Paul Davis
2836879341
git-svn-id: svn://localhost/ardour2/branches/3.0@4999 d708f5d6-7413-0410-9779-e7cbd77b26cf
790 lines
20 KiB
C++
790 lines
20 KiB
C++
/*
|
|
Copyright (C) 2008 Paul Davis
|
|
Author: Sampo Savolainen
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
#include "plugin_eq_gui.h"
|
|
#include "fft.h"
|
|
|
|
#include "ardour_ui.h"
|
|
#include "gui_thread.h"
|
|
#include "ardour/audio_buffer.h"
|
|
#include "ardour/data_type.h"
|
|
|
|
#include <gtkmm/box.h>
|
|
#include <gtkmm/button.h>
|
|
#include <gtkmm/checkbutton.h>
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
|
|
PluginEqGui::PluginEqGui(boost::shared_ptr<ARDOUR::PluginInsert> pluginInsert)
|
|
: _min_dB(-12.0),
|
|
_max_dB(+12.0),
|
|
_step_dB(3.0),
|
|
_impulse_fft(0),
|
|
_signal_input_fft(0),
|
|
_signal_output_fft(0),
|
|
_plugin_insert(pluginInsert)
|
|
{
|
|
_signal_analysis_running = false;
|
|
_samplerate = ARDOUR_UI::instance()->the_session()->frame_rate();
|
|
|
|
_plugin = _plugin_insert->get_impulse_analysis_plugin();
|
|
_plugin->activate();
|
|
|
|
set_buffer_size(4096, 16384);
|
|
//set_buffer_size(4096, 4096);
|
|
|
|
_log_coeff = (1.0 - 2.0 * (1000.0/(_samplerate/2.0))) / powf(1000.0/(_samplerate/2.0), 2.0);
|
|
_log_max = log10f(1 + _log_coeff);
|
|
|
|
|
|
// Setup analysis drawing area
|
|
_analysis_scale_surface = 0;
|
|
|
|
_analysis_area = new Gtk::DrawingArea();
|
|
_analysis_width = 500.0;
|
|
_analysis_height = 500.0;
|
|
_analysis_area->set_size_request(_analysis_width, _analysis_height);
|
|
|
|
_analysis_area->signal_expose_event().connect( sigc::mem_fun (*this, &PluginEqGui::expose_analysis_area));
|
|
_analysis_area->signal_size_allocate().connect( sigc::mem_fun (*this, &PluginEqGui::resize_analysis_area));
|
|
|
|
|
|
// dB selection
|
|
dBScaleModel = Gtk::ListStore::create(dBColumns);
|
|
|
|
dBScaleCombo = new Gtk::ComboBox(dBScaleModel);
|
|
dBScaleCombo -> set_title("dB scale");
|
|
|
|
#define ADD_DB_ROW(MIN,MAX,STEP,NAME) \
|
|
{ \
|
|
Gtk::TreeModel::Row row = *(dBScaleModel->append()); \
|
|
row[dBColumns.dBMin] = (MIN); \
|
|
row[dBColumns.dBMax] = (MAX); \
|
|
row[dBColumns.dBStep] = (STEP); \
|
|
row[dBColumns.name] = NAME; \
|
|
}
|
|
|
|
ADD_DB_ROW( -6, +6, 1, "-6dB .. +6dB");
|
|
ADD_DB_ROW(-12, +12, 3, "-12dB .. +12dB");
|
|
ADD_DB_ROW(-24, +24, 5, "-24dB .. +24dB");
|
|
ADD_DB_ROW(-36, +36, 6, "-36dB .. +36dB");
|
|
ADD_DB_ROW(-64, +64,12, "-64dB .. +64dB");
|
|
|
|
#undef ADD_DB_ROW
|
|
|
|
dBScaleCombo -> pack_start(dBColumns.name);
|
|
dBScaleCombo -> set_active(1);
|
|
|
|
dBScaleCombo -> signal_changed().connect( sigc::mem_fun(*this, &PluginEqGui::change_dB_scale) );
|
|
|
|
Gtk::Label *dBComboLabel = new Gtk::Label("dB scale");
|
|
|
|
Gtk::HBox *dBSelectBin = new Gtk::HBox(false, 5);
|
|
dBSelectBin->add( *manage(dBComboLabel));
|
|
dBSelectBin->add( *manage(dBScaleCombo));
|
|
|
|
// Phase checkbutton
|
|
_phase_button = new Gtk::CheckButton("Show phase");
|
|
_phase_button->set_active(true);
|
|
_phase_button->signal_toggled().connect( sigc::mem_fun(*this, &PluginEqGui::redraw_scales));
|
|
|
|
// populate table
|
|
attach( *manage(_analysis_area), 1, 3, 1, 2);
|
|
attach( *manage(dBSelectBin), 1, 2, 2, 3, Gtk::SHRINK, Gtk::SHRINK);
|
|
attach( *manage(_phase_button), 2, 3, 2, 3, Gtk::SHRINK, Gtk::SHRINK);
|
|
|
|
|
|
// Connect the realtime signal collection callback
|
|
_plugin_insert->AnalysisDataGathered.connect( sigc::mem_fun(*this, &PluginEqGui::signal_collect_callback ));
|
|
}
|
|
|
|
PluginEqGui::~PluginEqGui()
|
|
{
|
|
if (_analysis_scale_surface) {
|
|
cairo_surface_destroy (_analysis_scale_surface);
|
|
}
|
|
|
|
delete _impulse_fft;
|
|
delete _signal_input_fft;
|
|
delete _signal_output_fft;
|
|
|
|
_plugin->deactivate();
|
|
|
|
// all gui objects are *manage'd by the inherited Table object
|
|
}
|
|
|
|
|
|
void
|
|
PluginEqGui::on_hide()
|
|
{
|
|
stop_updating();
|
|
Gtk::Table::on_hide();
|
|
}
|
|
|
|
void
|
|
PluginEqGui::stop_updating()
|
|
{
|
|
if (_update_connection.connected()) {
|
|
_update_connection.disconnect();
|
|
}
|
|
}
|
|
|
|
void
|
|
PluginEqGui::start_updating()
|
|
{
|
|
if (!_update_connection.connected() && is_visible()) {
|
|
_update_connection = Glib::signal_timeout().connect( sigc::mem_fun(this, &PluginEqGui::timeout_callback), 250);
|
|
}
|
|
}
|
|
|
|
void
|
|
PluginEqGui::on_show()
|
|
{
|
|
Gtk::Table::on_show();
|
|
|
|
start_updating();
|
|
|
|
Gtk::Widget *toplevel = get_toplevel();
|
|
if (!toplevel) {
|
|
std::cerr << "No toplevel widget for PluginEqGui?!?!" << std::endl;
|
|
}
|
|
|
|
if (!_window_unmap_connection.connected()) {
|
|
_window_unmap_connection = toplevel->signal_unmap().connect( sigc::mem_fun(this, &PluginEqGui::stop_updating));
|
|
}
|
|
|
|
if (!_window_map_connection.connected()) {
|
|
_window_map_connection = toplevel->signal_map().connect( sigc::mem_fun(this, &PluginEqGui::start_updating));
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
PluginEqGui::change_dB_scale()
|
|
{
|
|
Gtk::TreeModel::iterator iter = dBScaleCombo -> get_active();
|
|
|
|
Gtk::TreeModel::Row row;
|
|
|
|
if(iter && (row = *iter)) {
|
|
_min_dB = row[dBColumns.dBMin];
|
|
_max_dB = row[dBColumns.dBMax];
|
|
_step_dB = row[dBColumns.dBStep];
|
|
|
|
|
|
redraw_scales();
|
|
}
|
|
}
|
|
|
|
void
|
|
PluginEqGui::redraw_scales()
|
|
{
|
|
|
|
if (_analysis_scale_surface) {
|
|
cairo_surface_destroy (_analysis_scale_surface);
|
|
_analysis_scale_surface = 0;
|
|
}
|
|
|
|
_analysis_area->queue_draw();
|
|
|
|
// TODO: Add graph legend!
|
|
}
|
|
|
|
void
|
|
PluginEqGui::set_buffer_size(uint32_t size, uint32_t signal_size)
|
|
{
|
|
if (_buffer_size == size && _signal_buffer_size == signal_size)
|
|
return;
|
|
|
|
|
|
FFT *tmp1 = _impulse_fft;
|
|
FFT *tmp2 = _signal_input_fft;
|
|
FFT *tmp3 = _signal_output_fft;
|
|
|
|
try {
|
|
_impulse_fft = new FFT(size);
|
|
_signal_input_fft = new FFT(signal_size);
|
|
_signal_output_fft = new FFT(signal_size);
|
|
} catch( ... ) {
|
|
// Don't care about lost memory, we're screwed anyhow
|
|
_impulse_fft = tmp1;
|
|
_signal_input_fft = tmp2;
|
|
_signal_output_fft = tmp3;
|
|
throw;
|
|
}
|
|
|
|
delete tmp1;
|
|
delete tmp2;
|
|
delete tmp3;
|
|
|
|
_buffer_size = size;
|
|
_signal_buffer_size = signal_size;
|
|
|
|
// These are for impulse analysis only, the signal analysis uses the actual
|
|
// number of I/O's for the plugininsert
|
|
uint32_t inputs = _plugin->get_info()->n_inputs.n_audio();
|
|
uint32_t outputs = _plugin->get_info()->n_outputs.n_audio();
|
|
|
|
// buffers for the signal analysis are ensured inside PluginInsert
|
|
uint32_t n_chans = std::max(inputs, outputs);
|
|
_bufferset.ensure_buffers(ARDOUR::DataType::AUDIO, n_chans, _buffer_size);
|
|
_collect_bufferset.ensure_buffers(ARDOUR::DataType::AUDIO, n_chans, _buffer_size);
|
|
|
|
ARDOUR::ChanCount chanCount(ARDOUR::DataType::AUDIO, n_chans);
|
|
_bufferset.set_count(chanCount);
|
|
_collect_bufferset.set_count(chanCount);
|
|
}
|
|
|
|
void
|
|
PluginEqGui::resize_analysis_area(Gtk::Allocation& size)
|
|
{
|
|
_analysis_width = (float)size.get_width();
|
|
_analysis_height = (float)size.get_height();
|
|
|
|
if (_analysis_scale_surface) {
|
|
cairo_surface_destroy (_analysis_scale_surface);
|
|
_analysis_scale_surface = 0;
|
|
}
|
|
}
|
|
|
|
bool
|
|
PluginEqGui::timeout_callback()
|
|
{
|
|
if (!_signal_analysis_running) {
|
|
_signal_analysis_running = true;
|
|
_plugin_insert -> collect_signal_for_analysis(_signal_buffer_size);
|
|
}
|
|
run_impulse_analysis();
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
PluginEqGui::signal_collect_callback(ARDOUR::BufferSet *in, ARDOUR::BufferSet *out)
|
|
{
|
|
ENSURE_GUI_THREAD(bind (mem_fun (*this, &PluginEqGui::signal_collect_callback), in, out));
|
|
|
|
_signal_input_fft ->reset();
|
|
_signal_output_fft->reset();
|
|
|
|
for (uint32_t i = 0; i < _plugin_insert->input_streams().n_audio(); ++i) {
|
|
_signal_input_fft ->analyze(in ->get_audio(i).data(), FFT::HANN);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < _plugin_insert->output_streams().n_audio(); ++i) {
|
|
_signal_output_fft->analyze(out->get_audio(i).data(), FFT::HANN);
|
|
}
|
|
|
|
_signal_input_fft ->calculate();
|
|
_signal_output_fft->calculate();
|
|
|
|
_signal_analysis_running = false;
|
|
|
|
// This signals calls expose_analysis_area()
|
|
_analysis_area->queue_draw();
|
|
}
|
|
|
|
void
|
|
PluginEqGui::run_impulse_analysis()
|
|
{
|
|
uint32_t inputs = _plugin->get_info()->n_inputs.n_audio();
|
|
uint32_t outputs = _plugin->get_info()->n_outputs.n_audio();
|
|
|
|
// Create the impulse, can't use silence() because consecutive calls won't work
|
|
for (uint32_t i = 0; i < inputs; ++i) {
|
|
ARDOUR::AudioBuffer &buf = _bufferset.get_audio(i);
|
|
ARDOUR::Sample *d = buf.data();
|
|
memset(d, 0, sizeof(ARDOUR::Sample)*_buffer_size);
|
|
*d = 1.0;
|
|
}
|
|
|
|
uint32_t x,y;
|
|
x=y=0;
|
|
|
|
|
|
|
|
_plugin->connect_and_run(_bufferset, x, y, _buffer_size, (nframes_t)0);
|
|
nframes_t f = _plugin->signal_latency();
|
|
// Adding user_latency() could be interesting
|
|
|
|
// Gather all output, taking latency into account.
|
|
_impulse_fft->reset();
|
|
|
|
// Silence collect buffers to copy data to, can't use silence() because consecutive calls won't work
|
|
for (uint32_t i = 0; i < outputs; ++i) {
|
|
ARDOUR::AudioBuffer &buf = _collect_bufferset.get_audio(i);
|
|
ARDOUR::Sample *d = buf.data();
|
|
memset(d, 0, sizeof(ARDOUR::Sample)*_buffer_size);
|
|
}
|
|
|
|
if (f == 0) {
|
|
//std::cerr << "0: no latency, copying full buffer, trivial.." << std::endl;
|
|
for (uint32_t i = 0; i < outputs; ++i) {
|
|
memcpy(_collect_bufferset.get_audio(i).data(),
|
|
_bufferset.get_audio(i).data(), _buffer_size * sizeof(float));
|
|
}
|
|
} else {
|
|
//int C = 0;
|
|
//std::cerr << (++C) << ": latency is " << f << " frames, doing split processing.." << std::endl;
|
|
nframes_t target_offset = 0;
|
|
nframes_t frames_left = _buffer_size; // refaktoroi
|
|
do {
|
|
if (f >= _buffer_size) {
|
|
//std::cerr << (++C) << ": f (=" << f << ") is larger than buffer_size, still trying to reach the actual output" << std::endl;
|
|
// there is no data in this buffer regarding to the input!
|
|
f -= _buffer_size;
|
|
} else {
|
|
// this buffer contains either the first, last or a whole bu the output of the impulse
|
|
// first part: offset is 0, so we copy to the start of _collect_bufferset
|
|
// we start at output offset "f"
|
|
// .. and copy "buffer size" - "f" - "offset" frames
|
|
|
|
nframes_t length = _buffer_size - f - target_offset;
|
|
|
|
//std::cerr << (++C) << ": copying " << length << " frames to _collect_bufferset.get_audio(i)+" << target_offset << " from bufferset at offset " << f << std::endl;
|
|
for (uint32_t i = 0; i < outputs; ++i) {
|
|
memcpy(_collect_bufferset.get_audio(i).data(target_offset),
|
|
_bufferset.get_audio(i).data() + f,
|
|
length * sizeof(float));
|
|
}
|
|
|
|
target_offset += length;
|
|
frames_left -= length;
|
|
f = 0;
|
|
}
|
|
if (frames_left > 0) {
|
|
// Silence the buffers
|
|
for (uint32_t i = 0; i < inputs; ++i) {
|
|
ARDOUR::AudioBuffer &buf = _bufferset.get_audio(i);
|
|
ARDOUR::Sample *d = buf.data();
|
|
memset(d, 0, sizeof(ARDOUR::Sample)*_buffer_size);
|
|
}
|
|
|
|
x=y=0;
|
|
_plugin->connect_and_run(_bufferset, x, y, _buffer_size, (nframes_t)0);
|
|
}
|
|
} while ( frames_left > 0);
|
|
|
|
}
|
|
|
|
|
|
for (uint32_t i = 0; i < outputs; ++i) {
|
|
_impulse_fft->analyze(_collect_bufferset.get_audio(i).data());
|
|
}
|
|
|
|
// normalize the output
|
|
_impulse_fft->calculate();
|
|
|
|
// This signals calls expose_analysis_area()
|
|
_analysis_area->queue_draw();
|
|
}
|
|
|
|
bool
|
|
PluginEqGui::expose_analysis_area(GdkEventExpose *evt)
|
|
{
|
|
redraw_analysis_area();
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
PluginEqGui::draw_analysis_scales(cairo_t *ref_cr)
|
|
{
|
|
// TODO: check whether we need rounding
|
|
_analysis_scale_surface = cairo_surface_create_similar(cairo_get_target(ref_cr),
|
|
CAIRO_CONTENT_COLOR,
|
|
_analysis_width,
|
|
_analysis_height);
|
|
|
|
cairo_t *cr = cairo_create (_analysis_scale_surface);
|
|
|
|
cairo_set_source_rgb(cr, 0.0, 0.0, 0.0);
|
|
cairo_rectangle(cr, 0.0, 0.0, _analysis_width, _analysis_height);
|
|
cairo_fill(cr);
|
|
|
|
|
|
draw_scales_power(_analysis_area, cr);
|
|
if (_phase_button->get_active()) {
|
|
draw_scales_phase(_analysis_area, cr);
|
|
}
|
|
|
|
cairo_destroy(cr);
|
|
|
|
}
|
|
|
|
void
|
|
PluginEqGui::redraw_analysis_area()
|
|
{
|
|
cairo_t *cr;
|
|
|
|
cr = gdk_cairo_create(GDK_DRAWABLE(_analysis_area->get_window()->gobj()));
|
|
|
|
if (_analysis_scale_surface == 0) {
|
|
draw_analysis_scales(cr);
|
|
}
|
|
|
|
|
|
cairo_copy_page(cr);
|
|
|
|
cairo_set_source_surface(cr, _analysis_scale_surface, 0.0, 0.0);
|
|
cairo_paint(cr);
|
|
|
|
if (_phase_button->get_active()) {
|
|
plot_impulse_phase(_analysis_area, cr);
|
|
}
|
|
plot_impulse_amplitude(_analysis_area, cr);
|
|
|
|
// TODO: make this optional
|
|
plot_signal_amplitude_difference(_analysis_area, cr);
|
|
|
|
cairo_destroy(cr);
|
|
|
|
|
|
}
|
|
|
|
#define PHASE_PROPORTION 0.5
|
|
|
|
void
|
|
PluginEqGui::draw_scales_phase(Gtk::Widget *w, cairo_t *cr)
|
|
{
|
|
float y;
|
|
cairo_font_extents_t extents;
|
|
cairo_font_extents(cr, &extents);
|
|
|
|
char buf[256];
|
|
cairo_text_extents_t t_ext;
|
|
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
|
|
y = _analysis_height/2.0 - (float)i*(_analysis_height/8.0)*PHASE_PROPORTION;
|
|
|
|
cairo_set_source_rgb(cr, .8, .9, 0.2);
|
|
if (i == 0) {
|
|
snprintf(buf,256, "0\u00b0");
|
|
} else {
|
|
snprintf(buf,256, "%d\u00b0", (i * 45));
|
|
}
|
|
cairo_text_extents(cr, buf, &t_ext);
|
|
cairo_move_to(cr, _analysis_width - t_ext.width - t_ext.x_bearing - 2.0, y - extents.descent);
|
|
cairo_show_text(cr, buf);
|
|
|
|
if (i == 0)
|
|
continue;
|
|
|
|
|
|
cairo_set_source_rgba(cr, .8, .9, 0.2, 0.6/(float)i);
|
|
cairo_move_to(cr, 0.0, y);
|
|
cairo_line_to(cr, _analysis_width, y);
|
|
|
|
|
|
y = _analysis_height/2.0 + (float)i*(_analysis_height/8.0)*PHASE_PROPORTION;
|
|
|
|
// label
|
|
snprintf(buf,256, "-%d\u00b0", (i * 45));
|
|
cairo_set_source_rgb(cr, .8, .9, 0.2);
|
|
cairo_text_extents(cr, buf, &t_ext);
|
|
cairo_move_to(cr, _analysis_width - t_ext.width - t_ext.x_bearing - 2.0, y - extents.descent);
|
|
cairo_show_text(cr, buf);
|
|
|
|
// line
|
|
cairo_set_source_rgba(cr, .8, .9, 0.2, 0.6/(float)i);
|
|
cairo_move_to(cr, 0.0, y);
|
|
cairo_line_to(cr, _analysis_width, y);
|
|
|
|
cairo_set_line_width (cr, 0.25 + 1.0/(float)(i+1));
|
|
cairo_stroke(cr);
|
|
}
|
|
}
|
|
|
|
void
|
|
PluginEqGui::plot_impulse_phase(Gtk::Widget *w, cairo_t *cr)
|
|
{
|
|
float x,y;
|
|
|
|
int prevX = 0;
|
|
float avgY = 0.0;
|
|
int avgNum = 0;
|
|
|
|
// float width = w->get_width();
|
|
float height = w->get_height();
|
|
|
|
cairo_set_source_rgba(cr, 0.95, 0.3, 0.2, 1.0);
|
|
for (uint32_t i = 0; i < _impulse_fft->bins()-1; i++) {
|
|
// x coordinate of bin i
|
|
x = log10f(1.0 + (float)i / (float)_impulse_fft->bins() * _log_coeff) / _log_max;
|
|
x *= _analysis_width;
|
|
|
|
y = _analysis_height/2.0 - (_impulse_fft->phase_at_bin(i)/M_PI)*(_analysis_height/2.0)*PHASE_PROPORTION;
|
|
|
|
if ( i == 0 ) {
|
|
cairo_move_to(cr, x, y);
|
|
|
|
avgY = 0;
|
|
avgNum = 0;
|
|
} else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) {
|
|
avgY = avgY/(float)avgNum;
|
|
if (avgY > (height * 10.0) ) avgY = height * 10.0;
|
|
if (avgY < (-height * 10.0) ) avgY = -height * 10.0;
|
|
cairo_line_to(cr, prevX, avgY);
|
|
//cairo_line_to(cr, prevX, avgY/(float)avgNum);
|
|
|
|
avgY = 0;
|
|
avgNum = 0;
|
|
|
|
}
|
|
|
|
prevX = rint(x);
|
|
avgY += y;
|
|
avgNum++;
|
|
}
|
|
|
|
cairo_set_line_width (cr, 2.0);
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
void
|
|
PluginEqGui::draw_scales_power(Gtk::Widget *w, cairo_t *cr)
|
|
{
|
|
static float scales[] = { 30.0, 70.0, 125.0, 250.0, 500.0, 1000.0, 2000.0, 5000.0, 10000.0, 15000.0, 20000.0, -1.0 };
|
|
|
|
float divisor = _samplerate / 2.0 / _impulse_fft->bins();
|
|
float x;
|
|
|
|
cairo_set_line_width (cr, 1.5);
|
|
cairo_set_font_size(cr, 9);
|
|
|
|
cairo_font_extents_t extents;
|
|
cairo_font_extents(cr, &extents);
|
|
// float fontXOffset = extents.descent + 1.0;
|
|
|
|
char buf[256];
|
|
|
|
for (uint32_t i = 0; scales[i] != -1.0; ++i) {
|
|
float bin = scales[i] / divisor;
|
|
|
|
x = log10f(1.0 + bin / (float)_impulse_fft->bins() * _log_coeff) / _log_max;
|
|
x *= _analysis_width;
|
|
|
|
if (scales[i] < 1000.0) {
|
|
snprintf(buf, 256, "%0.0f", scales[i]);
|
|
} else {
|
|
snprintf(buf, 256, "%0.0fk", scales[i]/1000.0);
|
|
}
|
|
|
|
cairo_set_source_rgb(cr, 0.4, 0.4, 0.4);
|
|
|
|
//cairo_move_to(cr, x + fontXOffset, 3.0);
|
|
cairo_move_to(cr, x - extents.height, 3.0);
|
|
|
|
cairo_rotate(cr, M_PI / 2.0);
|
|
cairo_show_text(cr, buf);
|
|
cairo_rotate(cr, -M_PI / 2.0);
|
|
cairo_stroke(cr);
|
|
|
|
cairo_set_source_rgb(cr, 0.3, 0.3, 0.3);
|
|
cairo_move_to(cr, x, _analysis_height);
|
|
cairo_line_to(cr, x, 0.0);
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
float y;
|
|
|
|
//double dashes[] = { 1.0, 3.0, 4.5, 3.0 };
|
|
double dashes[] = { 3.0, 5.0 };
|
|
|
|
for (float dB = 0.0; dB < _max_dB; dB += _step_dB ) {
|
|
snprintf(buf, 256, "+%0.0f", dB );
|
|
|
|
y = ( _max_dB - dB) / ( _max_dB - _min_dB );
|
|
//std::cerr << " y = " << y << std::endl;
|
|
y *= _analysis_height;
|
|
|
|
if (dB != 0.0) {
|
|
cairo_set_source_rgb(cr, 0.4, 0.4, 0.4);
|
|
cairo_move_to(cr, 1.0, y + extents.height + 1.0);
|
|
cairo_show_text(cr, buf);
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
cairo_set_source_rgb(cr, 0.2, 0.2, 0.2);
|
|
cairo_move_to(cr, 0, y);
|
|
cairo_line_to(cr, _analysis_width, y);
|
|
cairo_stroke(cr);
|
|
|
|
if (dB == 0.0) {
|
|
cairo_set_dash(cr, dashes, 2, 0.0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
for (float dB = - _step_dB; dB > _min_dB; dB -= _step_dB ) {
|
|
snprintf(buf, 256, "%0.0f", dB );
|
|
|
|
y = ( _max_dB - dB) / ( _max_dB - _min_dB );
|
|
y *= _analysis_height;
|
|
|
|
cairo_set_source_rgb(cr, 0.4, 0.4, 0.4);
|
|
cairo_move_to(cr, 1.0, y - extents.descent - 1.0);
|
|
cairo_show_text(cr, buf);
|
|
cairo_stroke(cr);
|
|
|
|
cairo_set_source_rgb(cr, 0.2, 0.2, 0.2);
|
|
cairo_move_to(cr, 0, y);
|
|
cairo_line_to(cr, _analysis_width, y);
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
cairo_set_dash(cr, 0, 0, 0.0);
|
|
|
|
}
|
|
|
|
inline float
|
|
power_to_dB(float a)
|
|
{
|
|
return 10.0 * log10f(a);
|
|
}
|
|
|
|
void
|
|
PluginEqGui::plot_impulse_amplitude(Gtk::Widget *w, cairo_t *cr)
|
|
{
|
|
float x,y;
|
|
|
|
int prevX = 0;
|
|
float avgY = 0.0;
|
|
int avgNum = 0;
|
|
|
|
// float width = w->get_width();
|
|
float height = w->get_height();
|
|
|
|
cairo_set_source_rgb(cr, 1.0, 1.0, 1.0);
|
|
cairo_set_line_width (cr, 2.5);
|
|
|
|
for (uint32_t i = 0; i < _impulse_fft->bins()-1; i++) {
|
|
// x coordinate of bin i
|
|
x = log10f(1.0 + (float)i / (float)_impulse_fft->bins() * _log_coeff) / _log_max;
|
|
x *= _analysis_width;
|
|
|
|
float yCoeff = ( power_to_dB(_impulse_fft->power_at_bin(i)) - _min_dB) / (_max_dB - _min_dB);
|
|
|
|
y = _analysis_height - _analysis_height*yCoeff;
|
|
|
|
if ( i == 0 ) {
|
|
cairo_move_to(cr, x, y);
|
|
|
|
avgY = 0;
|
|
avgNum = 0;
|
|
} else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) {
|
|
avgY = avgY/(float)avgNum;
|
|
if (avgY > (height * 10.0) ) avgY = height * 10.0;
|
|
if (avgY < (-height * 10.0) ) avgY = -height * 10.0;
|
|
cairo_line_to(cr, prevX, avgY);
|
|
//cairo_line_to(cr, prevX, avgY/(float)avgNum);
|
|
|
|
avgY = 0;
|
|
avgNum = 0;
|
|
|
|
}
|
|
|
|
prevX = rint(x);
|
|
avgY += y;
|
|
avgNum++;
|
|
}
|
|
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
void
|
|
PluginEqGui::plot_signal_amplitude_difference(Gtk::Widget *w, cairo_t *cr)
|
|
{
|
|
float x,y;
|
|
|
|
int prevX = 0;
|
|
float avgY = 0.0;
|
|
int avgNum = 0;
|
|
|
|
// float width = w->get_width();
|
|
float height = w->get_height();
|
|
|
|
cairo_set_source_rgb(cr, 0.0, 1.0, 0.0);
|
|
cairo_set_line_width (cr, 2.5);
|
|
|
|
for (uint32_t i = 0; i < _signal_input_fft->bins()-1; i++) {
|
|
// x coordinate of bin i
|
|
x = log10f(1.0 + (float)i / (float)_signal_input_fft->bins() * _log_coeff) / _log_max;
|
|
x *= _analysis_width;
|
|
|
|
float power_out = power_to_dB(_signal_output_fft->power_at_bin(i));
|
|
float power_in = power_to_dB(_signal_input_fft ->power_at_bin(i));
|
|
float power = power_out - power_in;
|
|
|
|
// for SaBer
|
|
/*
|
|
double p = 10.0 * log10( 1.0 + (double)_signal_output_fft->power_at_bin(i) - (double)
|
|
- _signal_input_fft ->power_at_bin(i));
|
|
//p *= 1000000.0;
|
|
float power = (float)p;
|
|
|
|
if ( (i % 1000) == 0) {
|
|
std::cerr << i << ": " << power << std::endl;
|
|
}
|
|
*/
|
|
|
|
if (std::isinf(power)) {
|
|
if (power < 0) {
|
|
power = _min_dB - 1.0;
|
|
} else {
|
|
power = _max_dB - 1.0;
|
|
}
|
|
} else if (std::isnan(power)) {
|
|
power = _min_dB - 1.0;
|
|
}
|
|
|
|
float yCoeff = ( power - _min_dB) / (_max_dB - _min_dB);
|
|
|
|
y = _analysis_height - _analysis_height*yCoeff;
|
|
|
|
if ( i == 0 ) {
|
|
cairo_move_to(cr, x, y);
|
|
|
|
avgY = 0;
|
|
avgNum = 0;
|
|
} else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) {
|
|
avgY = avgY/(float)avgNum;
|
|
if (avgY > (height * 10.0) ) avgY = height * 10.0;
|
|
if (avgY < (-height * 10.0) ) avgY = -height * 10.0;
|
|
cairo_line_to(cr, prevX, avgY);
|
|
|
|
avgY = 0;
|
|
avgNum = 0;
|
|
|
|
}
|
|
|
|
prevX = rint(x);
|
|
avgY += y;
|
|
avgNum++;
|
|
}
|
|
|
|
cairo_stroke(cr);
|
|
|
|
|
|
}
|