288 lines
8.0 KiB
C++
288 lines
8.0 KiB
C++
/*
|
|
Copyright (C) 2011-2013 Paul Davis
|
|
Author: Carl Hetherington <cth@carlh.net>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <stdint.h>
|
|
#include <cairomm/context.h>
|
|
#include "canvas/utils.h"
|
|
|
|
using std::max;
|
|
using std::min;
|
|
|
|
void
|
|
ArdourCanvas::color_to_hsv (Color color, double& h, double& s, double& v)
|
|
{
|
|
double r, g, b, a;
|
|
double cmax;
|
|
double cmin;
|
|
double delta;
|
|
|
|
color_to_rgba (color, r, g, b, a);
|
|
|
|
if (r > g) {
|
|
cmax = max (r, b);
|
|
} else {
|
|
cmax = max (g, b);
|
|
}
|
|
|
|
if (r < g) {
|
|
cmin = min (r, b);
|
|
} else {
|
|
cmin = min (g, b);
|
|
}
|
|
|
|
v = cmax;
|
|
|
|
delta = cmax - cmin;
|
|
|
|
if (cmax == 0) {
|
|
// r = g = b == 0 ... v is undefined, s = 0
|
|
s = 0.0;
|
|
h = -1.0;
|
|
}
|
|
|
|
if (delta != 0.0) {
|
|
if (cmax == r) {
|
|
h = fmod ((g - b)/delta, 6.0);
|
|
} else if (cmax == g) {
|
|
h = ((b - r)/delta) + 2;
|
|
} else {
|
|
h = ((r - g)/delta) + 4;
|
|
}
|
|
|
|
h *= 60.0;
|
|
}
|
|
|
|
if (delta == 0 || cmax == 0) {
|
|
s = 0;
|
|
} else {
|
|
s = delta / cmax;
|
|
}
|
|
|
|
}
|
|
|
|
ArdourCanvas::Color
|
|
ArdourCanvas::hsv_to_color (double h, double s, double v, double a)
|
|
{
|
|
s = min (1.0, max (0.0, s));
|
|
v = min (1.0, max (0.0, v));
|
|
|
|
if (s == 0) {
|
|
// achromatic (grey)
|
|
return rgba_to_color (v, v, v, a);
|
|
}
|
|
|
|
h = min (360.0, max (0.0, h));
|
|
|
|
double c = v * s;
|
|
double x = c * (1.0 - fabs(fmod(h / 60.0, 2) - 1.0));
|
|
double m = v - c;
|
|
|
|
if (h >= 0.0 && h < 60.0) {
|
|
return rgba_to_color (c + m, x + m, m, a);
|
|
} else if (h >= 60.0 && h < 120.0) {
|
|
return rgba_to_color (x + m, c + m, m, a);
|
|
} else if (h >= 120.0 && h < 180.0) {
|
|
return rgba_to_color (m, c + m, x + m, a);
|
|
} else if (h >= 180.0 && h < 240.0) {
|
|
return rgba_to_color (m, x + m, c + m, a);
|
|
} else if (h >= 240.0 && h < 300.0) {
|
|
return rgba_to_color (x + m, m, c + m, a);
|
|
} else if (h >= 300.0 && h < 360.0) {
|
|
return rgba_to_color (c + m, m, x + m, a);
|
|
}
|
|
return rgba_to_color (m, m, m, a);
|
|
}
|
|
|
|
void
|
|
ArdourCanvas::color_to_rgba (Color color, double& r, double& g, double& b, double& a)
|
|
{
|
|
r = ((color >> 24) & 0xff) / 255.0;
|
|
g = ((color >> 16) & 0xff) / 255.0;
|
|
b = ((color >> 8) & 0xff) / 255.0;
|
|
a = ((color >> 0) & 0xff) / 255.0;
|
|
}
|
|
|
|
ArdourCanvas::Color
|
|
ArdourCanvas::rgba_to_color (double r, double g, double b, double a)
|
|
{
|
|
/* clamp to [0 .. 1] range */
|
|
|
|
r = min (1.0, max (0.0, r));
|
|
g = min (1.0, max (0.0, g));
|
|
b = min (1.0, max (0.0, b));
|
|
a = min (1.0, max (0.0, a));
|
|
|
|
/* convert to [0..255] range */
|
|
|
|
unsigned int rc, gc, bc, ac;
|
|
rc = rint (r * 255.0);
|
|
gc = rint (g * 255.0);
|
|
bc = rint (b * 255.0);
|
|
ac = rint (a * 255.0);
|
|
|
|
/* build-an-integer */
|
|
|
|
return (rc << 24) | (gc << 16) | (bc << 8) | ac;
|
|
}
|
|
|
|
void
|
|
ArdourCanvas::set_source_rgba (Cairo::RefPtr<Cairo::Context> context, Color color)
|
|
{
|
|
context->set_source_rgba (
|
|
((color >> 24) & 0xff) / 255.0,
|
|
((color >> 16) & 0xff) / 255.0,
|
|
((color >> 8) & 0xff) / 255.0,
|
|
((color >> 0) & 0xff) / 255.0
|
|
);
|
|
}
|
|
|
|
void
|
|
ArdourCanvas::set_source_rgb_a (Cairo::RefPtr<Cairo::Context> context, Color color, float alpha)
|
|
{
|
|
context->set_source_rgba (
|
|
((color >> 24) & 0xff) / 255.0,
|
|
((color >> 16) & 0xff) / 255.0,
|
|
((color >> 8) & 0xff) / 255.0,
|
|
alpha
|
|
);
|
|
}
|
|
|
|
void
|
|
ArdourCanvas::set_source_rgba (cairo_t *cr, Color color)
|
|
{
|
|
cairo_set_source_rgba ( cr,
|
|
((color >> 24) & 0xff) / 255.0,
|
|
((color >> 16) & 0xff) / 255.0,
|
|
((color >> 8) & 0xff) / 255.0,
|
|
((color >> 0) & 0xff) / 255.0
|
|
);
|
|
}
|
|
|
|
void
|
|
ArdourCanvas::set_source_rgb_a (cairo_t *cr, Color color, float alpha)
|
|
{
|
|
cairo_set_source_rgba ( cr,
|
|
((color >> 24) & 0xff) / 255.0,
|
|
((color >> 16) & 0xff) / 255.0,
|
|
((color >> 8) & 0xff) / 255.0,
|
|
alpha
|
|
);
|
|
}
|
|
|
|
ArdourCanvas::Distance
|
|
ArdourCanvas::distance_to_segment_squared (Duple const & p, Duple const & p1, Duple const & p2, double& t, Duple& at)
|
|
{
|
|
static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
|
|
static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
|
|
double dx = p2.x - p1.x;
|
|
double dy = p2.y - p1.y;
|
|
double dp1x = p.x - p1.x;
|
|
double dp1y = p.y - p1.y;
|
|
const double segLenSquared = (dx * dx) + (dy * dy);
|
|
|
|
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared) {
|
|
// segment is a point.
|
|
at = p1;
|
|
t = 0.0;
|
|
return ((dp1x * dp1x) + (dp1y * dp1y));
|
|
}
|
|
|
|
|
|
// Project a line from p to the segment [p1,p2]. By considering the line
|
|
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
|
|
// we find projection of point p onto the line.
|
|
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
|
|
|
|
t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
|
|
|
|
if (t < kEpsilon) {
|
|
// intersects at or to the "left" of first segment vertex (p1.x, p1.y). If t is approximately 0.0, then
|
|
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
|
|
// the 'bounds' of the segment)
|
|
if (t > -kEpsilon) {
|
|
// intersects at 1st segment vertex
|
|
t = 0.0;
|
|
}
|
|
// set our 'intersection' point to p1.
|
|
at = p1;
|
|
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
|
|
// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).
|
|
|
|
} else if (t > (1.0 - kEpsilon)) {
|
|
// intersects at or to the "right" of second segment vertex (p2.x, p2.y). If t is approximately 1.0, then
|
|
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
|
|
// the 'bounds' of the segment)
|
|
if (t < (1.0 + kEpsilon)) {
|
|
// intersects at 2nd segment vertex
|
|
t = 1.0;
|
|
}
|
|
// set our 'intersection' point to p2.
|
|
at = p2;
|
|
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
|
|
// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).
|
|
} else {
|
|
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
|
|
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
|
|
at = Duple (p1.x + (t * dx), p1.y + (t * dy));
|
|
}
|
|
|
|
// return the squared distance from p to the intersection point. Note that we return the squared distance
|
|
// as an optimization because many times you just need to compare relative distances and the squared values
|
|
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
|
|
double dpqx = p.x - at.x;
|
|
double dpqy = p.y - at.y;
|
|
|
|
return ((dpqx * dpqx) + (dpqy * dpqy));
|
|
}
|
|
|
|
uint32_t
|
|
ArdourCanvas::contrasting_text_color (uint32_t c)
|
|
{
|
|
double r, g, b, a;
|
|
ArdourCanvas::color_to_rgba (c, r, g, b, a);
|
|
|
|
const double black_r = 0.0;
|
|
const double black_g = 0.0;
|
|
const double black_b = 0.0;
|
|
|
|
const double white_r = 1.0;
|
|
const double white_g = 1.0;
|
|
const double white_b = 1.0;
|
|
|
|
/* Use W3C contrast guideline calculation */
|
|
|
|
double white_contrast = (max (r, white_r) - min (r, white_r)) +
|
|
(max (g, white_g) - min (g, white_g)) +
|
|
(max (b, white_b) - min (b, white_b));
|
|
|
|
double black_contrast = (max (r, black_r) - min (r, black_r)) +
|
|
(max (g, black_g) - min (g, black_g)) +
|
|
(max (b, black_b) - min (b, black_b));
|
|
|
|
if (white_contrast > black_contrast) {
|
|
/* use white */
|
|
return ArdourCanvas::rgba_to_color (1.0, 1.0, 1.0, 1.0);
|
|
} else {
|
|
/* use black */
|
|
return ArdourCanvas::rgba_to_color (0.0, 0.0, 0.0, 1.0);
|
|
}
|
|
}
|