13
0
livetrax/libs/rubberband/src/StretcherProcess.cpp
Paul Davis 0938a42440 fixes for 98% of all the warnings/errors reported by OS X gcc on tiger
git-svn-id: svn://localhost/ardour2/branches/3.0@10179 d708f5d6-7413-0410-9779-e7cbd77b26cf
2011-09-30 17:55:14 +00:00

1178 lines
36 KiB
C++

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "StretcherImpl.h"
#include "PercussiveAudioCurve.h"
#include "HighFrequencyAudioCurve.h"
#include "ConstantAudioCurve.h"
#include "StretchCalculator.h"
#include "StretcherChannelData.h"
#include "Resampler.h"
#include "Profiler.h"
#include <cstring>
#include <cassert>
#include <cmath>
#include <set>
#include <map>
#include <deque>
using std::cerr;
using std::endl;
namespace RubberBand {
RubberBandStretcher::Impl::ProcessThread::ProcessThread(Impl *s, size_t c) :
m_s(s),
m_channel(c),
m_dataAvailable(std::string("data ") + char('A' + c)),
m_abandoning(false)
{ }
void
RubberBandStretcher::Impl::ProcessThread::run()
{
if (m_s->m_debugLevel > 1) {
cerr << "thread " << m_channel << " getting going" << endl;
}
ChannelData &cd = *m_s->m_channelData[m_channel];
while (cd.inputSize == -1 ||
cd.inbuf->getReadSpace() > 0) {
// if (cd.inputSize != -1) {
// cerr << "inputSize == " << cd.inputSize
// << ", readSpace == " << cd.inbuf->getReadSpace() << endl;
// }
bool any = false, last = false;
m_s->processChunks(m_channel, any, last);
if (last) break;
if (any) m_s->m_spaceAvailable.signal();
m_dataAvailable.lock();
if (!m_s->testInbufReadSpace(m_channel) && !m_abandoning) {
m_dataAvailable.wait(50000); // bounded in case of abandonment
} else {
m_dataAvailable.unlock();
}
if (m_abandoning) {
if (m_s->m_debugLevel > 1) {
cerr << "thread " << m_channel << " abandoning" << endl;
}
return;
}
}
bool any = false, last = false;
m_s->processChunks(m_channel, any, last);
m_s->m_spaceAvailable.signal();
if (m_s->m_debugLevel > 1) {
cerr << "thread " << m_channel << " done" << endl;
}
}
void
RubberBandStretcher::Impl::ProcessThread::signalDataAvailable()
{
m_dataAvailable.signal();
}
void
RubberBandStretcher::Impl::ProcessThread::abandon()
{
m_abandoning = true;
}
bool
RubberBandStretcher::Impl::resampleBeforeStretching() const
{
// We can't resample before stretching in offline mode, because
// the stretch calculation is based on doing it the other way
// around. It would take more work (and testing) to enable this.
if (!m_realtime) return false;
if (m_options & OptionPitchHighQuality) {
return (m_pitchScale < 1.0); // better sound
} else if (m_options & OptionPitchHighConsistency) {
return false;
} else {
return (m_pitchScale > 1.0); // better performance
}
}
size_t
RubberBandStretcher::Impl::consumeChannel(size_t c, const float *input,
size_t samples, bool final)
{
Profiler profiler("RubberBandStretcher::Impl::consumeChannel");
ChannelData &cd = *m_channelData[c];
RingBuffer<float> &inbuf = *cd.inbuf;
size_t toWrite = samples;
size_t writable = inbuf.getWriteSpace();
bool resampling = resampleBeforeStretching();
if (resampling) {
toWrite = int(ceil(samples / m_pitchScale));
if (writable < toWrite) {
samples = int(floor(writable * m_pitchScale));
if (samples == 0) return 0;
}
size_t reqSize = int(ceil(samples / m_pitchScale));
if (reqSize > cd.resamplebufSize) {
cerr << "WARNING: RubberBandStretcher::Impl::consumeChannel: resizing resampler buffer from "
<< cd.resamplebufSize << " to " << reqSize << endl;
cd.setResampleBufSize(reqSize);
}
toWrite = cd.resampler->resample(&input,
&cd.resamplebuf,
samples,
1.0 / m_pitchScale,
final);
}
if (writable < toWrite) {
if (resampling) {
return 0;
}
toWrite = writable;
}
if (resampling) {
inbuf.write(cd.resamplebuf, toWrite);
cd.inCount += samples;
return samples;
} else {
inbuf.write(input, toWrite);
cd.inCount += toWrite;
return toWrite;
}
}
void
RubberBandStretcher::Impl::processChunks(size_t c, bool &any, bool &last)
{
Profiler profiler("RubberBandStretcher::Impl::processChunks");
// Process as many chunks as there are available on the input
// buffer for channel c. This requires that the increments have
// already been calculated.
ChannelData &cd = *m_channelData[c];
last = false;
any = false;
while (!last) {
if (!testInbufReadSpace(c)) {
// cerr << "not enough input" << endl;
break;
}
any = true;
if (!cd.draining) {
size_t got = cd.inbuf->peek(cd.fltbuf, m_windowSize);
assert(got == m_windowSize || cd.inputSize >= 0);
got = 0;
cd.inbuf->skip(m_increment);
analyseChunk(c);
}
bool phaseReset = false;
size_t phaseIncrement, shiftIncrement;
getIncrements(c, phaseIncrement, shiftIncrement, phaseReset);
last = processChunkForChannel(c, phaseIncrement, shiftIncrement, phaseReset);
cd.chunkCount++;
if (m_debugLevel > 2) {
cerr << "channel " << c << ": last = " << last << ", chunkCount = " << cd.chunkCount << endl;
}
}
}
bool
RubberBandStretcher::Impl::processOneChunk()
{
Profiler profiler("RubberBandStretcher::Impl::processOneChunk");
// Process a single chunk for all channels, provided there is
// enough data on each channel for at least one chunk. This is
// able to calculate increments as it goes along.
for (size_t c = 0; c < m_channels; ++c) {
if (!testInbufReadSpace(c)) return false;
ChannelData &cd = *m_channelData[c];
if (!cd.draining) {
size_t got = cd.inbuf->peek(cd.fltbuf, m_windowSize);
got = 0;
assert(got == m_windowSize || cd.inputSize >= 0);
cd.inbuf->skip(m_increment);
analyseChunk(c);
}
}
bool phaseReset = false;
size_t phaseIncrement, shiftIncrement;
if (!getIncrements(0, phaseIncrement, shiftIncrement, phaseReset)) {
calculateIncrements(phaseIncrement, shiftIncrement, phaseReset);
}
bool last = false;
for (size_t c = 0; c < m_channels; ++c) {
last = processChunkForChannel(c, phaseIncrement, shiftIncrement, phaseReset);
m_channelData[c]->chunkCount++;
}
return last;
}
bool
RubberBandStretcher::Impl::testInbufReadSpace(size_t c)
{
Profiler profiler("RubberBandStretcher::Impl::testInbufReadSpace");
ChannelData &cd = *m_channelData[c];
RingBuffer<float> &inbuf = *cd.inbuf;
size_t rs = inbuf.getReadSpace();
if (rs < m_windowSize && !cd.draining) {
if (cd.inputSize == -1) {
// Not all the input data has been written to the inbuf
// (that's why the input size is not yet set). We can't
// process, because we don't have a full chunk of data, so
// our process chunk would contain some empty padding in
// its input -- and that would give incorrect output, as
// we know there is more input to come.
if (!m_threaded) {
// cerr << "WARNING: RubberBandStretcher: read space < chunk size ("
// << inbuf.getReadSpace() << " < " << m_windowSize
// << ") when not all input written, on processChunks for channel " << c << endl;
}
return false;
}
if (rs == 0) {
if (m_debugLevel > 1) {
cerr << "read space = 0, giving up" << endl;
}
return false;
} else if (rs < m_windowSize/2) {
if (m_debugLevel > 1) {
cerr << "read space = " << rs << ", setting draining true" << endl;
}
cd.draining = true;
}
}
return true;
}
bool
RubberBandStretcher::Impl::processChunkForChannel(size_t c,
size_t phaseIncrement,
size_t shiftIncrement,
bool phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::processChunkForChannel");
// Process a single chunk on a single channel. This assumes
// enough input data is available; caller must have tested this
// using e.g. testInbufReadSpace first. Return true if this is
// the last chunk on the channel.
if (phaseReset && (m_debugLevel > 1)) {
cerr << "processChunkForChannel: phase reset found, incrs "
<< phaseIncrement << ":" << shiftIncrement << endl;
}
ChannelData &cd = *m_channelData[c];
if (!cd.draining) {
// This is the normal processing case -- draining is only
// set when all the input has been used and we only need
// to write from the existing accumulator into the output.
// We know we have enough samples available in m_inbuf --
// this is usually m_windowSize, but we know that if fewer
// are available, it's OK to use zeroes for the rest
// (which the ring buffer will provide) because we've
// reached the true end of the data.
// We need to peek m_windowSize samples for processing, and
// then skip m_increment to advance the read pointer.
modifyChunk(c, phaseIncrement, phaseReset);
synthesiseChunk(c); // reads from cd.mag, cd.phase
if (m_debugLevel > 2) {
if (phaseReset) {
for (int i = 0; i < 10; ++i) {
cd.accumulator[i] = 1.2f - (i % 3) * 1.2f;
}
}
}
}
bool last = false;
if (cd.draining) {
if (m_debugLevel > 1) {
cerr << "draining: accumulator fill = " << cd.accumulatorFill << " (shiftIncrement = " << shiftIncrement << ")" << endl;
}
if (shiftIncrement == 0) {
cerr << "WARNING: draining: shiftIncrement == 0, can't handle that in this context: setting to " << m_increment << endl;
shiftIncrement = m_increment;
}
if (cd.accumulatorFill <= shiftIncrement) {
if (m_debugLevel > 1) {
cerr << "reducing shift increment from " << shiftIncrement
<< " to " << cd.accumulatorFill
<< " and marking as last" << endl;
}
shiftIncrement = cd.accumulatorFill;
last = true;
}
}
if (m_threaded) {
int required = shiftIncrement;
if (m_pitchScale != 1.0) {
required = int(required / m_pitchScale) + 1;
}
if (cd.outbuf->getWriteSpace() < required) {
if (m_debugLevel > 0) {
cerr << "Buffer overrun on output for channel " << c << endl;
}
//!!! The only correct thing we can do here is resize the
// buffer. We can't wait for the client thread to read
// some data out from the buffer so as to make more space,
// because the client thread is probably stuck in a
// process() call waiting for us to stow away enough input
// increments to allow the process() call to complete.
}
}
writeChunk(c, shiftIncrement, last);
return last;
}
void
RubberBandStretcher::Impl::calculateIncrements(size_t &phaseIncrementRtn,
size_t &shiftIncrementRtn,
bool &phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::calculateIncrements");
// cerr << "calculateIncrements" << endl;
// Calculate the next upcoming phase and shift increment, on the
// basis that both channels are in sync. This is in contrast to
// getIncrements, which requires that all the increments have been
// calculated in advance but can then return increments
// corresponding to different chunks in different channels.
// Requires frequency domain representations of channel data in
// the mag and phase buffers in the channel.
// This function is only used in real-time mode.
phaseIncrementRtn = m_increment;
shiftIncrementRtn = m_increment;
phaseReset = false;
if (m_channels == 0) return;
ChannelData &cd = *m_channelData[0];
size_t bc = cd.chunkCount;
for (size_t c = 1; c < m_channels; ++c) {
if (m_channelData[c]->chunkCount != bc) {
cerr << "ERROR: RubberBandStretcher::Impl::calculateIncrements: Channels are not in sync" << endl;
return;
}
}
const int hs = m_windowSize/2 + 1;
// Normally we would mix down the time-domain signal and apply a
// single FFT, or else mix down the Cartesian form of the
// frequency-domain signal. Both of those would be inefficient
// from this position. Fortunately, the onset detectors should
// work reasonably well (maybe even better?) if we just sum the
// magnitudes of the frequency-domain channel signals and forget
// about phase entirely. Normally we don't expect the channel
// phases to cancel each other, and broadband effects will still
// be apparent.
float df = 0.f;
bool silent = false;
if (m_channels == 1) {
df = m_phaseResetAudioCurve->processDouble(cd.mag, m_increment);
silent = (m_silentAudioCurve->processDouble(cd.mag, m_increment) > 0.f);
} else {
double *tmp = (double *)alloca(hs * sizeof(double));
for (int i = 0; i < hs; ++i) {
tmp[i] = 0.0;
}
for (size_t c = 0; c < m_channels; ++c) {
for (int i = 0; i < hs; ++i) {
tmp[i] += m_channelData[c]->mag[i];
}
}
df = m_phaseResetAudioCurve->processDouble(tmp, m_increment);
silent = (m_silentAudioCurve->processDouble(tmp, m_increment) > 0.f);
}
int incr = m_stretchCalculator->calculateSingle
(getEffectiveRatio(), df, m_increment);
m_lastProcessPhaseResetDf.write(&df, 1);
m_lastProcessOutputIncrements.write(&incr, 1);
if (incr < 0) {
phaseReset = true;
incr = -incr;
}
// The returned increment is the phase increment. The shift
// increment for one chunk is the same as the phase increment for
// the following chunk (see comment below). This means we don't
// actually know the shift increment until we see the following
// phase increment... which is a bit of a problem.
// This implies we should use this increment for the shift
// increment, and make the following phase increment the same as
// it. This means in RT mode we'll be one chunk later with our
// phase reset than we would be in non-RT mode. The sensitivity
// of the broadband onset detector may mean that this isn't a
// problem -- test it and see.
shiftIncrementRtn = incr;
if (cd.prevIncrement == 0) {
phaseIncrementRtn = shiftIncrementRtn;
} else {
phaseIncrementRtn = cd.prevIncrement;
}
cd.prevIncrement = shiftIncrementRtn;
if (silent) ++m_silentHistory;
else m_silentHistory = 0;
if (m_silentHistory >= int(m_windowSize / m_increment) && !phaseReset) {
phaseReset = true;
if (m_debugLevel > 1) {
cerr << "calculateIncrements: phase reset on silence (silent history == "
<< m_silentHistory << ")" << endl;
}
}
}
bool
RubberBandStretcher::Impl::getIncrements(size_t channel,
size_t &phaseIncrementRtn,
size_t &shiftIncrementRtn,
bool &phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::getIncrements");
if (channel >= m_channels) {
phaseIncrementRtn = m_increment;
shiftIncrementRtn = m_increment;
phaseReset = false;
return false;
}
// There are two relevant output increments here. The first is
// the phase increment which we use when recalculating the phases
// for the current chunk; the second is the shift increment used
// to determine how far to shift the processing buffer after
// writing the chunk. The shift increment for one chunk is the
// same as the phase increment for the following chunk.
// When an onset occurs for which we need to reset phases, the
// increment given will be negative.
// When we reset phases, the previous shift increment (and so
// current phase increments) must have been m_increment to ensure
// consistency.
// m_outputIncrements stores phase increments.
ChannelData &cd = *m_channelData[channel];
bool gotData = true;
if (cd.chunkCount >= m_outputIncrements.size()) {
// cerr << "WARNING: RubberBandStretcher::Impl::getIncrements:"
// << " chunk count " << cd.chunkCount << " >= "
// << m_outputIncrements.size() << endl;
if (m_outputIncrements.size() == 0) {
phaseIncrementRtn = m_increment;
shiftIncrementRtn = m_increment;
phaseReset = false;
return false;
} else {
cd.chunkCount = m_outputIncrements.size()-1;
gotData = false;
}
}
int phaseIncrement = m_outputIncrements[cd.chunkCount];
int shiftIncrement = phaseIncrement;
if (cd.chunkCount + 1 < m_outputIncrements.size()) {
shiftIncrement = m_outputIncrements[cd.chunkCount + 1];
}
if (phaseIncrement < 0) {
phaseIncrement = -phaseIncrement;
phaseReset = true;
}
if (shiftIncrement < 0) {
shiftIncrement = -shiftIncrement;
}
if (shiftIncrement >= int(m_windowSize)) {
cerr << "*** ERROR: RubberBandStretcher::Impl::processChunks: shiftIncrement " << shiftIncrement << " >= windowSize " << m_windowSize << " at " << cd.chunkCount << " (of " << m_outputIncrements.size() << ")" << endl;
shiftIncrement = m_windowSize;
}
phaseIncrementRtn = phaseIncrement;
shiftIncrementRtn = shiftIncrement;
if (cd.chunkCount == 0) phaseReset = true; // don't mess with the first chunk
return gotData;
}
void
RubberBandStretcher::Impl::analyseChunk(size_t channel)
{
Profiler profiler("RubberBandStretcher::Impl::analyseChunk");
int i;
ChannelData &cd = *m_channelData[channel];
double *const R__ dblbuf = cd.dblbuf;
float *const R__ fltbuf = cd.fltbuf;
int sz = m_windowSize;
int hs = m_windowSize/2;
// cd.fltbuf is known to contain m_windowSize samples
m_window->cut(fltbuf);
if (cd.oversample > 1) {
int bufsiz = sz * cd.oversample;
int offset = (bufsiz - sz) / 2;
// eek
for (i = 0; i < offset; ++i) {
dblbuf[i] = 0.0;
}
for (i = 0; i < offset; ++i) {
dblbuf[bufsiz - i - 1] = 0.0;
}
for (i = 0; i < sz; ++i) {
dblbuf[offset + i] = fltbuf[i];
}
for (i = 0; i < bufsiz / 2; ++i) {
double tmp = dblbuf[i];
dblbuf[i] = dblbuf[i + bufsiz/2];
dblbuf[i + bufsiz/2] = tmp;
}
} else {
for (i = 0; i < hs; ++i) {
dblbuf[i] = fltbuf[i + hs];
dblbuf[i + hs] = fltbuf[i];
}
}
cd.fft->forwardPolar(dblbuf, cd.mag, cd.phase);
}
static inline double mod(double x, double y) { return x - (y * floor(x / y)); }
static inline double princarg(double a) { return mod(a + M_PI, -2.0 * M_PI) + M_PI; }
void
RubberBandStretcher::Impl::modifyChunk(size_t channel,
size_t outputIncrement,
bool phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::modifyChunk");
ChannelData &cd = *m_channelData[channel];
if (phaseReset && m_debugLevel > 1) {
cerr << "phase reset: leaving phases unmodified" << endl;
}
const double rate = m_sampleRate;
const int sz = m_windowSize;
const int count = (sz * cd.oversample) / 2;
bool unchanged = cd.unchanged && (outputIncrement == m_increment);
bool fullReset = phaseReset;
bool laminar = !(m_options & OptionPhaseIndependent);
bool bandlimited = (m_options & OptionTransientsMixed);
int bandlow = lrint((150 * sz * cd.oversample) / rate);
int bandhigh = lrint((1000 * sz * cd.oversample) / rate);
float freq0 = m_freq0;
float freq1 = m_freq1;
float freq2 = m_freq2;
if (laminar) {
float r = getEffectiveRatio();
if (r > 1) {
float rf0 = 600 + (600 * ((r-1)*(r-1)*(r-1)*2));
float f1ratio = freq1 / freq0;
float f2ratio = freq2 / freq0;
freq0 = std::max(freq0, rf0);
freq1 = freq0 * f1ratio;
freq2 = freq0 * f2ratio;
}
}
int limit0 = lrint((freq0 * sz * cd.oversample) / rate);
int limit1 = lrint((freq1 * sz * cd.oversample) / rate);
int limit2 = lrint((freq2 * sz * cd.oversample) / rate);
if (limit1 < limit0) limit1 = limit0;
if (limit2 < limit1) limit2 = limit1;
double prevInstability = 0.0;
bool prevDirection = false;
double distance = 0.0;
const double maxdist = 8.0;
const int lookback = 1;
double distacc = 0.0;
for (int i = count; i >= 0; i -= lookback) {
bool resetThis = phaseReset;
if (bandlimited) {
if (resetThis) {
if (i > bandlow && i < bandhigh) {
resetThis = false;
fullReset = false;
}
}
}
double p = cd.phase[i];
double perr = 0.0;
double outphase = p;
double mi = maxdist;
if (i <= limit0) mi = 0.0;
else if (i <= limit1) mi = 1.0;
else if (i <= limit2) mi = 3.0;
if (!resetThis) {
double omega = (2 * M_PI * m_increment * i) / (sz * cd.oversample);
double pp = cd.prevPhase[i];
double ep = pp + omega;
perr = princarg(p - ep);
double instability = fabs(perr - cd.prevError[i]);
bool direction = (perr > cd.prevError[i]);
bool inherit = false;
if (laminar) {
if (distance >= mi || i == count) {
inherit = false;
} else if (bandlimited && (i == bandhigh || i == bandlow)) {
inherit = false;
} else if (instability > prevInstability &&
direction == prevDirection) {
inherit = true;
}
}
double advance = outputIncrement * ((omega + perr) / m_increment);
if (inherit) {
double inherited =
cd.unwrappedPhase[i + lookback] - cd.prevPhase[i + lookback];
advance = ((advance * distance) +
(inherited * (maxdist - distance)))
/ maxdist;
outphase = p + advance;
distacc += distance;
distance += 1.0;
} else {
outphase = cd.unwrappedPhase[i] + advance;
distance = 0.0;
}
prevInstability = instability;
prevDirection = direction;
} else {
distance = 0.0;
}
cd.prevError[i] = perr;
cd.prevPhase[i] = p;
cd.phase[i] = outphase;
cd.unwrappedPhase[i] = outphase;
}
if (m_debugLevel > 1) {
cerr << "mean inheritance distance = " << distacc / count << endl;
}
if (fullReset) unchanged = true;
cd.unchanged = unchanged;
if (unchanged && m_debugLevel > 1) {
cerr << "frame unchanged on channel " << channel << endl;
}
}
void
RubberBandStretcher::Impl::formantShiftChunk(size_t channel)
{
Profiler profiler("RubberBandStretcher::Impl::formantShiftChunk");
ChannelData &cd = *m_channelData[channel];
double *const R__ mag = cd.mag;
double *const R__ envelope = cd.envelope;
double *const R__ dblbuf = cd.dblbuf;
const int sz = m_windowSize;
const int hs = m_windowSize/2;
const double denom = sz;
cd.fft->inverseCepstral(mag, dblbuf);
for (int i = 0; i < sz; ++i) {
dblbuf[i] /= denom;
}
const int cutoff = m_sampleRate / 700;
// cerr <<"cutoff = "<< cutoff << ", m_sampleRate/cutoff = " << m_sampleRate/cutoff << endl;
dblbuf[0] /= 2;
dblbuf[cutoff-1] /= 2;
for (int i = cutoff; i < sz; ++i) {
dblbuf[i] = 0.0;
}
cd.fft->forward(dblbuf, envelope, 0);
for (int i = 0; i <= hs; ++i) {
envelope[i] = exp(envelope[i]);
}
for (int i = 0; i <= hs; ++i) {
mag[i] /= envelope[i];
}
if (m_pitchScale > 1.0) {
// scaling up, we want a new envelope that is lower by the pitch factor
for (int target = 0; target <= hs; ++target) {
int source = lrint(target * m_pitchScale);
if (source > int(m_windowSize)) {
envelope[target] = 0.0;
} else {
envelope[target] = envelope[source];
}
}
} else {
// scaling down, we want a new envelope that is higher by the pitch factor
for (int target = hs; target > 0; ) {
--target;
int source = lrint(target * m_pitchScale);
envelope[target] = envelope[source];
}
}
for (int i = 0; i <= hs; ++i) {
mag[i] *= envelope[i];
}
cd.unchanged = false;
}
void
RubberBandStretcher::Impl::synthesiseChunk(size_t channel)
{
Profiler profiler("RubberBandStretcher::Impl::synthesiseChunk");
if ((m_options & OptionFormantPreserved) &&
(m_pitchScale != 1.0)) {
formantShiftChunk(channel);
}
ChannelData &cd = *m_channelData[channel];
double *const R__ dblbuf = cd.dblbuf;
float *const R__ fltbuf = cd.fltbuf;
float *const R__ accumulator = cd.accumulator;
float *const R__ windowAccumulator = cd.windowAccumulator;
int sz = m_windowSize;
int hs = m_windowSize/2;
int i;
if (!cd.unchanged) {
cd.fft->inversePolar(cd.mag, cd.phase, cd.dblbuf);
if (cd.oversample > 1) {
int bufsiz = sz * cd.oversample;
int hbs = hs * cd.oversample;
int offset = (bufsiz - sz) / 2;
for (i = 0; i < hbs; ++i) {
double tmp = dblbuf[i];
dblbuf[i] = dblbuf[i + hbs];
dblbuf[i + hbs] = tmp;
}
for (i = 0; i < sz; ++i) {
fltbuf[i] = float(dblbuf[i + offset]);
}
} else {
for (i = 0; i < hs; ++i) {
fltbuf[i] = float(dblbuf[i + hs]);
}
for (i = 0; i < hs; ++i) {
fltbuf[i + hs] = float(dblbuf[i]);
}
}
float denom = float(sz * cd.oversample);
// our ffts produced unscaled results
for (i = 0; i < sz; ++i) {
fltbuf[i] = fltbuf[i] / denom;
}
}
m_window->cut(fltbuf);
for (i = 0; i < sz; ++i) {
accumulator[i] += fltbuf[i];
}
cd.accumulatorFill = m_windowSize;
float fixed = m_window->getArea() * 1.5f;
for (i = 0; i < sz; ++i) {
float val = m_window->getValue(i);
windowAccumulator[i] += val * fixed;
}
}
void
RubberBandStretcher::Impl::writeChunk(size_t channel, size_t shiftIncrement, bool last)
{
Profiler profiler("RubberBandStretcher::Impl::writeChunk");
ChannelData &cd = *m_channelData[channel];
float *const R__ accumulator = cd.accumulator;
float *const R__ windowAccumulator = cd.windowAccumulator;
const int sz = m_windowSize;
const int si = shiftIncrement;
int i;
if (m_debugLevel > 2) {
cerr << "writeChunk(" << channel << ", " << shiftIncrement << ", " << last << ")" << endl;
}
for (i = 0; i < si; ++i) {
if (windowAccumulator[i] > 0.f) {
accumulator[i] /= windowAccumulator[i];
}
}
// for exact sample scaling (probably not meaningful if we
// were running in RT mode)
size_t theoreticalOut = 0;
if (cd.inputSize >= 0) {
theoreticalOut = lrint(cd.inputSize * m_timeRatio);
}
bool resampledAlready = resampleBeforeStretching();
if (!resampledAlready &&
(m_pitchScale != 1.0 || m_options & OptionPitchHighConsistency) &&
cd.resampler) {
size_t reqSize = int(ceil(si / m_pitchScale));
if (reqSize > cd.resamplebufSize) {
// This shouldn't normally happen -- the buffer is
// supposed to be initialised with enough space in the
// first place. But we retain this check in case the
// pitch scale has changed since then, or the stretch
// calculator has gone mad, or something.
cerr << "WARNING: RubberBandStretcher::Impl::writeChunk: resizing resampler buffer from "
<< cd.resamplebufSize << " to " << reqSize << endl;
cd.setResampleBufSize(reqSize);
}
size_t outframes = cd.resampler->resample(&cd.accumulator,
&cd.resamplebuf,
si,
1.0 / m_pitchScale,
last);
writeOutput(*cd.outbuf, cd.resamplebuf,
outframes, cd.outCount, theoreticalOut);
} else {
writeOutput(*cd.outbuf, accumulator,
si, cd.outCount, theoreticalOut);
}
for (i = 0; i < sz - si; ++i) {
accumulator[i] = accumulator[i + si];
}
for (i = sz - si; i < sz; ++i) {
accumulator[i] = 0.0f;
}
for (i = 0; i < sz - si; ++i) {
windowAccumulator[i] = windowAccumulator[i + si];
}
for (i = sz - si; i < sz; ++i) {
windowAccumulator[i] = 0.0f;
}
if (int(cd.accumulatorFill) > si) {
cd.accumulatorFill -= si;
} else {
cd.accumulatorFill = 0;
if (cd.draining) {
if (m_debugLevel > 1) {
cerr << "RubberBandStretcher::Impl::processChunks: setting outputComplete to true" << endl;
}
cd.outputComplete = true;
}
}
}
void
RubberBandStretcher::Impl::writeOutput(RingBuffer<float> &to, float *from, size_t qty, size_t &outCount, size_t theoreticalOut)
{
Profiler profiler("RubberBandStretcher::Impl::writeOutput");
// In non-RT mode, we don't want to write the first startSkip
// samples, because the first chunk is centred on the start of the
// output. In RT mode we didn't apply any pre-padding in
// configure(), so we don't want to remove any here.
size_t startSkip = 0;
if (!m_realtime) {
startSkip = lrintf((m_windowSize/2) / m_pitchScale);
}
if (outCount > startSkip) {
// this is the normal case
if (theoreticalOut > 0) {
if (m_debugLevel > 1) {
cerr << "theoreticalOut = " << theoreticalOut
<< ", outCount = " << outCount
<< ", startSkip = " << startSkip
<< ", qty = " << qty << endl;
}
if (outCount - startSkip <= theoreticalOut &&
outCount - startSkip + qty > theoreticalOut) {
qty = theoreticalOut - (outCount - startSkip);
if (m_debugLevel > 1) {
cerr << "reduce qty to " << qty << endl;
}
}
}
if (m_debugLevel > 2) {
cerr << "writing " << qty << endl;
}
size_t written = to.write(from, qty);
if (written < qty) {
cerr << "WARNING: RubberBandStretcher::Impl::writeOutput: "
<< "Buffer overrun on output: wrote " << written
<< " of " << qty << " samples" << endl;
}
outCount += written;
return;
}
// the rest of this is only used during the first startSkip samples
if (outCount + qty <= startSkip) {
if (m_debugLevel > 1) {
cerr << "qty = " << qty << ", startSkip = "
<< startSkip << ", outCount = " << outCount
<< ", discarding" << endl;
}
outCount += qty;
return;
}
size_t off = startSkip - outCount;
if (m_debugLevel > 1) {
cerr << "qty = " << qty << ", startSkip = "
<< startSkip << ", outCount = " << outCount
<< ", writing " << qty - off
<< " from start offset " << off << endl;
}
to.write(from + off, qty - off);
outCount += qty;
}
int
RubberBandStretcher::Impl::available() const
{
Profiler profiler("RubberBandStretcher::Impl::available");
if (m_threaded) {
MutexLocker locker(&m_threadSetMutex);
if (m_channelData.empty()) return 0;
} else {
if (m_channelData.empty()) return 0;
}
if (!m_threaded) {
for (size_t c = 0; c < m_channels; ++c) {
if (m_channelData[c]->inputSize >= 0) {
// cerr << "available: m_done true" << endl;
if (m_channelData[c]->inbuf->getReadSpace() > 0) {
// cerr << "calling processChunks(" << c << ") from available" << endl;
//!!! do we ever actually do this? if so, this method should not be const
// ^^^ yes, we do sometimes -- e.g. when fed a very short file
bool any = false, last = false;
((RubberBandStretcher::Impl *)this)->processChunks(c, any, last);
}
}
}
}
size_t min = 0;
bool consumed = true;
bool haveResamplers = false;
for (size_t i = 0; i < m_channels; ++i) {
size_t availIn = m_channelData[i]->inbuf->getReadSpace();
size_t availOut = m_channelData[i]->outbuf->getReadSpace();
if (m_debugLevel > 2) {
cerr << "available on channel " << i << ": " << availOut << " (waiting: " << availIn << ")" << endl;
}
if (i == 0 || availOut < min) min = availOut;
if (!m_channelData[i]->outputComplete) consumed = false;
if (m_channelData[i]->resampler) haveResamplers = true;
}
if (min == 0 && consumed) return -1;
if (m_pitchScale == 1.0) return min;
if (haveResamplers) return min; // resampling has already happened
return int(floor(min / m_pitchScale));
}
size_t
RubberBandStretcher::Impl::retrieve(float *const *output, size_t samples) const
{
Profiler profiler("RubberBandStretcher::Impl::retrieve");
size_t got = samples;
for (size_t c = 0; c < m_channels; ++c) {
size_t gotHere = m_channelData[c]->outbuf->read(output[c], got);
if (gotHere < got) {
if (c > 0) {
if (m_debugLevel > 0) {
cerr << "RubberBandStretcher::Impl::retrieve: WARNING: channel imbalance detected" << endl;
}
}
got = gotHere;
}
}
return got;
}
}