13
0
livetrax/libs/vamp-plugins/KeyDetect.cpp

408 lines
10 KiB
C++

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
QM Vamp Plugin Set
Centre for Digital Music, Queen Mary, University of London.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "KeyDetect.h"
using std::string;
using std::vector;
//using std::cerr;
using std::endl;
#include <cmath>
// Order for circle-of-5ths plotting
static int conversion[24] =
{ 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2,
16, 21, 14, 19, 24, 17, 22, 15, 20, 13, 18, 23 };
KeyDetector::KeyDetector(float inputSampleRate) :
Plugin(inputSampleRate),
m_stepSize(0),
m_blockSize(0),
m_tuningFrequency(440),
m_length(10),
m_getKeyMode(0),
m_inputFrame(0),
m_prevKey(-1)
{
}
KeyDetector::~KeyDetector()
{
delete m_getKeyMode;
if ( m_inputFrame ) {
delete [] m_inputFrame;
}
}
string
KeyDetector::getIdentifier() const
{
return "qm-keydetector";
}
string
KeyDetector::getName() const
{
return "Key Detector";
}
string
KeyDetector::getDescription() const
{
return "Estimate the key of the music";
}
string
KeyDetector::getMaker() const
{
return "Queen Mary, University of London";
}
int
KeyDetector::getPluginVersion() const
{
return 4;
}
string
KeyDetector::getCopyright() const
{
return "Plugin by Katy Noland and Christian Landone. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
}
KeyDetector::ParameterList
KeyDetector::getParameterDescriptors() const
{
ParameterList list;
ParameterDescriptor desc;
desc.identifier = "tuning";
desc.name = "Tuning Frequency";
desc.description = "Frequency of concert A";
desc.unit = "Hz";
desc.minValue = 420;
desc.maxValue = 460;
desc.defaultValue = 440;
desc.isQuantized = false;
list.push_back(desc);
desc.identifier = "length";
desc.name = "Window Length";
desc.unit = "chroma frames";
desc.description = "Number of chroma analysis frames per key estimation";
desc.minValue = 1;
desc.maxValue = 30;
desc.defaultValue = 10;
desc.isQuantized = true;
desc.quantizeStep = 1;
list.push_back(desc);
return list;
}
float
KeyDetector::getParameter(std::string param) const
{
if (param == "tuning") {
return m_tuningFrequency;
}
if (param == "length") {
return m_length;
}
std::cerr << "WARNING: KeyDetector::getParameter: unknown parameter \""
<< param << "\"" << std::endl;
return 0.0;
}
void
KeyDetector::setParameter(std::string param, float value)
{
if (param == "tuning") {
m_tuningFrequency = value;
} else if (param == "length") {
m_length = int(value + 0.1);
} else {
std::cerr << "WARNING: KeyDetector::setParameter: unknown parameter \""
<< param << "\"" << std::endl;
}
}
bool
KeyDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
if (m_getKeyMode) {
delete m_getKeyMode;
m_getKeyMode = 0;
}
if (channels < getMinChannelCount() ||
channels > getMaxChannelCount()) return false;
m_getKeyMode = new GetKeyMode(int(m_inputSampleRate + 0.1),
m_tuningFrequency,
m_length, m_length);
m_stepSize = m_getKeyMode->getHopSize();
m_blockSize = m_getKeyMode->getBlockSize();
if (stepSize != m_stepSize || blockSize != m_blockSize) {
std::cerr << "KeyDetector::initialise: ERROR: step/block sizes "
<< stepSize << "/" << blockSize << " differ from required "
<< m_stepSize << "/" << m_blockSize << std::endl;
delete m_getKeyMode;
m_getKeyMode = 0;
return false;
}
m_inputFrame = new double[m_blockSize];
m_prevKey = -1;
m_first = true;
return true;
}
void
KeyDetector::reset()
{
if (m_getKeyMode) {
delete m_getKeyMode;
m_getKeyMode = new GetKeyMode(int(m_inputSampleRate + 0.1),
m_tuningFrequency,
m_length, m_length);
}
if (m_inputFrame) {
for( unsigned int i = 0; i < m_blockSize; i++ ) {
m_inputFrame[ i ] = 0.0;
}
}
m_prevKey = -1;
m_first = true;
}
KeyDetector::OutputList
KeyDetector::getOutputDescriptors() const
{
OutputList list;
float osr = 0.0f;
if (m_stepSize == 0) (void)getPreferredStepSize();
osr = m_inputSampleRate / m_stepSize;
OutputDescriptor d;
d.identifier = "tonic";
d.name = "Tonic Pitch";
d.unit = "";
d.description = "Tonic of the estimated key (from C = 1 to B = 12)";
d.hasFixedBinCount = true;
d.binCount = 1;
d.hasKnownExtents = true;
d.isQuantized = true;
d.minValue = 1;
d.maxValue = 12;
d.quantizeStep = 1;
d.sampleRate = osr;
d.sampleType = OutputDescriptor::VariableSampleRate;
list.push_back(d);
d.identifier = "mode";
d.name = "Key Mode";
d.unit = "";
d.description = "Major or minor mode of the estimated key (major = 0, minor = 1)";
d.hasFixedBinCount = true;
d.binCount = 1;
d.hasKnownExtents = true;
d.isQuantized = true;
d.minValue = 0;
d.maxValue = 1;
d.quantizeStep = 1;
d.sampleRate = osr;
d.sampleType = OutputDescriptor::VariableSampleRate;
list.push_back(d);
d.identifier = "key";
d.name = "Key";
d.unit = "";
d.description = "Estimated key (from C major = 1 to B major = 12 and C minor = 13 to B minor = 24)";
d.hasFixedBinCount = true;
d.binCount = 1;
d.hasKnownExtents = true;
d.isQuantized = true;
d.minValue = 1;
d.maxValue = 24;
d.quantizeStep = 1;
d.sampleRate = osr;
d.sampleType = OutputDescriptor::VariableSampleRate;
list.push_back(d);
d.identifier = "keystrength";
d.name = "Key Strength Plot";
d.unit = "";
d.description = "Correlation of the chroma vector with stored key profile for each major and minor key";
d.hasFixedBinCount = true;
d.binCount = 25;
d.hasKnownExtents = false;
d.isQuantized = false;
d.sampleType = OutputDescriptor::OneSamplePerStep;
for (int i = 0; i < 24; ++i) {
if (i == 12) d.binNames.push_back(" ");
int idx = conversion[i];
std::string label = getKeyName(idx > 12 ? idx-12 : idx,
i >= 12,
true);
d.binNames.push_back(label);
}
list.push_back(d);
return list;
}
KeyDetector::FeatureSet
KeyDetector::process(const float *const *inputBuffers,
Vamp::RealTime now)
{
if (m_stepSize == 0) {
return FeatureSet();
}
FeatureSet returnFeatures;
for ( unsigned int i = 0 ; i < m_blockSize; i++ ) {
m_inputFrame[i] = (double)inputBuffers[0][i];
}
// int key = (m_getKeyMode->process(m_inputFrame) % 24);
int key = m_getKeyMode->process(m_inputFrame);
bool minor = m_getKeyMode->isModeMinor(key);
int tonic = key;
if (tonic > 12) tonic -= 12;
int prevTonic = m_prevKey;
if (prevTonic > 12) prevTonic -= 12;
if (m_first || (tonic != prevTonic)) {
Feature feature;
feature.hasTimestamp = true;
feature.timestamp = now;
// feature.timestamp = now;
feature.values.push_back((float)tonic);
feature.label = getKeyName(tonic, minor, false);
returnFeatures[0].push_back(feature); // tonic
}
if (m_first || (minor != (m_getKeyMode->isModeMinor(m_prevKey)))) {
Feature feature;
feature.hasTimestamp = true;
feature.timestamp = now;
feature.values.push_back(minor ? 1.f : 0.f);
feature.label = (minor ? "Minor" : "Major");
returnFeatures[1].push_back(feature); // mode
}
if (m_first || (key != m_prevKey)) {
Feature feature;
feature.hasTimestamp = true;
feature.timestamp = now;
feature.values.push_back((float)key);
feature.label = getKeyName(tonic, minor, true);
returnFeatures[2].push_back(feature); // key
}
m_prevKey = key;
m_first = false;
Feature ksf;
ksf.values.reserve(25);
double *keystrengths = m_getKeyMode->getKeyStrengths();
for (int i = 0; i < 24; ++i) {
if (i == 12) ksf.values.push_back(-1);
ksf.values.push_back(keystrengths[conversion[i]-1]);
}
ksf.hasTimestamp = false;
returnFeatures[3].push_back(ksf);
return returnFeatures;
}
KeyDetector::FeatureSet
KeyDetector::getRemainingFeatures()
{
return FeatureSet();
}
size_t
KeyDetector::getPreferredStepSize() const
{
if (!m_stepSize) {
GetKeyMode gkm(int(m_inputSampleRate + 0.1),
m_tuningFrequency, m_length, m_length);
m_stepSize = gkm.getHopSize();
m_blockSize = gkm.getBlockSize();
}
return m_stepSize;
}
size_t
KeyDetector::getPreferredBlockSize() const
{
if (!m_blockSize) {
GetKeyMode gkm(int(m_inputSampleRate + 0.1),
m_tuningFrequency, m_length, m_length);
m_stepSize = gkm.getHopSize();
m_blockSize = gkm.getBlockSize();
}
return m_blockSize;
}
std::string
KeyDetector::getKeyName(int index, bool minor, bool includeMajMin) const
{
// Keys are numbered with 1 => C, 12 => B
// This is based on chromagram base set to a C in qm-dsp's GetKeyMode.cpp
static const char *namesMajor[] = {
"C", "Db", "D", "Eb",
"E", "F", "F# / Gb", "G",
"Ab", "A", "Bb", "B"
};
static const char *namesMinor[] = {
"C", "C#", "D", "Eb / D#",
"E", "F", "F#", "G",
"G#", "A", "Bb", "B"
};
if (index < 1 || index > 12) {
return "(unknown)";
}
std::string base;
if (minor) base = namesMinor[index - 1];
else base = namesMajor[index - 1];
if (!includeMajMin) return base;
if (minor) return base + " minor";
else return base + " major";
}