(device);
if (!nfo) return -1;
const bool prev_enabled = nfo->enabled;
nfo->enabled = enable;
if (_run && prev_enabled != enable) {
if (enable) {
// add ports for the given device
register_system_midi_ports(device);
} else {
// remove all ports provided by the given device
pthread_mutex_lock (&_device_port_mutex);
uint32_t i = 0;
for (std::vector<BackendPortPtr>::iterator it = _system_midi_out.begin (); it != _system_midi_out.end ();) {
assert (_rmidi_out.size() > i);
AlsaMidiOut *rm = _rmidi_out.at(i);
if (rm->name () != device) { ++it; ++i; continue; }
unregister_port (*it);
it = _system_midi_out.erase (it);
rm->stop();
assert (rm == *(_rmidi_out.begin() + i));
_rmidi_out.erase (_rmidi_out.begin() + i);
delete rm;
}
i = 0;
for (std::vector<BackendPortPtr>::iterator it = _system_midi_in.begin (); it != _system_midi_in.end ();) {
assert (_rmidi_in.size() > i);
AlsaMidiIn *rm = _rmidi_in.at(i);
if (rm->name () != device) { ++it; ++i; continue; }
unregister_port (*it);
it = _system_midi_in.erase (it);
rm->stop();
assert (rm == *(_rmidi_in.begin() + i));
_rmidi_in.erase (_rmidi_in.begin() + i);
delete rm;
}
pthread_mutex_unlock (&_device_port_mutex);
}
update_systemic_midi_latencies ();
}
return 0;
}
bool
AlsaAudioBackend::midi_device_enabled (std::string const device) const
{
struct AlsaMidiDeviceInfo * nfo = midi_device_info(device);
if (!nfo) return false;
return nfo->enabled;
}
/* State Control */
static void * pthread_process (void *arg)
{
AlsaAudioBackend *d = static_cast<AlsaAudioBackend *>(arg);
d->main_process_thread ();
pthread_exit (0);
return 0;
}
int
AlsaAudioBackend::_start (bool for_latency_measurement)
{
if (!_active && _run) {
// recover from 'halted', reap threads
stop();
}
if (_active || _run) {
if (for_latency_measurement != _measure_latency) {
_measure_latency = for_latency_measurement;
update_systemic_audio_latencies();
update_systemic_midi_latencies ();
PBD::info << _("AlsaAudioBackend: reload latencies.") << endmsg;
return NoError;
}
PBD::info << _("AlsaAudioBackend: already active.") << endmsg;
return BackendReinitializationError;
}
_measure_latency = for_latency_measurement;
clear_ports ();
/* reset internal state */
_dsp_load = 0;
_freewheeling = false;
_freewheel = false;
_last_process_start = 0;
_device_reservation.release_device();
assert(_rmidi_in.size() == 0);
assert(_rmidi_out.size() == 0);
assert(_pcmi == 0);
int duplex = 0;
std::string audio_device;
std::string alsa_device;
std::map<std::string, std::string> devices;
if (_input_audio_device == get_standard_device_name(DeviceNone) && _output_audio_device == get_standard_device_name(DeviceNone)) {
PBD::error << _("AlsaAudioBackend: At least one of input or output device needs to be set.");
return AudioDeviceInvalidError;
}
std::string slave_device;
AudioSlave::DuplexMode slave_duplex = AudioSlave::FullDuplex;
if (_input_audio_device != _output_audio_device) {
if (_input_audio_device != get_standard_device_name(DeviceNone) && _output_audio_device != get_standard_device_name(DeviceNone)) {
/* Different devices for In + Out.
* Ideally use input as clock source, and resample output.
* But when using separate devices, input is usually one (or more)
* cheap USB mic. Also keeping output device as "main",
* retains master-out connection.
*/
if (getenv ("ARDOUR_ALSA_CLK")) {
slave_device = _output_audio_device;
_output_audio_device = get_standard_device_name(DeviceNone);
slave_duplex = AudioSlave::HalfDuplexOut;
} else {
slave_device = _input_audio_device;
_input_audio_device = get_standard_device_name(DeviceNone);
slave_duplex = AudioSlave::HalfDuplexIn;
}
}
if (_input_audio_device != get_standard_device_name(DeviceNone)) {
get_alsa_audio_device_names(devices, HalfDuplexIn);
audio_device = _input_audio_device;
duplex = 1;
} else {
get_alsa_audio_device_names(devices, HalfDuplexOut);
audio_device = _output_audio_device;
duplex = 2;
}
} else {
get_alsa_audio_device_names(devices);
audio_device = _input_audio_device;
duplex = 3;
}
std::map<std::string, std::string>::const_iterator di = devices.find (audio_device);
if (di == devices.end ()) {
PBD::error << _("AlsaAudioBackend: Cannot find configured device. Is it still connected?");
return AudioDeviceNotAvailableError;
} else {
alsa_device = di->second;
assert (!alsa_device.empty());
}
_device_reservation.acquire_device(alsa_device.c_str());
_pcmi = new Alsa_pcmi (
(duplex & 2) ? alsa_device.c_str() : NULL,
(duplex & 1) ? alsa_device.c_str() : NULL,
/* ctrl name */ 0,
_samplerate, _samples_per_period,
_periods_per_cycle, _periods_per_cycle,
/* debug */ 0);
AudioBackend::ErrorCode error_code = NoError;
switch (_pcmi->state()) {
case 0: /* OK */
break;
case -1:
PBD::error << _("AlsaAudioBackend: failed to open device.") << endmsg;
error_code = AudioDeviceOpenError;
break;
case -2:
PBD::error << _("AlsaAudioBackend: failed to allocate parameters.") << endmsg;
error_code = AudioDeviceOpenError;
break;
case -3:
PBD::error << _("AlsaAudioBackend: cannot set requested sample rate.")
<< endmsg;
error_code = SampleRateNotSupportedError;
break;
case -4:
PBD::error << _("AlsaAudioBackend: cannot set requested period size.")
<< endmsg;
error_code = PeriodSizeNotSupportedError;
break;
case -5:
PBD::error << _("AlsaAudioBackend: cannot set requested number of periods.")
<< endmsg;
error_code = PeriodCountNotSupportedError;
break;
case -6:
PBD::error << _("AlsaAudioBackend: unsupported sample format.") << endmsg;
error_code = SampleFormatNotSupportedError;
break;
default:
PBD::error << _("AlsaAudioBackend: initialization failed.") << endmsg;
error_code = AudioDeviceOpenError;
break;
}
if (_pcmi->state ()) {
delete _pcmi; _pcmi = 0;
_device_reservation.release_device();
return error_code;
}
#ifndef NDEBUG
fprintf (stdout, " --[[ ALSA Device %s\n", alsa_device.c_str());
_pcmi->printinfo ();
fprintf (stdout, " --]]\n");
#else
/* If any debug parameter is set, print info */
if (getenv ("ZITA_ALSA_PCMI_DEBUG")) {
fprintf (stdout, " --[[ ALSA Device %s\n", alsa_device.c_str());
_pcmi->printinfo ();
fprintf (stdout, " --]]\n");
}
#endif
if (_n_outputs != _pcmi->nplay ()) {
if (_n_outputs == 0) {
_n_outputs = _pcmi->nplay ();
} else {
_n_outputs = std::min (_n_outputs, _pcmi->nplay ());
}
PBD::info << _("AlsaAudioBackend: adjusted output channel count to match device.") << endmsg;
}
if (_n_inputs != _pcmi->ncapt ()) {
if (_n_inputs == 0) {
_n_inputs = _pcmi->ncapt ();
} else {
_n_inputs = std::min (_n_inputs, _pcmi->ncapt ());
}
PBD::info << _("AlsaAudioBackend: adjusted input channel count to match device.") << endmsg;
}
if (_pcmi->fsize() != _samples_per_period) {
_samples_per_period = _pcmi->fsize();
PBD::warning << string_compose (_("AlsaAudioBackend: samples per period does not match, using %1."), _samples_per_period) << endmsg;
}
if (_pcmi->fsamp() != _samplerate) {
_samplerate = _pcmi->fsamp();
engine.sample_rate_change (_samplerate);
PBD::warning << _("AlsaAudioBackend: sample rate does not match.") << endmsg;
}
register_system_midi_ports();
if (register_system_audio_ports()) {
PBD::error << _("AlsaAudioBackend: failed to register system ports.") << endmsg;
delete _pcmi; _pcmi = 0;
_device_reservation.release_device();
return PortRegistrationError;
}
engine.sample_rate_change (_samplerate);
engine.buffer_size_change (_samples_per_period);
if (engine.reestablish_ports ()) {
PBD::error << _("AlsaAudioBackend: Could not re-establish ports.") << endmsg;
delete _pcmi; _pcmi = 0;
_device_reservation.release_device();
return PortReconnectError;
}
engine.reconnect_ports ();
_run = true;
_port_change_flag = false;
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_MAIN, PBD_RT_STACKSIZE_PROC,
&_main_thread, pthread_process, this))
{
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) {
PBD::error << _("AlsaAudioBackend: failed to create process thread.") << endmsg;
delete _pcmi; _pcmi = 0;
_device_reservation.release_device();
_run = false;
return ProcessThreadStartError;
} else {
PBD::warning << _("AlsaAudioBackend: cannot acquire realtime permissions.") << endmsg;
}
}
int timeout = 5000;
while (!_active && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0 || !_active) {
PBD::error << _("AlsaAudioBackend: failed to start process thread.") << endmsg;
delete _pcmi; _pcmi = 0;
_device_reservation.release_device();
_run = false;
return ProcessThreadStartError;
}
_midi_device_thread_active = listen_for_midi_device_changes ();
get_alsa_audio_device_names(devices, (AlsaDuplex)slave_duplex);
if (!slave_device.empty () && (di = devices.find (slave_device)) != devices.end ()) {
std::string dev = di->second;
if (add_slave (dev.c_str(), _samplerate, _samples_per_period, _periods_per_cycle, slave_duplex)) {
PBD::info << string_compose (_("ALSA slave '%1' added"), dev) << endmsg;
} else {
PBD::error << string_compose (_("ALSA failed to add '%1' as slave"), dev) << endmsg;
}
}
#if 1 // TODO: we need a GUI (and API) for this
/* example: ARDOUR_ALSA_EXT="hw:2@48000/512*3;hw:3@44100" */
if (NULL != getenv ("ARDOUR_ALSA_EXT")) {
boost::char_separator<char> sep (";");
std::string ext (getenv ("ARDOUR_ALSA_EXT"));
boost::tokenizer<boost::char_separator<char> > devs (ext, sep);
BOOST_FOREACH (const std::string& tmp, devs) {
std::string dev (tmp);
unsigned int sr = _samplerate;
unsigned int spp = _samples_per_period;
unsigned int ppc = _periods_per_cycle;
AudioSlave::DuplexMode duplex = AudioSlave::FullDuplex;
std::string::size_type n = dev.find ('@');
if (n != std::string::npos) {
std::string const opt (dev.substr (n + 1));
sr = PBD::atoi (opt);
dev = dev.substr (0, n);
std::string::size_type n = opt.find ('/');
if (n != std::string::npos) {
std::string const opt2 (opt.substr (n + 1));
spp = PBD::atoi (opt2);
std::string::size_type n = opt2.find ('*');
if (n != std::string::npos) {
ppc = PBD::atoi (opt2.substr (n + 1));
}
}
}
if (add_slave (dev.c_str(), sr, spp, ppc, duplex)) {
PBD::info << string_compose (_("ALSA slave '%1' added"), dev) << endmsg;
} else {
PBD::error << string_compose (_("ALSA failed to add '%1' as slave"), dev) << endmsg;
}
}
}
#endif
return NoError;
}
int
AlsaAudioBackend::stop ()
{
void *status;
if (!_run) {
return 0;
}
_run = false;
if (pthread_join (_main_thread, &status)) {
PBD::error << _("AlsaAudioBackend: failed to terminate.") << endmsg;
return -1;
}
stop_listen_for_midi_device_changes ();
while (!_rmidi_out.empty ()) {
AlsaMidiIO *m = _rmidi_out.back ();
m->stop();
_rmidi_out.pop_back ();
delete m;
}
while (!_rmidi_in.empty ()) {
AlsaMidiIO *m = _rmidi_in.back ();
m->stop();
_rmidi_in.pop_back ();
delete m;
}
while (!_slaves.empty ()) {
AudioSlave* s = _slaves.back ();
_slaves.pop_back ();
delete s;
}
unregister_ports();
delete _pcmi; _pcmi = 0;
_device_reservation.release_device();
_measure_latency = false;
return (_active == false) ? 0 : -1;
}
int
AlsaAudioBackend::freewheel (bool onoff)
{
_freewheeling = onoff;
return 0;
}
float
AlsaAudioBackend::dsp_load () const
{
return 100.f * _dsp_load;
}
size_t
AlsaAudioBackend::raw_buffer_size (DataType t)
{
switch (t) {
case DataType::AUDIO:
return _samples_per_period * sizeof(Sample);
case DataType::MIDI:
return _max_buffer_size; // XXX not really limited
}
return 0;
}
/* Process time */
samplepos_t
AlsaAudioBackend::sample_time ()
{
return _processed_samples;
}
samplepos_t
AlsaAudioBackend::sample_time_at_cycle_start ()
{
return _processed_samples;
}
pframes_t
AlsaAudioBackend::samples_since_cycle_start ()
{
if (!_active || !_run || _freewheeling || _freewheel) {
return 0;
}
if (_last_process_start == 0) {
return 0;
}
const int64_t elapsed_time_us = g_get_monotonic_time() - _last_process_start;
return std::max((pframes_t)0, (pframes_t)rint(1e-6 * elapsed_time_us * _samplerate));
}
void *
AlsaAudioBackend::alsa_process_thread (void *arg)
{
ThreadData* td = reinterpret_cast<ThreadData*> (arg);
boost::function<void ()> f = td->f;
delete td;
f ();
return 0;
}
int
AlsaAudioBackend::create_process_thread (boost::function<void()> func)
{
pthread_t thread_id;
ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC);
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC, &thread_id, alsa_process_thread, td)) {
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, alsa_process_thread, td)) {
PBD::error << _("AudioEngine: cannot create process thread.") << endmsg;
return -1;
}
}
_threads.push_back (thread_id);
return 0;
}
int
AlsaAudioBackend::join_process_threads ()
{
int rv = 0;
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
void *status;
if (pthread_join (*i, &status)) {
PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg;
rv -= 1;
}
}
_threads.clear ();
return rv;
}
bool
AlsaAudioBackend::in_process_thread ()
{
if (pthread_equal (_main_thread, pthread_self()) != 0) {
return true;
}
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
if (pthread_equal (*i, pthread_self ()) != 0) {
return true;
}
}
return false;
}
uint32_t
AlsaAudioBackend::process_thread_count ()
{
return _threads.size ();
}
void
AlsaAudioBackend::update_latencies ()
{
// trigger latency callback in RT thread (locked graph)
port_connect_add_remove_callback();
}
/* PORTENGINE API */
void*
AlsaAudioBackend::private_handle () const
{
return NULL;
}
const std::string&
AlsaAudioBackend::my_name () const
{
return _instance_name;
}
int
AlsaAudioBackend::register_system_audio_ports()
{
LatencyRange lr;
const int a_ins = _n_inputs;
const int a_out = _n_outputs;
const uint32_t lcpp = (_periods_per_cycle - 2) * _samples_per_period;
/* audio ports */
lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_input_latency);
for (int i = 1; i <= a_ins; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:capture_%d", i);
PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, false, lr);
BackendPortPtr ap = boost::dynamic_pointer_cast<BackendPort>(p);
ap->set_hw_port_name (string_compose (_("Main In %1"), i));
_system_inputs.push_back (ap);
}
lr.min = lr.max = lcpp + (_measure_latency ? 0 : _systemic_audio_output_latency);
for (int i = 1; i <= a_out; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:playback_%d", i);
PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, true, lr);
BackendPortPtr ap = boost::dynamic_pointer_cast<BackendPort>(p);
if (a_out == 2) {
ap->set_hw_port_name (i == 1 ? _("Out Left") : _("Out Right"));
} else {
ap->set_hw_port_name (string_compose (_("Main Out %1"), i));
}
_system_outputs.push_back (ap);
}
return 0;
}
void
AlsaAudioBackend::auto_update_midi_devices ()
{
std::map<std::string, std::string> devices;
if (_midi_driver_option == _("ALSA raw devices")) {
get_alsa_rawmidi_device_names (devices);
} else if (_midi_driver_option == _("ALSA sequencer")) {
get_alsa_sequencer_names (devices);
} else {
return;
}
/* find new devices */
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (_midi_devices.find (i->first) != _midi_devices.end()) {
continue;
}
_midi_devices[i->first] = new AlsaMidiDeviceInfo (false);
set_midi_device_enabled (i->first, true);
}
for (std::map<std::string, struct AlsaMidiDeviceInfo*>::iterator i = _midi_devices.begin (); i != _midi_devices.end(); ) {
if (devices.find (i->first) != devices.end()) {
++i;
continue;
}
set_midi_device_enabled (i->first, false);
std::map<std::string, struct AlsaMidiDeviceInfo *>::iterator tmp = i;
++tmp;
_midi_devices.erase (i);
i = tmp;
}
}
void*
AlsaAudioBackend::_midi_device_thread (void* arg)
{
AlsaAudioBackend* self = static_cast<AlsaAudioBackend*>(arg);
self->midi_device_thread ();
pthread_exit (0);
return 0;
}
void
AlsaAudioBackend::midi_device_thread ()
{
snd_seq_t* seq;
if (snd_seq_open (&seq, "hw", SND_SEQ_OPEN_INPUT, 0) < 0) {
return;
}
if (snd_seq_set_client_name (seq, "Ardour")) {
snd_seq_close (seq);
return;
}
if (snd_seq_nonblock (seq, 1) < 0) {
snd_seq_close (seq);
return;
}
int npfds = snd_seq_poll_descriptors_count (seq, POLLIN);
if (npfds < 1) {
snd_seq_close (seq);
return;
}
int port = snd_seq_create_simple_port (seq, "port", SND_SEQ_PORT_CAP_WRITE | SND_SEQ_PORT_CAP_NO_EXPORT, SND_SEQ_PORT_TYPE_APPLICATION);
snd_seq_connect_from (seq, port, SND_SEQ_CLIENT_SYSTEM, SND_SEQ_PORT_SYSTEM_ANNOUNCE);
struct pollfd* pfds = (struct pollfd*) malloc (npfds * sizeof(struct pollfd));
snd_seq_poll_descriptors (seq, pfds, npfds, POLLIN);
snd_seq_drop_input (seq);
bool do_poll = true;
while (_run) {
if (do_poll) {
int perr = poll (pfds, npfds, 200 /* ms */);
if (perr == 0) {
continue;
}
if (perr < 0) {
break;
}
}
snd_seq_event_t *event;
ssize_t err = snd_seq_event_input (seq, &event);
#if EAGAIN == EWOULDBLOCK
if ((err == -EAGAIN) || (err == -ENOSPC))
#else
if ((err == -EAGAIN) || (err == -EWOULDBLOCK) || (err == -ENOSPC))
#endif
{
do_poll = true;
continue;
}
if (err < 0) {
break;
}
assert (event->source.client == SND_SEQ_CLIENT_SYSTEM);
switch (event->type) {
case SND_SEQ_EVENT_PORT_START:
case SND_SEQ_EVENT_PORT_EXIT:
case SND_SEQ_EVENT_PORT_CHANGE:
auto_update_midi_devices ();
engine.request_device_list_update();
default:
break;
}
do_poll = (0 == err);
}
free (pfds);
snd_seq_delete_simple_port (seq, port);
snd_seq_close (seq);
}
bool
AlsaAudioBackend::listen_for_midi_device_changes ()
{
if (pthread_create (&_midi_device_thread_id, NULL, _midi_device_thread, this)) {
return false;
}
return true;
}
void
AlsaAudioBackend::stop_listen_for_midi_device_changes ()
{
if (!_midi_device_thread_active) {
return;
}
pthread_join (_midi_device_thread_id, NULL);
_midi_device_thread_active = false;
}
/* set playback-latency for _system_inputs
* and capture-latency for _system_outputs
*/
void
AlsaAudioBackend::update_system_port_latencies ()
{
pthread_mutex_lock (&_device_port_mutex);
PortEngineSharedImpl::update_system_port_latencies ();
pthread_mutex_unlock (&_device_port_mutex);
for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) {
if ((*s)->dead) {
continue;
}
for (std::vector<BackendPortPtr>::const_iterator it = (*s)->inputs.begin (); it != (*s)->inputs.end (); ++it) {
(*it)->update_connected_latency (true);
}
for (std::vector<BackendPortPtr>::const_iterator it = (*s)->outputs.begin (); it != (*s)->outputs.end (); ++it) {
(*it)->update_connected_latency (false);
}
}
}
/* libs/ardouralsautil/devicelist.cc appends either of
* " (IO)", " (I)", or " (O)"
* depending of the device is full-duples or half-duplex
*/
static std::string replace_name_io (std::string const& name, bool in)
{
if (name.empty ()) {
return "";
}
size_t pos = name.find_last_of ('(');
if (pos == std::string::npos) {
assert (0); // this should never happen.
return name;
}
return name.substr (0, pos) + "(" + (in ? "In" : "Out") + ")";
}
static uint32_t
elf_hash (std::string const& s)
{
const uint8_t* b = (const uint8_t*)s.c_str();
uint32_t h = 0;
for (size_t i = 0; i < s.length(); ++i) {
h = ( h << 4 ) + b[i];
uint32_t high = h & 0xF0000000;
if (high) {
h ^= high >> 24;
h &= ~high;
}
}
return h;
}
int
AlsaAudioBackend::register_system_midi_ports(const std::string device)
{
std::map<std::string, std::string> devices;
if (_midi_driver_option == get_standard_device_name(DeviceNone)) {
return 0;
} else if (_midi_driver_option == _("ALSA raw devices")) {
get_alsa_rawmidi_device_names(devices);
} else {
get_alsa_sequencer_names (devices);
}
for (std::map<std::string, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (!device.empty() && device != i->first) {
continue;
}
struct AlsaMidiDeviceInfo * nfo = midi_device_info(i->first);
if (!nfo) continue;
if (!nfo->enabled) continue;
AlsaMidiOut *mout;
if (_midi_driver_option == _("ALSA raw devices")) {
mout = new AlsaRawMidiOut (i->first, i->second.c_str());
} else {
mout = new AlsaSeqMidiOut (i->first, i->second.c_str());
}
if (mout->state ()) {
PBD::warning << string_compose (
_("AlsaMidiOut: failed to open midi device '%1'."), i->second)
<< endmsg;
delete mout;
} else {
mout->setup_timing(_samples_per_period, _samplerate);
mout->sync_time (g_get_monotonic_time());
if (mout->start ()) {
PBD::warning << string_compose (
_("AlsaMidiOut: failed to start midi device '%1'."), i->second)
<< endmsg;
delete mout;
} else {
char tmp[64];
for (int x = 0; x < 10; ++x) {
snprintf(tmp, sizeof(tmp), "system:midi_playback_%x%d", elf_hash (i->first), x);
if (!find_port (tmp)) {
break;
}
}
PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) {
mout->stop();
delete mout;
} else {
LatencyRange lr;
lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_output_latency);
set_latency_range (p, true, lr);
boost::dynamic_pointer_cast<AlsaMidiPort>(p)->set_n_periods(_periods_per_cycle); // TODO check MIDI alignment
BackendPortPtr ap = boost::dynamic_pointer_cast<BackendPort>(p);
ap->set_hw_port_name (replace_name_io (i->first, false));
pthread_mutex_lock (&_device_port_mutex);
_system_midi_out.push_back (ap);
pthread_mutex_unlock (&_device_port_mutex);
_rmidi_out.push_back (mout);
}
}
}
AlsaMidiIn *midin;
if (_midi_driver_option == _("ALSA raw devices")) {
midin = new AlsaRawMidiIn (i->first, i->second.c_str());
} else {
midin = new AlsaSeqMidiIn (i->first, i->second.c_str());
}
if (midin->state ()) {
PBD::warning << string_compose (
_("AlsaMidiIn: failed to open midi device '%1'."), i->second)
<< endmsg;
delete midin;
} else {
midin->setup_timing(_samples_per_period, _samplerate);
midin->sync_time (g_get_monotonic_time());
if (midin->start ()) {
PBD::warning << string_compose (
_("AlsaMidiIn: failed to start midi device '%1'."), i->second)
<< endmsg;
delete midin;
} else {
char tmp[64];
for (int x = 0; x < 10; ++x) {
snprintf(tmp, sizeof(tmp), "system:midi_capture_%x%d", elf_hash (i->first), x);
if (!find_port (tmp)) {
break;
}
}
PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) {
midin->stop();
delete midin;
continue;
}
LatencyRange lr;
lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_input_latency);
set_latency_range (p, false, lr);
BackendPortPtr ap = boost::dynamic_pointer_cast<BackendPort>(p);
ap->set_hw_port_name (replace_name_io (i->first, true));
pthread_mutex_lock (&_device_port_mutex);
_system_midi_in.push_back (ap);
pthread_mutex_unlock (&_device_port_mutex);
_rmidi_in.push_back (midin);
}
}
}
return 0;
}
/* MIDI */
int
AlsaAudioBackend::midi_event_get (
pframes_t& timestamp,
size_t& size, uint8_t const** buf, void* port_buffer,
uint32_t event_index)
{
assert (buf && port_buffer);
AlsaMidiBuffer& source = * static_cast<AlsaMidiBuffer*>(port_buffer);
if (event_index >= source.size ()) {
return -1;
}
AlsaMidiEvent const& event = source[event_index];
timestamp = event.timestamp ();
size = event.size ();
*buf = event.data ();
return 0;
}
int
AlsaAudioBackend::midi_event_put (
void* port_buffer,
pframes_t timestamp,
const uint8_t* buffer, size_t size)
{
assert (buffer && port_buffer);
if (size >= MaxAlsaMidiEventSize) {
return -1;
}
AlsaMidiBuffer& dst = * static_cast<AlsaMidiBuffer*>(port_buffer);
#ifndef NDEBUG
if (dst.size () && (pframes_t)dst.back ().timestamp () > timestamp) {
// nevermind, ::get_buffer() sorts events
fprintf (stderr, "AlsaMidiBuffer: it's too late for this event. %d > %d\n",
(pframes_t)dst.back ().timestamp (), timestamp);
}
#endif
dst.push_back (AlsaMidiEvent (timestamp, buffer, size));
return 0;
}
uint32_t
AlsaAudioBackend::get_midi_event_count (void* port_buffer)
{
assert (port_buffer);
return static_cast<AlsaMidiBuffer*>(port_buffer)->size ();
}
void
AlsaAudioBackend::midi_clear (void* port_buffer)
{
assert (port_buffer);
AlsaMidiBuffer * buf = static_cast<AlsaMidiBuffer*>(port_buffer);
assert (buf);
buf->clear ();
}
/* Monitoring */
bool
AlsaAudioBackend::can_monitor_input () const
{
return false;
}
int
AlsaAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
int
AlsaAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
bool
AlsaAudioBackend::monitoring_input (PortEngine::PortHandle)
{
return false;
}
/* Latency management */
void
AlsaAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range)
{
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
if (!valid_port (port)) {
PBD::error << _("AlsaPort::set_latency_range (): invalid port.") << endmsg;
}
port->set_latency_range (latency_range, for_playback);
}
LatencyRange
AlsaAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback)
{
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
LatencyRange r;
if (!valid_port (port)) {
PBD::error << _("AlsaPort::get_latency_range (): invalid port.") << endmsg;
r.min = 0;
r.max = 0;
return r;
}
r = port->latency_range (for_playback);
if (port->is_physical() && port->is_terminal()) {
if (port->is_input() && for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
if (port->is_output() && !for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
}
return r;
}
BackendPort*
AlsaAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags)
{
BackendPort* port = 0;
switch (type) {
case DataType::AUDIO:
port = new AlsaAudioPort (*this, name, flags);
break;
case DataType::MIDI:
port = new AlsaMidiPort (*this, name, flags);
break;
default:
PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg;
return 0;
}
return port;
}
/* Getting access to the data buffer for a port */
void*
AlsaAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes)
{
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
assert (port);
assert (valid_port (port));
return port->get_buffer (nframes);
}
/* Engine Process */
void *
AlsaAudioBackend::main_process_thread ()
{
AudioEngine::thread_init_callback (this);
_active = true;
bool reset_dll = true;
int last_n_periods = 0;
_processed_samples = 0;
double dll_dt = (double) _samples_per_period / (double) _samplerate;
double dll_w1 = 2 * M_PI * 0.1 * dll_dt;
double dll_w2 = dll_w1 * dll_w1;
uint64_t clock1;
int no_proc_errors = 0;
const int bailout = 5 * _samplerate / _samples_per_period;
manager.registration_callback();
manager.graph_order_callback();
const double sr_norm = 1e-6 * (double) _samplerate / (double)_samples_per_period;
/* warm up freewheel dry-run - see also AudioEngine _init_countdown */
int cnt = std::max (4, (int)(_samplerate / _samples_per_period) / 8);
for (int w = 0; w < cnt; ++w) {
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample));
}
if (engine.process_callback (_samples_per_period)) {
_active = false;
return 0;
}
Glib::usleep (1000000 * (_samples_per_period / _samplerate ));
}
_dsp_load_calc.reset ();
_pcmi->pcm_start ();
while (_run) {
long nr;
bool xrun = false;
bool drain_slaves = false;
if (_freewheeling != _freewheel) {
_freewheel = _freewheeling;
engine.freewheel_callback (_freewheel);
for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) {
(*s)->freewheel (_freewheel);
}
if (!_freewheel) {
_pcmi->pcm_stop ();
_pcmi->pcm_start ();
drain_slaves = true;
_dsp_load_calc.reset ();
}
}
if (!_freewheel) {
nr = _pcmi->pcm_wait ();
/* update DLL */
uint64_t clock0 = g_get_monotonic_time();
if (reset_dll || last_n_periods != 1) {
reset_dll = false;
drain_slaves = true;
dll_dt = 1e6 * (double) _samples_per_period / (double)_samplerate;
_t0 = clock0;
_t1 = clock0 + dll_dt;
} else {
const double er = clock0 - _t1;
_t0 = _t1;
_t1 = _t1 + dll_w1 * er + dll_dt;
dll_dt += dll_w2 * er;
}
for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) {
if ((*s)->dead) {
continue;
}
if ((*s)->halt) {
/* slave died, unregister its ports (not rt-safe, but no matter) */
PBD::error << _("ALSA Slave device halted") << endmsg;
for (std::vector<BackendPortPtr>::const_iterator it = (*s)->inputs.begin (); it != (*s)->inputs.end (); ++it) {
unregister_port (*it);
}
for (std::vector<BackendPortPtr>::const_iterator it = (*s)->outputs.begin (); it != (*s)->outputs.end (); ++it) {
unregister_port (*it);
}
(*s)->inputs.clear ();
(*s)->outputs.clear ();
(*s)->active = false;
(*s)->dead = true;
continue;
}
(*s)->active = (*s)->running () && (*s)->state () >= 0;
if (!(*s)->active) {
continue;
}
(*s)->cycle_start (_t0, (_t1 - _t0) * sr_norm, drain_slaves);
}
if (_pcmi->state () > 0) {
++no_proc_errors;
xrun = true;
}
if (_pcmi->state () < 0) {
PBD::error << _("AlsaAudioBackend: I/O error. Audio Process Terminated.") << endmsg;
break;
}
if (no_proc_errors > bailout) {
PBD::error
<< string_compose (
_("AlsaAudioBackend: Audio Process Terminated after %1 consecutive x-runs."),
no_proc_errors)
<< endmsg;
break;
}
last_n_periods = 0;
while (nr >= (long)_samples_per_period && _freewheeling == _freewheel) {
uint32_t i = 0;
clock1 = g_get_monotonic_time();
no_proc_errors = 0;
_pcmi->capt_init (_samples_per_period);
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++i) {
_pcmi->capt_chan (i, (float*)(*it)->get_buffer(_samples_per_period), _samples_per_period);
}
_pcmi->capt_done (_samples_per_period);
for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) {
if (!(*s)->active) {
continue;
}
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = (*s)->inputs.begin (); it != (*s)->inputs.end (); ++it, ++i) {
(*s)->capt_chan (i, (float*)(boost::dynamic_pointer_cast<BackendPort>(*it)->get_buffer(_samples_per_period)), _samples_per_period);
}
}
/* only used when adding/removing MIDI device/system ports */
pthread_mutex_lock (&_device_port_mutex);
/* de-queue incoming midi*/
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) {
assert (_rmidi_in.size() > i);
AlsaMidiIn *rm = _rmidi_in.at(i);
void *bptr = (*it)->get_buffer(0);
pframes_t time;
uint8_t data[MaxAlsaMidiEventSize];
size_t size = sizeof(data);
midi_clear(bptr);
while (rm->recv_event (time, data, size)) {
midi_event_put(bptr, time, data, size);
size = sizeof(data);
}
rm->sync_time (clock1);
}
pthread_mutex_unlock (&_device_port_mutex);
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample));
}
/* call engine process callback */
_last_process_start = g_get_monotonic_time();
if (engine.process_callback (_samples_per_period)) {
_pcmi->pcm_stop ();
_active = false;
return 0;
}
/* only used when adding/removing MIDI device/system ports */
pthread_mutex_lock (&_device_port_mutex);
for (std::vector<BackendPortPtr>::iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) {
boost::dynamic_pointer_cast<AlsaMidiPort>(*it)->next_period();
}
/* queue outgoing midi */
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) {
assert (_rmidi_out.size() > i);
AlsaMidiBuffer const * src = boost::dynamic_pointer_cast<const AlsaMidiPort>(*it)->const_buffer();
AlsaMidiOut *rm = _rmidi_out.at(i);
rm->sync_time (clock1);
for (AlsaMidiBuffer::const_iterator mit = src->begin (); mit != src->end (); ++mit) {
rm->send_event (mit->timestamp (), mit->data (), mit->size ());
}
}
pthread_mutex_unlock (&_device_port_mutex);
/* write back audio */
i = 0;
_pcmi->play_init (_samples_per_period);
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) {
_pcmi->play_chan (i, (const float*)(*it)->get_buffer (_samples_per_period), _samples_per_period);
}
for (; i < _pcmi->nplay (); ++i) {
_pcmi->clear_chan (i, _samples_per_period);
}
_pcmi->play_done (_samples_per_period);
for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) {
if (!(*s)->active) {
continue;
}
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = (*s)->outputs.begin (); it != (*s)->outputs.end (); ++it, ++i) {
(*s)->play_chan (i, (float*)(*it)->get_buffer(_samples_per_period), _samples_per_period);
}
(*s)->cycle_end ();
}
nr -= _samples_per_period;
_processed_samples += _samples_per_period;
_dsp_load_calc.set_max_time(_samplerate, _samples_per_period);
_dsp_load_calc.set_start_timestamp_us (clock1);
_dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time());
_dsp_load = _dsp_load_calc.get_dsp_load ();
++last_n_periods;
}
if (xrun && (_pcmi->capt_xrun() > 0 || _pcmi->play_xrun() > 0)) {
engine.Xrun ();
reset_dll = true;
#if 0
fprintf(stderr, "ALSA x-run read: %.2f ms, write: %.2f ms\n",
_pcmi->capt_xrun() * 1000.0, _pcmi->play_xrun() * 1000.0);
#endif
}
} else {
// Freewheelin'
// zero audio input buffers
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample));
}
clock1 = g_get_monotonic_time();
uint32_t i = 0;
pthread_mutex_lock (&_device_port_mutex);
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) {
static_cast<AlsaMidiBuffer*>((*it)->get_buffer(0))->clear ();
AlsaMidiIn *rm = _rmidi_in.at(i);
void *bptr = (*it)->get_buffer(0);
midi_clear(bptr); // zero midi buffer
// TODO add an API call for this.
pframes_t time;
uint8_t data[64]; // match MaxAlsaEventSize in alsa_rawmidi.cc
size_t size = sizeof(data);
while (rm->recv_event (time, data, size)) {
; // discard midi-data from HW.
}
rm->sync_time (clock1);
}
pthread_mutex_unlock (&_device_port_mutex);
_last_process_start = 0;
if (engine.process_callback (_samples_per_period)) {
_pcmi->pcm_stop ();
_active = false;
return 0;
}
// drop all outgoing MIDI messages
pthread_mutex_lock (&_device_port_mutex);
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) {
void *bptr = (*it)->get_buffer(0);
midi_clear(bptr);
}
pthread_mutex_unlock (&_device_port_mutex);
_dsp_load = 1.0;
reset_dll = true;
Glib::usleep (100); // don't hog cpu
}
bool connections_changed = false;
bool ports_changed = false;
if (!pthread_mutex_trylock (&_port_callback_mutex)) {
if (_port_change_flag) {
ports_changed = true;
_port_change_flag = false;
}
if (!_port_connection_queue.empty ()) {
connections_changed = true;
}
while (!_port_connection_queue.empty ()) {
PortConnectData *c = _port_connection_queue.back ();
manager.connect_callback (c->a, c->b, c->c);
_port_connection_queue.pop_back ();
delete c;
}
pthread_mutex_unlock (&_port_callback_mutex);
}
if (ports_changed) {
manager.registration_callback();
}
if (connections_changed) {
manager.graph_order_callback();
}
if (connections_changed || ports_changed) {
update_system_port_latencies (); // flush, clear
engine.latency_callback(false);
engine.latency_callback(true);
}
}
_pcmi->pcm_stop ();
_active = false;
if (_run) {
engine.halted_callback("ALSA I/O error.");
}
return 0;
}
/******************************************************************************/
bool
AlsaAudioBackend::add_slave (const char* device,
unsigned int slave_rate,
unsigned int slave_spp,
unsigned int slave_ppc,
AudioSlave::DuplexMode duplex)
{
AudioSlave* s = new AudioSlave (device, duplex,
_samplerate, _samples_per_period,
slave_rate, slave_spp, slave_ppc);
if (s->state ()) {
// TODO parse error status
PBD::error << string_compose (_("Failed to create slave device '%1' error %2\n"), device, s->state ()) << endmsg;
goto errout;
}
for (uint32_t i = 0, n = 1; i < s->ncapt (); ++i) {
char tmp[64];
do {
snprintf(tmp, sizeof(tmp), "extern:capture_%d", n);
if (find_port (tmp)) {
++n;
} else {
break;
}
} while (1);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) goto errout;
BackendPortPtr ap = boost::dynamic_pointer_cast<BackendPort>(p);
ap->set_hw_port_name (string_compose (_("Aux In %1"), n));
s->inputs.push_back (ap);
}
for (uint32_t i = 0, n = 1; i < s->nplay (); ++i) {
char tmp[64];
do {
snprintf(tmp, sizeof(tmp), "extern:playback_%d", n);
if (find_port (tmp)) {
++n;
} else {
break;
}
} while (1);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) goto errout;
BackendPortPtr ap = boost::dynamic_pointer_cast<BackendPort>(p);
ap->set_hw_port_name (string_compose (_("Aux Out %1"), n));
s->outputs.push_back (ap);
}
if (!s->start ()) {
PBD::error << string_compose (_("Failed to start slave device '%1'\n"), device) << endmsg;
goto errout;
}
s->UpdateLatency.connect_same_thread (s->latency_connection, boost::bind (&AlsaAudioBackend::update_latencies, this));
_slaves.push_back (s);
return true;
errout:
delete s; // releases device
return false;
}
AlsaAudioBackend::AudioSlave::AudioSlave (
const char* device,
DuplexMode duplex,
unsigned int master_rate,
unsigned int master_samples_per_period,
unsigned int slave_rate,
unsigned int slave_samples_per_period,
unsigned int slave_periods_per_cycle)
: AlsaDeviceReservation (device)
, AlsaAudioSlave (
(duplex & HalfDuplexOut) ? device : NULL /* playback */,
(duplex & HalfDuplexIn) ? device : NULL /* capture */,
master_rate, master_samples_per_period,
slave_rate, slave_samples_per_period, slave_periods_per_cycle)
, active (false)
, halt (false)
, dead (false)
{
Halted.connect_same_thread (_halted_connection, boost::bind (&AudioSlave::halted, this));
}
AlsaAudioBackend::AudioSlave::~AudioSlave ()
{
stop ();
}
void
AlsaAudioBackend::AudioSlave::halted ()
{
// Note: Halted() is emitted from the Slave's process thread.
release_device ();
halt = true;
}
void
AlsaAudioBackend::AudioSlave::update_latencies (uint32_t play, uint32_t capt)
{
LatencyRange lr;
lr.min = lr.max = (capt);
for (std::vector<BackendPortPtr>::const_iterator it = inputs.begin (); it != inputs.end (); ++it) {
(*it)->set_latency_range (lr, false);
}
lr.min = lr.max = play;
for (std::vector<BackendPortPtr>::const_iterator it = outputs.begin (); it != outputs.end (); ++it) {
(*it)->set_latency_range (lr, true);
}
#ifndef NDEBUG
printf ("ALSA SLAVE-device latency play=%d capt=%d\n", play, capt); // XXX DEBUG
#endif
UpdateLatency (); /* EMIT SIGNAL */
}
/******************************************************************************/
static boost::shared_ptr<AlsaAudioBackend> _instance;
static boost::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
static int deinstantiate ();
static bool already_configured ();
static bool available ();
static ARDOUR::AudioBackendInfo _descriptor = {
"ALSA",
instantiate,
deinstantiate,
backend_factory,
already_configured,
available
};
static boost::shared_ptr<AudioBackend>
backend_factory (AudioEngine& e)
{
if (!_instance) {
_instance.reset (new AlsaAudioBackend (e, _descriptor));
}
return _instance;
}
static int
instantiate (const std::string& arg1, const std::string& /* arg2 */)
{
s_instance_name = arg1;
return 0;
}
static int
deinstantiate ()
{
_instance.reset ();
return 0;
}
static bool
already_configured ()
{
return false;
}
static bool
available ()
{
return true;
}
extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor ()
{
return &_descriptor;
}
/******************************************************************************/
/******************************************************************************/
AlsaAudioPort::AlsaAudioPort (AlsaAudioBackend &b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
{
memset (_buffer, 0, sizeof (_buffer));
mlock (_buffer, sizeof (_buffer));
}
AlsaAudioPort::~AlsaAudioPort ()
{
}
void*
AlsaAudioPort::get_buffer (pframes_t n_samples)
{
if (is_input ()) {
const std::set<BackendPortPtr>& connections = get_connections ();
std::set<BackendPortPtr>::const_iterator it = connections.begin ();
if (it == connections.end ()) {
memset (_buffer, 0, n_samples * sizeof (Sample));
} else {
boost::shared_ptr<const AlsaAudioPort> source = boost::dynamic_pointer_cast<const AlsaAudioPort>(*it);
assert (source && source->is_output ());
memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
while (++it != connections.end ()) {
source = boost::dynamic_pointer_cast<const AlsaAudioPort>(*it);
assert (source && source->is_output ());
Sample* dst = buffer ();
const Sample* src = source->const_buffer ();
for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
*dst += *src;
}
}
}
}
return _buffer;
}
AlsaMidiPort::AlsaMidiPort (AlsaAudioBackend &b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
, _n_periods (1)
, _bufperiod (0)
{
_buffer[0].clear ();
_buffer[1].clear ();
_buffer[2].clear ();
_buffer[0].reserve(256);
_buffer[1].reserve(256);
_buffer[2].reserve(256);
}
AlsaMidiPort::~AlsaMidiPort ()
{
}
struct MidiEventSorter {
bool operator() (AlsaMidiEvent const& a, AlsaMidiEvent const& b) {
return a < b;
}
};
void* AlsaMidiPort::get_buffer (pframes_t /* nframes */)
{
if (is_input ()) {
(_buffer[_bufperiod]).clear ();
const std::set<BackendPortPtr>& connections = get_connections ();
for (std::set<BackendPortPtr>::const_iterator i = connections.begin ();
i != connections.end ();
++i) {
const AlsaMidiBuffer * src = boost::dynamic_pointer_cast<const AlsaMidiPort>(*i)->const_buffer ();
for (AlsaMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
(_buffer[_bufperiod]).push_back (*it);
}
}
std::stable_sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter());
}
return &(_buffer[_bufperiod]);
}
AlsaMidiEvent::AlsaMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
: _size (size)
, _timestamp (timestamp)
{
if (size > 0 && size < MaxAlsaMidiEventSize) {
memcpy (_data, data, size);
}
}
AlsaMidiEvent::AlsaMidiEvent (const AlsaMidiEvent& other)
: _size (other.size ())
, _timestamp (other.timestamp ())
{
if (other._size > 0) {
assert (other._size < MaxAlsaMidiEventSize);
memcpy (_data, other._data, other._size);
}
};
/******************************************************************************/
AlsaDeviceReservation::AlsaDeviceReservation ()
: _device_reservation (0)
{}
AlsaDeviceReservation::AlsaDeviceReservation (const char* device_name)
: _device_reservation (0)
{
acquire_device (device_name);
}
AlsaDeviceReservation::~AlsaDeviceReservation ()
{
release_device ();
}
bool
AlsaDeviceReservation::acquire_device (const char* device_name)
{
int device_number = card_to_num(device_name);
if (device_number < 0) return false;
assert(_device_reservation == 0);
_reservation_succeeded = false;
std::string request_device_exe;
if (!PBD::find_file (
PBD::Searchpath(Glib::build_filename(ARDOUR::ardour_dll_directory(), "ardouralsautil")
+ G_SEARCHPATH_SEPARATOR_S + ARDOUR::ardour_dll_directory()),
"ardour-request-device", request_device_exe))
{
PBD::warning << "ardour-request-device binary was not found..'" << endmsg;
return false;
}
char **argp;
char tmp[128];
argp=(char**) calloc(5,sizeof(char*));
argp[0] = strdup(request_device_exe.c_str());
argp[1] = strdup("-P");
snprintf(tmp, sizeof(tmp), "%d", getpid());
argp[2] = strdup(tmp);
snprintf(tmp, sizeof(tmp), "Audio%d", device_number);
argp[3] = strdup(tmp);
argp[4] = 0;
_device_reservation = new ARDOUR::SystemExec(request_device_exe, argp);
_device_reservation->ReadStdout.connect_same_thread (_reservation_connection, boost::bind (&AlsaDeviceReservation::reservation_stdout, this, _1 ,_2));
_device_reservation->Terminated.connect_same_thread (_reservation_connection, boost::bind (&AlsaDeviceReservation::release_device, this));
if (_device_reservation->start (SystemExec::ShareWithParent)) {
PBD::warning << _("AlsaAudioBackend: Device Request failed.") << endmsg;
release_device();
return false;
}
/* wait to check if reservation suceeded. */
int timeout = 500; // 5 sec
while (_device_reservation && !_reservation_succeeded && --timeout > 0) {
Glib::usleep(10000);
}
if (timeout == 0 || !_reservation_succeeded) {
PBD::warning << _("AlsaAudioBackend: Device Reservation failed.") << endmsg;
release_device();
return false;
}
return true;
}
void
AlsaDeviceReservation::release_device ()
{
_reservation_connection.drop_connections();
ARDOUR::SystemExec* tmp = _device_reservation;
_device_reservation = 0;
delete tmp;
}
void
AlsaDeviceReservation::reservation_stdout (std::string d, size_t /* s */)
{
if (d.substr(0, 19) == "Acquired audio-card") {
_reservation_succeeded = true;
}
}