145 lines
3.5 KiB
C++
145 lines
3.5 KiB
C++
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
|
|
|
/*
|
|
QM DSP Library
|
|
|
|
Centre for Digital Music, Queen Mary, University of London.
|
|
This file copyright 2006 Martin Gasser.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version. See the file
|
|
COPYING included with this distribution for more information.
|
|
*/
|
|
|
|
#include "ChangeDetectionFunction.h"
|
|
|
|
#ifndef PI
|
|
#define PI (3.14159265358979232846)
|
|
#endif
|
|
|
|
|
|
|
|
ChangeDetectionFunction::ChangeDetectionFunction(ChangeDFConfig config) :
|
|
m_dFilterSigma(0.0), m_iFilterWidth(0)
|
|
{
|
|
setFilterWidth(config.smoothingWidth);
|
|
}
|
|
|
|
ChangeDetectionFunction::~ChangeDetectionFunction()
|
|
{
|
|
}
|
|
|
|
void ChangeDetectionFunction::setFilterWidth(const int iWidth)
|
|
{
|
|
m_iFilterWidth = iWidth*2+1;
|
|
|
|
// it is assumed that the gaussian is 0 outside of +/- FWHM
|
|
// => filter width = 2*FWHM = 2*2.3548*sigma
|
|
m_dFilterSigma = double(m_iFilterWidth) / double(2*2.3548);
|
|
m_vaGaussian.resize(m_iFilterWidth);
|
|
|
|
double dScale = 1.0 / (m_dFilterSigma*sqrt(2*PI));
|
|
|
|
for (int x = -(m_iFilterWidth-1)/2; x <= (m_iFilterWidth-1)/2; x++)
|
|
{
|
|
double w = dScale * std::exp ( -(x*x)/(2*m_dFilterSigma*m_dFilterSigma) );
|
|
m_vaGaussian[x + (m_iFilterWidth-1)/2] = w;
|
|
}
|
|
|
|
#ifdef DEBUG_CHANGE_DETECTION_FUNCTION
|
|
std::cerr << "Filter sigma: " << m_dFilterSigma << std::endl;
|
|
std::cerr << "Filter width: " << m_iFilterWidth << std::endl;
|
|
#endif
|
|
}
|
|
|
|
|
|
ChangeDistance ChangeDetectionFunction::process(const TCSGram& rTCSGram)
|
|
{
|
|
ChangeDistance retVal;
|
|
retVal.resize(rTCSGram.getSize(), 0.0);
|
|
|
|
TCSGram smoothedTCSGram;
|
|
|
|
for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
|
|
{
|
|
int iSkipLower = 0;
|
|
|
|
int iLowerPos = iPosition - (m_iFilterWidth-1)/2;
|
|
int iUpperPos = iPosition + (m_iFilterWidth-1)/2;
|
|
|
|
if (iLowerPos < 0)
|
|
{
|
|
iSkipLower = -iLowerPos;
|
|
iLowerPos = 0;
|
|
}
|
|
|
|
if (iUpperPos >= rTCSGram.getSize())
|
|
{
|
|
int iMaxIndex = rTCSGram.getSize() - 1;
|
|
iUpperPos = iMaxIndex;
|
|
}
|
|
|
|
TCSVector smoothedVector;
|
|
|
|
// for every bin of the vector, calculate the smoothed value
|
|
for (int iPC = 0; iPC < 6; iPC++)
|
|
{
|
|
size_t j = 0;
|
|
double dSmoothedValue = 0.0;
|
|
TCSVector rCV;
|
|
|
|
for (int i = iLowerPos; i <= iUpperPos; i++)
|
|
{
|
|
rTCSGram.getTCSVector(i, rCV);
|
|
dSmoothedValue += m_vaGaussian[iSkipLower + j++] * rCV[iPC];
|
|
}
|
|
|
|
smoothedVector[iPC] = dSmoothedValue;
|
|
}
|
|
|
|
smoothedTCSGram.addTCSVector(smoothedVector);
|
|
}
|
|
|
|
for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
|
|
{
|
|
/*
|
|
TODO: calculate a confidence measure for the current estimation
|
|
if the current estimate is not confident enough, look further into the future/the past
|
|
e.g., High frequency content, zero crossing rate, spectral flatness
|
|
*/
|
|
|
|
TCSVector nextTCS;
|
|
TCSVector previousTCS;
|
|
|
|
int iWindow = 1;
|
|
|
|
// while (previousTCS.magnitude() < 0.1 && (iPosition-iWindow) > 0)
|
|
{
|
|
smoothedTCSGram.getTCSVector(iPosition-iWindow, previousTCS);
|
|
// std::cout << previousTCS.magnitude() << std::endl;
|
|
iWindow++;
|
|
}
|
|
|
|
iWindow = 1;
|
|
|
|
// while (nextTCS.magnitude() < 0.1 && (iPosition+iWindow) < (rTCSGram.getSize()-1) )
|
|
{
|
|
smoothedTCSGram.getTCSVector(iPosition+iWindow, nextTCS);
|
|
iWindow++;
|
|
}
|
|
|
|
double distance = 0.0;
|
|
// Euclidean distance
|
|
for (size_t j = 0; j < 6; j++)
|
|
{
|
|
distance += std::pow(nextTCS[j] - previousTCS[j], 2.0);
|
|
}
|
|
|
|
retVal[iPosition] = std::pow(distance, 0.5);
|
|
}
|
|
|
|
return retVal;
|
|
}
|